
1536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 7, JULY 2004

On the Hardness of Finding Optimal Multiple Preset
Dictionaries

Michael Mitzenmacher, Member, IEEE

Abstract—We show that the following simple compression problem is
NP-hard: given a collection of documents, find the pair of Huffman dictio-
naries that minimizes the total compressed size of the collection, where the
best dictionary from the pair is used to compress each document. We also
show the NP-hardness of finding optimal multiple preset dictionaries for
LZ’77-based compression schemes. Our reductions make use of the catalog
segmentation problem, a natural partitioning problem. Our results justify
heuristic attacks used in practice.

Index Terms—Huffman coding, LZ’77, NP-completeness, preset dictio-
naries, two-stage compression.

I. INTRODUCTION

Preset dictionaries are often used to improve compression. For
example, with standard two-pass Huffman coding, one generally
sends a table describing the encoding, or a dictionary, that allows the
decoder to determine the appropriate codewords for each alphabet
symbol. Instead, if similar transmissions occur on a repeated basis, a
preset dictionary can be set in advance to avoid the cost of computing
and transmitting an explicit dictionary each time. Avoiding memory
and computation costs for dictionary computation may be useful
even if it yields slightly worse compression. Preset dictionaries may
also yield improved compression results when the cost of sending an
explicit dictionary would be more than the gain the explicit dictionary
would yield over the preset dictionary. This situation may occur when
documents are short and a suitably effective preset dictionary can be
found. Preset dictionaries arise in for example fax transmission and
JPEG encoding [1].

A natural extension to this idea is to allow multiple preset dictio-
naries. Flag bits at the beginning of a file can be used to denote which
(if any) preset dictionary to use. Allowing multiple dictionaries can
improve compression, at the cost of more space to store the preset dic-
tionaries and more computation to test which dictionary should be used
for compression. Note that this additional computation is required only
at the compression end, and is easily parallelized. Also, when the data
consists of files of different types, choosing the best dictionary may be
a simple task. The ZLIB library, designed for LZ’77-based compres-
sion [2], also allows for multiple preset dictionaries [3].

An early application of this idea dates back to theVoyager spacecraft,
which coded blocks of 16 pixels using the best of four fixed preset
memoryless entropy codes [4], [5]. This technique is generally called
two-stage coding, where the first stage requires choosing an appropriate
dictionary and the second stage uses the chosen dictionary to encode the
data. For more recent variations of two-stage coding and an excellent
treatment of the problem, see [6], [7].

Once multiple preset dictionaries are allowed, a natural question is
whether optimal multiple preset dictionaries can be found efficiently.

Manuscript received March 13, 2003; revised March 31, 2004. This work
was supported in part by an Alfred P. Sloan Research Fellowship and by the
National Science Foundation under Grants CCR-9983832, CCR-0118701, and
CCR-0121154. The material in this correspondence was presented in part at the
Data Compression Conference, Snowbird, UT, March 2001.

The author is with the Division of Engineering andApplied Sciences, Harvard
University, Cambridge,MA02138USA (e-mail: michaelm@eecs.harvard.edu).

Communicated by W. Szpankowski, J. P. Kieffer, and E.-h. Yang, Guest Ed-
itors.

Digital Object Identifier 10.1109/TIT.2004.830778

That is, we have a natural complexity question, similar in spirit to works
such as [8], [9]. In this correspondence, we relate the problem of finding
optimal multiple preset dictionaries to the model of segmentation prob-
lems introduced in [10]. In the spirit of these results, we refer to prob-
lems related to finding multiple preset dictionaries as compression seg-
mentation problems. Using this connection, we show that natural com-
pression segmentation problems for Huffman trees and LZ’77-based
compression are NP-hard. Since previous work on two-stage compres-
sion algorithms have generally used heuristic techniques in order to
determine dictionaries, our result can be seen as a strong justification
for these heuristic attacks.

Notation and Terminology

We make note of the following notation, used throughout this cor-
respondence. The notation j�j is used for the size of a set �. A non-
negative function f(x) is said to be O(g(x)) if and only if there exist
positive constants c and N so that f(x) � cg(x) for all x � N on
the domain of f . Similarly, a nonnegative function f(x) is said to be

(g(x)) if and only if there exist positive constants c and N so that
f(x) � cg(x) for all x � N on the domain of f . All logarithms have
base 2.

