120

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Verification-Based Decoding for Packet-Based
Low-Density Parity-Check Codes

Michael G. Luby and Michael Mitzenmacher, Member, IEEE

Abstract—We introduce and analyze verification-based decoding
for low-density parity-check (LDPC) codes, an approach specifi-
cally designed to manipulate data in packet-sized units. Verifica-
tion-based decoding requires only linear time for both encoding
and decoding and succeeds with high probability under random
errors. We describe how to utilize code scrambling to extend our re-
sults to channels with errors controlled by an oblivious adversary.

Index Terms—Low-density parity-check (LDPC) codes,
packet- based codes, g-ary symmetric channel, verification-based
decoding.

I. INTRODUCTION

ORK on low-density parity-check (LDPC) codes has fo-
cused on the scenario where a bitstream is transmitted
over a channel that introduces bit-level errors, such as the bi-
nary-symmetric error channel with a fixed error probability or
with Gaussian white noise (see, e.g., [1]-[6]). For this scenario,
encoding and decoding schemes normally perform computa-
tional operations on and maintain data structures for individual
bits. For example, techniques based on belief propagation [6],
[7] use a probability for each bit to represent the current belief
that the transmitted bit was a zero or one, and perform com-
putations to update these probabilities. In many practical sit-
uations, however, the basic unit of transmission might not be
single bits, but blocks of bits organized as packets. Here we use
the term packets to broadly refer to a collection of bits. For ex-
ample, packets could be thousands of bits, as is the case with
Internet packets, or a packet could simply represent a 32-bit
integer. To achieve high speeds on many current systems, it is
natural to consider coding schemes that perform computational
operations at the packet level instead of the bit level. For ex-
ample, packet-based LDPC codes for erasures have been applied
to content delivery using reliable multicast and content delivery
networks [7]-[10].
A further motivation for studying packet-level schemes is that
they can be used in concatenated codes [11]. An inner code
that works at the bit level can be used on individual packets.

Manuscript received September 19, 2003; revised June 8, 2004. The work
of M. Mitzenmacher was supported in part by an Alfred. P. Sloan Research
Fellowship and the National Science Foundation under Grants CCR-9983832,
CCR-0118701, and CCR-0121154. Part of this work was done while
M. Mitzenmacher was visiting Digital Fountain, Inc., Fremont, CA. The mate-
rial in this paper was presented in part at the 40th Annual Allerton Conference
on Communication, Control, and Computing, Monticello, IL, October 2002.

M. G. Luby is with Digital Fountain, Inc., Fremont, CA 94538 USA (e-mail:
luby @digitalfountain.com).

M. Mitzenmacher is with Harvard University, Division of Engineering and
Applied Sciences, Cambridge, MA 02138 USA (e-mail: michaelm@eecs.
harvard.edu).

Communicated by R. J. McEliece, Associate Editor for Coding Theory.

Digital Object Identifier 10.1109/TIT.2004.839499

If this inner code fails, the bits in the packet could be erroneous
in unpredictable and seemingly arbitrary ways. An outer code
designed to deal with errors at the packet level could then be
used to correct failures from the inner code. Concatenated codes
may allow computationally complex inner codes that work on
packets of a small fixed size while also offering scalability to
large block lengths using the packet-level outer code. Alter-
natively, concatenated codes may allow computationally weak
inner codes, where a packet-level outer code is used to cope with
frequent inner code failure.

In this paper, we introduce and analyze verification-based de-
coding, a decoding approach for simple LDPC codes designed
especially for large alphabets. Verification-based decoding is
designed to deal with data in packet-sized units of 32 bits or
more. More specifically, if the code is over n packets, then the
packets should have Q2(log n) bits, so that the total alphabet size
is suitably large compared to the number of packets. We use the
term verification-based decoding because an important aspect of
our codes is that packet values are verified as well as corrected
through a simple message-passing algorithm.

We first describe verification-based decoding for the case of
the g-ary symmetric channel (qSC), for large values of ¢. In the
gSC, the symbols are numbers in the range [0, ¢ — 1], and when
an error occurs, the resulting symbol is assumed to take on a
value uniformly at random from the set of ¢ — 1 possible incor-
rect values. We then describe how verification-based decoding
for the gSC channel can be applied in more general settings in
practice by using code scrambling techniques.