II. THE CATALOG SEGMENTATION PROBLEM

The problem of finding optimal families of preset dictionaries is re-
lated to the segmentation problems defined by Kleinberg, Papadim-
itriou, and Raghavan. The canonical segmentation problem is the cat-
alog segmentation problem,whichwe first describe informally. A seller
can send a catalog to all customers in its database. Only r items can be
advertised in a catalog. Given previous history, the seller can exactly
tell which people will buy which items. The goal is to maximize the
number of sales. If the seller could create just one catalog, the optimal
solution would be to include the r most popular items. Suppose instead
the seller can create k different catalogs and send exactly one to each
customer. How should the seller determine the k catalogs that will max-
imize the number of sales?1

Following [10], we formally define the catalog segmentation
problem as follows. Consider the customers as sets of items
S1; S2; . . . ; Sn over a ground set U . Catalogs X1; X2; . . . ; Xk are
also sets of items. The goal is to choose theXi such that jXij � r for
all i and

n

j=1

max
1�i�k

(jXi \ Sj j)

is maximized.

Theorem 1: [10] The catalog segmentation problem is NP-hard
(even for k = 2).

Even though the catalog segmentation problem is NP-hard, it can
be solved in polynomial time for any fixed r and k, since there are
only jUj

r
possible catalogs. The brute-force algorithm of trying all

combinations of k catalogs of r items is exponential in r and k.
Although in [10] the authors say that the catalog segmentation

problem (and several natural variants) are NP-hard, complete proofs
are not given. For completeness, in the Appendix , we offer our own
simple proof of Theorem 1 for the case k = 2, suggested to us by

1One can form a more general version of the catalog segmentation problem
where the number of catalogs can vary, and there is a cost associated with the
number of catalogs produced [10]. In this case, determining the proper number
of catalogs is also part of the problem. For our hardness results we do not need
this more general version of the problem.

0018-9448/04$20.00 © 2004 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 7, JULY 2004 1537

Steve Lumetta. We reduce the catalog segmentation problem to the
problems of finding optimal multiple preset dictionaries for Huffman
coding and Lempel–Ziv coding, thereby showing that these problems
are NP-hard. For convenience, for the remainder of the correspondence
we focus on the case where k = 2, although our results are easily
generalized to other values of k.

III. HUFFMAN CODING

We now define the Huffman code segmentation problem. We are
given a collection of documents D1; D2; . . . ; Dn over an alphabet �.
Finding an optimal sequence of Huffman code word lengths over � to
compress these documents is trivial; it simply requires summing the
character frequencies over all of the documents and using the standard
Huffman tree algorithm. Suppose, however, we were allowed to con-
struct k different Huffman dictionaries and use the best one to compress
each document. The Huffman code segmentation problem is to mini-
mize the total compressed size given the Di and k � 2.

To see how the Huffman code segmentation problemmight naturally
arise, suppose we plan to design multiple preset Huffman dictionaries
for a large, arbitrary collection of documents, such as all Web pages.
We might then sample n representative pages as a test set in order to
develop our Huffman dictionaries, which would be used over the larger
class of documents. The Huffman code segmentation problem designs
the best set of k dictionaries for this test set. Note that this problem
is completely offline; that is, all the relevant pages are assumed to be
available when choosing the dictionaries.

Like the catalog segmentation problem, the Huffman code segmen-
tation problem has at its heart a clustering question. Instead of deciding
what items need to go in each catalog, we need to decide which docu-
ments are associated with each preset dictionary. Formalizing this sim-
ilarity yields our reduction.

Theorem 2: The Huffman code segmentation problem is NP-hard.
Proof: We reduce from catalog segmentation for the case k = 2.

Recall for the catalog segmentation problem we have a ground set U
with jU j = m and n subsets S1; . . . ; Sn of U . We wish to find two
subsets X and Y of U with size r such that

n

j=1

max(jX \ Sj j; jY \ Sj j)

is maximized. We design a related Huffman code segmentation
problem so that each element in the ground set corresponds to a
character of �, and each character has depth d or d+ 1 for some d in
the pair of optimal Huffman trees. The sets X and Y will correspond
to the characters of depth d derived from elements of U in each
Huffman tree.

More specifically, let d be the smallest integer such that 2d+1 �
m + r. Our alphabet � will consist of 2d+1 � r characters. The first
m characters, u1; u2; . . . ; um, represent characters that correspond to
elements of U . We also introduce additional characters v1; v2; . . . ; vh,
where h = 2d+1 � r �m, so that there are 2d+1 � r total characters.
This setup allows each character to have depth d or d+1 in each of the
optimal trees.