A. Coding for the gSC

In principle, the problem of coding for the qSC should not be
very different from that of coding for the g-ary erasure channel
(qEC) as g becomes large. As the ratio of their capacities ap-
proach 1 as ¢ — o0, we might expect that there should be
some coding scheme that is able to locate errors using relatively
little overhead, and then correct the errors using an efficient ca-
pacity-approaching erasure-correction code.

Indeed, the standard method of using a c-bit checksum on a
b-bit packet to detect packet errors, followed by erasure—correc-
tion, can approach capacity as b goes to infinity. The probability
that the checksum will not detect an error is 27 ¢; the overhead
is a factor of ¢/(b + ¢). Assuming c is chosen large enough that
errors will not occur with high probability, low-complexity era-
sure—correction schemes can be used to approach the capacity
of the resulting erasure channel.

Another natural scheme to consider would be a max-
imum-distance separable (MDS) code over a g-ary alphabet.

0018-9448/$20.00 © 2005 IEEE

LUBY AND MITZENMACHER: VERIFICATION-BASED DECODING FOR PACKET-BASED LDPC CODES 121

It is easy to show that with maximum-likelihood (ML) de-
coding, MDS codes can approach the capacity of the qSC as
q — oo. However, ML decoding of known MDS codes such as
Reed-Solomon codes is much too complex, and it is not known
whether it is possible to construct MDS or MDS-like codes for
which low-complexity near-ML decoding schemes exist.

This paper addresses the nonasymptotic but practical cases
where ¢ is only moderately large, say from g = 232 to ¢ = 2128,
In these cases, the c-bit checksum technique may not be effec-
tive, because if c is large enough to make the probability of not
detecting an error small, the rate overhead will be much too
high. We introduce an alternative error-locating scheme based
on local checks rather than checksums. Our scheme requires
only linear complexity. It achieves respectable rates for mod-
erate-sized ¢, although it does not approach capacity as ¢ — oo.
We hope that variations on the foundation we present will lead
to schemes that do approach capacity.

B. Previous Work

Gallager considered the question of LDPC codes over large
alphabets in his seminal work on the subject [13]; however,
Gallager did not recognize the full potential of working over
the qSC. By making better use of properties of the underlying
channel, we achieve significantly better results.

Techniques quite similar to verification-based decoding were
suggested by Metzner, using what he calls majority-logic-like
decoding [14], [15]. Metzner’s results were experimental, and
he was the first to suggest that such codes could perform better
than Reed-Solomon codes, under certain assumptions. Our
work represents a significant advance, in that by placing these
codes in the LDPC framework, we are able to give asymptotic
analyses of code performance as well as determine improved
constructions.

Davey and MacKay [16] develop LDPC codes when the sym-
bols are elements of small finite fields, using belief propagation
techniques. Belief propagation is not scalable to the very large
alphabets we consider here.

Our work also demonstrates some interesting connections be-
tween packet-level error-correcting codes and erasure codes. In
this respect, the work has a similar feel to classic work on burst
error-correction codes on bit-level channels, where a long bursty
error can be treated like a long erasure if it can be detected; see
[17] for a survey.

II. FRAMEWORK FOR LOW-DENSITY PARITY-CHECK CODES

We briefly summarize the now-standard framework for
LDPC codes, following [2]. LDPC codes are conventionally
represented by bipartite graphs. One on side, the n variable
nodes correspond to symbols in the codeword. On the other
side, the m check nodes correspond to constraints on the ad-
jacent variable nodes. We assume henceforth that there are m
check nodes. The design rate R is given by R = ». (The
actual rate R tends to be slightly higher than the design rate
R in practice, because the check nodes are not necessarily all
linearly independent. This causes at most a vanishingly small
difference as n gets large, so we ignore this distinction hence-
forth.) The g-ary alphabet is assumed to have an appropriate

group structure and group operation. Specifically, the symbols
can be interpreted as numbers modulo ¢, with the constraints
being on the sum of values of the variable nodes modulo g.
When ¢ = 2% as when the packet is a string of b bits, we
may use the group (Z3)?, so the sum operation is a bitwise
EXCLUSIVE-OR and the constraints are packet-level parity-check
constraints.