For each set Sj we construct a corresponding document Dj . The
documentDj will contain three occurrences of each character uq such
that item q is contained in Sj , and two occurrences of every other char-
acter.

With this construction, we may assume without loss of generality
that all of the characters v1; v2; . . . ; vh should have depth at least as
large as any character ui in both of the Huffman trees in the solution,
because their frequency is at most as large in every document. Simi-
larly, if the depths of all characters in both trees are not within one of
each other, the total compressed size can be improved by flattening the

offending tree. That is, if some node has depth a and two other nodes
have depth (at least) a + 2, we may improve the tree by replacing it
with one where all three nodes have depth a+1. This reduces the size
by at least 4n � 3n > 0.

Hence, there must be exactly r characters from U with depth d in
each of the two trees of the solution, and all other characters have depth
d + 1. We show that the sets of r characters with depth d in the two
trees yield the setsX and Y for the catalog segmentation problem, by
replacing characters with the corresponding elements. The size of Dj

compressed using the optimal pair of Huffman trees is the sum of the
following terms: 2(d+1)h for characters v1; v2; . . . ; vh; 3d(max(jX\
Sj j; jY \Sj j)) for characters ui in Sj of depth d in the better tree; and
3(d+1)(m�max(jX\Sj j; jY \Sj j)) for other characters ui. Hence,
the total compressed size over the n documents is

2n(d+ 1)h+ 3n(d+ 1)m� 3

n

j=1

max(jX \ Sj j; jY \ Sj j):

Minimizing the compression is, therefore, equivalent to maximizing
the result of the catalog segmentation problem.

The corresponding decision version, which asks if there is a pair
of trees that compresses the documents down to t total bits, is clearly
NP-complete.

Because optimal answers are NP-hard, it is natural to consider ap-
proximation algorithms. One observation is that using one Huffman
tree is at most dlog ke bits per character worse than using k Huffman
trees. This follows because given the optimal Huffman trees for a given
k, we could design a compression scheme where the first dlog ke bits
would specify which of the k trees to use, and the remaining bits would
correspond to the appropriate codeword from that tree; the optimal
single Huffman tree performs better than this solution. We suspect this
bound can be improved. In practice, however, heuristic techniques for
the catalog segmentation problem as discussed in [10] or other natural
heuristic techniques can be applied and prove quite effective.

IV. PRESET DICTIONARIES FOR AN LZ’77 SCHEME

The ZLIB format was primarily designed for use with the DEFLATE
procedure, an LZ’77-based algorithm [3]. Since the LZ’77 format is
standard and described fully in most basic compression texts (e.g., [1]),
we rely on an informal description here. As a document is sequentially
compressed (or decompressed), there is a window into the previous
stream of characters. The current sequence of characters can be com-
pressed by providing a pointer into the window of the previous char-
acter stream and a length denoting how many characters starting from
that pointer are the same as the current stream. The decompressor can
use these pointers to efficiently reconstruct the original text. In this set-
ting, a preset dictionary consists of a sequence of characters that the
compressor and decompressor use as an implicit prefix to the stream to
be compressed. No output is generated while the compressor runs on
this prefix; similarly, the decompressor is initialized by using the preset
dictionary as an implicit prefix. As an example, mail messages contain
common header fields such as “Subject,” “From,” and “Return-Path.”
Including these strings in a preset dictionary used to compress mail
messages may therefore improve compression.

There are many variations of LZ’77, covering issues such as where
to match in the window if multiple matches of different lengths are
possible and how to encode the pointers. The first issue does not arise
for our result. For simplicity, we adopt a model where any pointer and
any match length use dlog se bits if s the size of the dictionary string.
Also, generally a 1-bit prefix is used for each symbol in the encoding
to mark whether it represents a pointer–length pair or a character from



1538 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 7, JULY 2004

the original document. Again, for simplicity, we ignore this in the proof
below; it does not change the analysis. Our result extends naturally to
other models.

Unlike the Huffman coding setting, for the LZ’77 setting even a
single optimal preset dictionary of a fixed size s for a given set of doc-
uments can be NP-hard under appropriate models. For example, the re-
lated problem of determining if a collection of words can be condensed
into a dictionary stringS of size s in such away that everyword appears
as a substring of S is NP-complete; it is the shortest common super-
string problem [11]. Notice that this result relies on overlapping strings,
and there may be unusual subtleties under other cost models related to
how pointers are encoded and whether there are multiple matches. In
practice, a natural approach for English text is to find the most fre-
quently used words and use them as the basis for a dictionary, ignoring
overlap issues or simply throwing out words that significantly overlap
others.

Our focus here is quite different. We consider the LZ’77 segmenta-
tion problem: given k � 2 and a set of documents D1; D2; . . . ; Dn

over an alphabet � to determine the k best preset dictionaries of size
at most s, where the size of Di compressed is taken to be the min-
imum number of bits over the choice of the k dictionaries. We show
that when k � 2, the problem is NP-hard. In our proof, all words use
completely distinct characters, so this complexity does not arise from
issues related to words with overlap. In this case, the heart of the matter
is again a clustering question.

Theorem 3: The LZ’77 segmentation problem is NP-hard.
Proof: We again reduce from the catalog segmentation problem

for k = 2. Given a catalog segmentation problem, we construct an
LZ’77 segmentation problem whose alphabet � has size zjU j for a
value of z to be determined. (For notational convenience, we assume
j�j is a power of two henceforth.) For each ui in the ground set jU j
we associate z distinct characters from � so that the characters associ-
ated with each ui are disjoint; more specifically, we associate ui with a
length z string of the formw1w2 . . .wz . For each setSj , j = 1; . . . ; n,
of the catalog segmentation problem, there is an associated document
Dj constructed by concatenating all the words associated with the ele-
ments of Sj . (Notice that the order of the words in Sj will prove unim-
portant because of our choice of cost function for representing pointers
and matches.) We seek dictionaries with size rz.

Let us temporarily assume that the optimal preset dictionaries con-
sist of concatenated strings of length z, with each such string corre-
sponding to the string corresponding to some ui. Then the dictionaries
correspond to subsets X and Y of the ground set U of size r in the
natural way, andX and Y will be the optimal catalogs for the segmen-
tation problem. When compressed, the size of documentDj will be

jSj jz log j�j�max(jX [ Sj j; jY [ Sj j)(z log j�j�2dlog rze):

To see this, note that representing all the characters ofDj without com-
pression takes jSj jz log j�j bits. When compressing, we save z log j�j
bits for each matched word between the document and the dictionary,
although we incur a cost of 2dlog rze for the relevant pointers de-
scribing the location and length of the match. Hence the total com-
pressed size can be rewritten as

n

j=1

[z log j�j(jSjj �max(jX [ Sj j; jY [ Sj j))

+ 2dlog(rz)emax(jX [ Sj j; jY [ Sj j)] :

With these conditions, the compression gain for each document is
proportional (up to lower order terms) to the number of strings in the
document that are matched in the dictionary. When z is sufficiently

large compared to dlog(rz)e, the optimal solution to the LZ’77 seg-
mentation problem maximizes

n

j=1

max(jX [ Sj j; jY [ Sj j):

Clearly, z can be chosen to be polynomial in the size of the problem.
The solution to the LZ’77 problem naturally yields a corresponding
optimal solution to the catalog segmentation problem. Each dictionary
maps to a catalog by mapping length z strings corresponding to some
ui in the dictionaries to items in the catalogs.

We return to the assumption that dictionaries consist of concate-
nated strings of length z, with each such string corresponding to the
string corresponding to some ui. We show that if we obtain optimal
dictionaries that are not of this form, we can transform them to op-
timal dictionaries of this form (in polynomial time). Consider an op-
timal pair of dictionaries not of this form. For each dictionary, placing
characters from a string corresponding to a ui adjacent to each other
in the appropriate order can only lower the compressed size, so we as-
sume that this is done. Next, if a dictionary contains characters from a
string corresponding to a ui, but not the full z characters, find the sub-
string with this property that is usedmost frequently in compressing the
documents. Simply replace characters from a less frequently used (or
equally used) substring with this property in the same dictionary (note
that there must be one). This can only reduce the compressed size. Re-
peating this as necessary we can transform any optimal solution into
another optimal solution with the desired property, in polynomial time.

The key points in the above proof are that the compression changes
the word cost from 
(z) to O(log z), and that strings in the optimal
dictionaries are concatenated words of length z. The proof works for
any representation of pointers and match lengths that preserves these
properties.

APPENDIX

We now give the proof of Theorem 1 in the case where k = 2.