A family of codes can be determined by assigning degree
distributions to the variable and check nodes. In regular LDPC
codes, all variable nodes have the same degree, and all check
nodes have the same degree. More flexibility can be gained
by using irregular codes, introduced by Luby, Mitzenmacher,
Shokrollahi, and Spielman [2], [7], which allow the degrees of
each set of nodes to vary. Let X = (As, ..., Aq,) be the vector
such that the fraction of edges connected to variable nodes of de-
gree i is \;. (We assume a minimum degree of two throughout.)
Here d,, is the maximum degree of a variable node. Note that
A; refers to the fraction of edges, and not the fraction of nodes,
of a given degree. Similarly, let o' = (pa, ..., pa.) be such that
the fraction of edges connected to check nodes of degree i is p;,
and d.. is the maximum degree of a check node. Based on these
degree sequences, we define the polynomials

dy de

Az) = Z Nzl and p(z) = Z pix' 1

1=2 =2

which prove useful in subsequent analysis. The \; and p; vari-
ables must satisfy a constraint so that the number of edges is
the same on both sides of the bipartite graph. This constraint is
easily specified in terms of the design rate by the equation

Jo plx)dz
R=1-:2

I Maz)dz

Once degrees have been chosen for each node (so that the total
degree of the check nodes and the variable nodes are equal), a
specific random code can be chosen by mapping the edge con-
nections of the variable nodes to the edge connections of the
check nodes. That is, to select a code at random, a random per-
mutation 7 of {1,..., E'} is chosen, where FE is the number of
edges. For all i € {1,..., E}, the edge with index i out of the
left side is identified with the edge with index 7; out of the right
side. In practice, it appears better not to choose the edge con-
nections entirely randomly. For example, improvements gener-
ally occur by avoiding duplicate edges between pairs of nodes
or short cycles in the graph. We do not concern ourselves with
these issues in the subsequent analysis.

Unless otherwise specified, we assume that the constraints are
such that the sum of the symbols associated with the variable
nodes adjacent to each check node is 0. In some circumstances,
it may be better to design a layered code, as described in [2];
this does not affect the analysis. For the layered version, the en-
coding time is proportional to the number of edges in the graph.
Linear time encoding schemes also exist for the single-layer
scheme we analyze here [18].

We consider message-passing algorithms described below. To
determine the asymptotic performance of such codes, it suffices
to consider the case where the neighborhood of each node is a

122

tree for some number of levels. That is, there are no cycles in the
neighborhood around each node. Analysis in this case is greatly
simplified since random variables that correspond to messages
in our message-passing algorithms can be treated as indepen-
dent. The analysis is accurate because the graph is asymptot-
ically tree-like, and can be made rigorous using now-standard
martingale arguments, as introduced in [19].

III. DECODING ALGORITHMS FOR THE QSC

A. A Simple Decoding Algorithm

We suggest several decoding algorithms for the qSC, first pre-
senting a very simple algorithm that we improve subsequently.
Before explaining how to view our decoding algorithm as a mes-
sage-passing algorithm, we first describe an equivalent algo-
rithm from the point of view of the nodes for clarity.

With each variable node v there corresponds a true value ¢,,, a
received value r,, and a current value c,. Throughout the algo-
rithm, each variable node is in one of two possible states: either
unverified or verified. When a node is unverified, the algorithm
has not yet fixed the final value for that node. Hence, the de-
coding algorithm begins with all nodes being unverified. When
a node is verified, its current ¢, becomes fixed. Hence, the al-
gorithm should, with high probability, never assign a verified
node a value ¢, such that ¢, # t,. In the algorithm that fol-
lows, the current value ¢, is always equal to 7, when the node
is unverified.

The decoding algorithm simply applies the following rules in
any order as much as possible.

1) If the sum of the current values of all the neighbors of
a check node equals 0, all currently unverified neighbors
become verified and the final values are fixed to the cur-
rent values.

2) If all but one of the neighbors of a check node is verified,
the remaining neighbor becomes verified, with its final
value being set so that the sum of all neighbors of the
check node equals 0.

In order to analyze this algorithm, we refine our description
of the node state. An unverified node is correct if its value was
received correctly, and incorrect if it was received in error. This
refinement is used only in the analysis, and not in the decoding
algorithm, which does not know if an unverified node is correct
or incorrect. Also, recall that we assume that an incorrect packet
takes on a uniform incorrect value.

In this decoding process, the check nodes play two roles.
First, they may verify that all of their neighbors are correct, ac-
cording to Rule 1. This verification rule applies because of the
following fact: if the sum of the current values of all neighbors
of a check node is 0, then with high probability all the neigh-
boring variable nodes must be correct. Concretely, we have the
following lemma.

Lemma 1: At any step where a check node attempts to
verify all of its neighbors, the probability of an error is at most
1/(g—1). Over the entire decoding algorithm, if C' verification
steps are attempted, the probability of an error is at most

C/(qg—1).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Proof: For an erroneous verification to occur, two or more
neighbors of a check node ¢ must be in error. Consider an arbi-
trary neighbor in error, v. Given the values of the other neigh-
bors of ¢, there is at most one possible erroneous value for v that
would lead to a false verification. Under the assumption that er-
rors take on an incorrect value that is uniform over all ¢ — 1
possibilities, the probability that v takes on this precise value is
at most 1/(q — 1). Hence, at each step where a check node at-
tempts to verify all of its neighbors, the probability of an error
is at most 1/(q — 1). The second statement of the lemma then
follows from the first by a simple union bound. O

To see the value of the preceding lemma, consider the case
where symbols consist of b bits, so ¢ = 2°. The probability
of a failure from a false verification is exponentially small in b
at each step. It is straightforward to design a decoding process
so that the number of verification steps attempted is linear in
the size of the graph. Initially, all check nodes may gather the
received values of their neighboring variable nodes, and see if
a verification is possible. A check node can also take action
whenever the state of one of its neighboring nodes changes. The
total work done is then proportional to the number of edges in
the graph. For bounded degree graphs, the number of edges will
be O(n). Hence, the packet size b needs to be only 2(logn) bits
in order that the probability of failure due to a false verification
be polynomially small in n. Specifically, packets of size b =
32 bits should suffice for codes with hundreds or thousands of
nodes, and packets of size b = 64 bits should suffice for codes
with tens or hundreds of thousands of nodes.

The other role of a check node is to correct a neighboring vari-
able node that was received incorrectly, according to Rule 2. A
check node can correct a neighbor after all other neighbors have
been verified and therefore are known (with high probability) to
have the correct value. In this case, the value of the unverified
neighbor is obtained by determining the value that results in a 0
sum at the check node.

B. A Message-Passing Decoding Algorithm

We now develop a message-passing version of this decoding
process to aid our analysis. The goal is to determine the asymp-
totic error threshold p*, which is the limiting fraction of errors
tolerable under our decoding process as n grows large. To pic-
ture the decoding process, we focus on an individual edge (v, ¢)
between a variable node v and a check node ¢, and an associ-
ated tree describing the neighborhood of v. Recall that we as-
sume that the neighborhood of v is accurately described by a
tree for some fixed number of rounds. The tree is rooted at v,
and the tree branches out from the check nodes of v excluding
¢, as shown in Fig. 1.

Given that our graph is chosen at random, we can specify
how this tree branches in a natural way. This specification is the
approximation obtained by thinking of the tree growing from v
as a branching process, which is correct in the asymptotic limit
as the number of nodes grows to infinity. As the probability that
edge (v,) has degree j is A, with probability A; there are j — 1
other check node neighbors of v. Similarly, every such neighbor
¢’ has j — 1 other variable node neighbors with probability p;,
and so on down the tree.

LUBY AND MITZENMACHER: VERIFICATION-BASED DECODING FOR PACKET-BASED LDPC CODES 123

check node ¢ Q
I
I

variable node v

check nodes

variable nodes

Fig. 1. The neighborhood around (v, c).

We think of the decoding process as happening in rounds,
with each round having two stages. In the first stage, each vari-
able node passes to each neighboring check node in parallel its
current value and state. In the second stage, each check node ¢
sends to v a flag denoting whether it should change its state to
verified; if ¢’ verifies v, it also sends the appropriate value. Based
on this information, v changes its value and state appropriately.
For convenience in the analysis, we think of each variable node
as passing on to the check node c the current value excluding any
information obtained directly from c. (This avoids the problem
of a circular flow of information.) That is, when the variable
node v passes information to ¢ regarding its value and state, it
only considers changes in its state caused by other nodes.