Theorem 1: The catalog segmentation problem is NP-hard for
k = 2.

Proof: We reduce from the well-known NP-hard problem Graph
Bisection [12]: given a graphG = (V;E)with an even number of ver-
tices, split V into two disjoint sets V1 and V2 with jV1j = jV2j = jV j=2
such that the number of edges adjacent to both V1 and V2 is minimized.
We turn an instance of graph bisection into a catalog segmentation
problem as follows. For each vertex, create a corresponding item. If
d is the maximum degree of the graph, create for each item d+ 1 cus-
tomers who want to purchase only that item. For each edge, create a
customer that wants to purchase only those two items corresponding to
the vertices adjacent to that edge. Now suppose we can have r = jV j=2
items in each catalog. We argue that the optimal pair of catalogs must
contain all jV j items. Otherwise, some item appears in both catalogs,
but since the maximum degree of the graph is d, replacing one copy
of the repeated item by some item that does not appear improves the
number of items sold, as there are at least d + 1 customers that will
purchase only that item. Now consider a pair of catalogs containing
all jV j items. Each such pair of catalogs corresponds to a bisection of
the vertices into two disjoint sets V1 and V2 of size jV j=2. If c is the
number of edges that are adjacent to both a vertex in V1 and a vertex in
V2, then the the number of sales corresponding to the pair of catalogs is
(d+1)jV j+2jEj � c. We may conclude that the pair of catalogs that
maximizes sales also provides a bisection that minimizes the number
of edges crossing from V1 to V2. This completes the reduction.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 7, JULY 2004 1539

ACKNOWLEDGMENT

The author thanks the reviewers and the Guest Editors for their many
suggestions.

REFERENCES

[1] I. Witten, A. Moffat, and T. Bell, Managing Gigabytes, 2nd ed. San
Francisco, CA: Morgan Kaufmann, 1999.

[2] J. Ziv and A. Lempel, “A universal algorithm for data compression,”
IEEE Trans. Inform. Theory, vol. IT-23, pp. 337–343, May 1977.

[3] P. Deutsch and J-L. Gailly, “ZLIB Compressed Data Format Specifica-
tion Version 3.3,” Network Working Group, RFC 1950, 1996.

[4] R. F. Rice and J. R. Plaunt, “The Rice Machine: Television Data
Compression,” Jet Propulsion Laboratory, Pasadena, CA, Tech. Rep.
900-408, 1970.

[5] , “Adaptive variable-length coding for efficient compression
of spacecraft television data,” IEEE Trans. Commun. Technol., vol.
COM-19, pp. 889–897, Dec. 1971.

[6] P. Chou, M. Effros, and R. Gray, “A vector quantization approach to uni-
versal noiseless coding and quantization,” IEEE Trans. Inform. Theory,
vol. 42, pp. 1109–1138, July 1996.

[7] M. Effros, P. Chou, and R. Gray, “Weighted universal image compres-
sion,” IEEE Trans. Image Processing, pp. 1317–1329, Oct. 1999.

[8] M. Garey, D. Johnson, and H. S. Witsenhausen, “The complexity of
the generalized Lloyd-Max problem,” IEEE Trans. Inform. Theory, vol.
IT-28, pp. 255–256, Mar. 1982.

[9] J. A. Storer, “Data compression: Methods and complexity issues,” Ph.
D. dissertation, Princeton Univ., Princeton, NJ, 1979.

[10] J. Kleinberg, C. Papadimitriou, and P. Raghavan, “Segmentation prob-
lems: Amicro-economic view of datamining,” inProc. 30th ACM Symp.
Theory of Computing, 1998, pp. 473–482.

[11] M. Garey and D. Johnson, Computers and Intractibility. San Fran-
cisco, CA: Freeman, 1979.

[12] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified NP-com-
plete graph problems,” Theor. Comput. Sci., vol. 1, no. 3, pp. 237–267,
1976.

Monotonicity-Based Fast Algorithms for MAP Estimation
of Markov Sequences Over Noisy Channels

Xiaolin Wu, Senior Member, IEEE, Sorina Dumitrescu, and Zhe Wang

Abstract—In this correspondence, we study algorithmic approach to
solving the problem of maximum a posteriori (MAP) estimation of Markov
sequences transmitted over noisy channels, which is also known as the
MAP decoding problem. For the class of memoryless binary channels that
produce independent substitution and erasure errors, the MAP sequence
estimation problem can be formulated and solved as one of the longest
path in a weighted directed acyclic graph. But for algorithm efficiency,
we transform the graph problem to one of matrix search. If the under-
lying matrix is totally monotone, then the complexity of MAP sequence
estimation can be greatly reduced. We give a sufficient condition for the
matrix induced by MAP sequence estimation to be totally monotone,
which is indeed the case if the input sequence is Gaussian Markov. Under

Manuscript received May 11, 2003; revised March 22, 2004. This work was
supported by Natural Sciences and Engineering Council of Canada and by the
National Science Foundation. The material in this correspondence was pre-
sented in part at the IEEE Information Theory Workshop, Paris, France, April
2003.

The authors are with the Department of Electrical and Computer Engi-
neering, McMaster University, Hamilton, ON L8S 4K1, Canada (e-mail: xwu@
mail.ece.mcmaster.ca; sorina@mail.ece.mcmaster.ca; zwang@grads.ece.mc-
master.ca).

Communicated by E.-h. Yang, Guest Editor.
Digital Object Identifier 10.1109/TIT.2004.830782

this condition, the complexity of MAP decoding can be reduced from
( ) to ( ), where is the size of source alphabet and
is the length of input sequence. Furthermore, for Markov sequences

of fixed-length code we propose a block parsing strategy to reduce the
complexity of MAP sequence estimation to ( + log ) or
to ( + log ), depending on if the total monotonicity holds.

Another significance of this correspondence lies in the applicability of
the presented algorithmic approach, which has been thoroughly studied in
computer science literature, to many other discrete optimization problems
encountered in both source and channel coding, ranging from optimal mul-
tiresolution andmultiple-description quantizer design, to context quantiza-
tion for minimum conditional entropy, and to optimal packetization with
uneven error protection.

Index Terms—Gaussian Markov source, joint source–channel decoding,
maximum (MAP) sequence estimation, Monge inequality,
string parsing, weighted directed acyclic graph.

I. INTRODUCTION

We consider the problem of maximum a posteriori (MAP) esti-
mation of an input source sequence with memory, possibly entropy
coded, and transmitted over a noisy channel, or commonly known as
the MAP decoding problem. The goal is to utilize the memory in the
input sequence to correct or/and alleviate transmission errors without
using error-correction codes. A MAP decoder tries to maximize the a
posteriori probability of the decoded sequence, based on the statistics
of both source and channel [6], [11]–[16]. It is a joint source–channel
decoding technique that exploits the residual redundancy of the
source-code stream.

The most common structure of source redundancy to be exploited by
a MAP decoder is that of a Markov sequence. If a Markov sequence is
coded by a fixed-length code then the MAP decoding is quite straight-
forward. The problem gets more complex if the source code is of vari-
able length. This is because channel errors can easily cause loss of
synchronization on a variable-length code (VLC). Since most entropy
codes are of variable length, MAP decoding of variable-length-coded
Markov sequence is of greater practical interest and importance and is
the key problem to be solved in this work.

Typically, the MAP decoder employs a look-ahead mechanism,
and makes a delayed or soft decision to take advantage of the
memory in the input sequence. The common look-ahead mechanism
in communication engineering is trellis. Indeed, all existing MAP
decoding algorithms for VLCs are essentially modified Viterbi
decoders [6], [11]–[16]. Most of these algorithms were designed for
binary-symmetric channels (BSC ).

In this correspondence, the MAP decoding problem for Markov
sources is represented by a weighted directed acyclic graph (WDAG),
which is more general and flexible than a trellis. We consider the
memoryless binary channels that produce independent substitution
and erasure errors, or so-called errors-and-erasure channels (EEC).
The MAP decoding problem for EEC becomes one of computing the
single-source longest path in the WDAG, and hence, can be solved
exactly by the standard longest path algorithm. However, since our
graph is quite dense and since the time complexity of the longest
path algorithm is proportional to the number of edges, more efficient
solutions are needed to make MAP decoding practical. This need
motivated our research of algorithmic nature.

The purpose of this correspondence is two-fold. First, we present a
new algorithmic approach to MAP decoding of VLC-coded Markov
sequences. Our key idea is to transform the problem to one of matrix
search. Via the transform, we expose and exploit a strong and useful
monotonicity of the optimization objective function forMAP decoding,
and drastically reduce the complexity of the problem. Second, while

0018-9448/04$20.00 © 2004 IEEE