We provide an analysis based on the tree model. Consider an
edge (v, c) in the graph. Let a; be the probability that in round j
the message from v to ¢ contains the true value ¢,, but v is unver-
ified. Similarly, let b; be the probability that in round j the mes-
sage from v to c contains an incorrect value for v. We ignore the
possibility in the analysis that a false verification occurs, since
as we have already argued, for a sufficiently large alphabet this
occurs with negligible probability. Hence, 1 —a,; —b; is the prob-
ability that, in round j, v can confirm to c that it has been verified
via another check node. Initially ag is simply the initial proba-
bility a correct word is sent and bg = 1 — ag. If a; + b; tends to
0, then our decoding algorithm will be successful, since then the
probability that an edge (and therefore its corresponding node)
remains unverified falls to 0.

The evolution of the process from round to round, assuming
that the neighborhood of v is given by a tree, is given by

aj+1 = aoA(1 — p(1—b;)) M
bj+1 = bo)\(l — p(l —a; — bj)) (2)

We explain the derivation of (2) by considering the decoding
from the point of view of the edge (v, ¢). For an incorrect value
to be passed in the (j + 1)th round, the node v must have been
received incorrectly; this corresponds to the factor by. Also, it
cannot be the case that there is some check node ¢’ other than ¢
neighboring v that has all of its children verified after j rounds,
or else v could be corrected and verified for the (j + 1)th round.
Now each ¢’ has k — 1 children below it with probability py., and
each child is verified after j rounds with probability 1 —a; —b;.
The probability that v has not been corrected due to a specific
check node ¢’ by round j is therefore

Y o pi(l—a;=b)""" = p(1—a; —b)).

As v has k — 1 other neighboring check nodes besides ¢ with
probability A, the probability that v remains uncorrected when
passing to node ¢ in round 7 + 1 is

ZMI —p(1—a; = b))t = A1 = p(1 - a; — by)).

This yields (2); (1) is derived by similar considerations.
We show how to use this analysis to find codes with good
properties. We first modify the above equations as follows:

aj+1 =aoA(1 — p(1 = b;)) 3)
bj+1 =boA(1 — p(1 — aji1 — by)).)

Here (4) differs from (2) in that we have replaced a; with a;41.
This change does not change the final performance of the de-
coding; intuitively, this change is equivalent to changing our
processing at each round by splitting it into two subrounds. In
the first subround, variable nodes that have the correct value
have their state updated. In the second subround, variable nodes
with an incorrect value are corrected. The split clearly does not
affect the final outcome; however, it allows us to replace a; with
a;+1 in the defining equation for b;.
With this change, we find

bj+1 = boA(1 — p(1 — (1 = bo)A(1 — p(1 = bj)) = bj)). (5)

We have reduced the analysis to an equation in a single family
of variables b;. It is clear that if b; converges to 0, then so does
aj, by the definition of the decoding process. Hence, we need
only consider the b;. For b; — 0 with initial error probability by,
we require that the sequence of b; decrease to 0. In particular, it
suffices to find A\(x) and p(z) so that

boA(1—p(1 = (1=bp)AM1—=p(l—2))—x2)) <z (6)

for 0 < = < bg. If we let z = b; in (6) above, we find that
it corresponds to b; < bj41, and, in fact, it implies that the
sequence of b; decrease to 0. Based on our discussion, we have
the following theorem.

Theorem 1: Given a design rate R and an error probability
bo, then if there are A and psatisfying the rate constraint

Iy pla)da
R=1-— 017

Jo Mz)dz

and the code constraint
boA(1 = p(1 = (1 =b)AN1—p(1—2)) —x)) <=z

for 0 < x < by, then for any € > 0 there are codes of rate R that
can correct errors on a qSC with error probability by — € with
high probability using the verification-based decoding scheme
described earlier.

We emphasize that similar theorems using various decoding
schemes are implicit throughout the rest of the paper. Equation
(5) therefore provides us a tool for determining good sequences
X and /. This is a nonlinear equation in the coefficients ; and

124

pj, yielding a nonlinear optimization problem for which stan-
dard numerical techniques can be applied.

Unfortunately, solving the nonlinear optimization problem
directly for a specific code rate does not shed a great deal of
insight into what can be said for general code rates. We can,
however, demonstrate a provable bound for this family of codes
based on the family of codes determined in [2] for erasures.
(Other constructions of codes with similar properties have been
subsequently developed, for example, in [20], [21].)

Lemma 2: Forany 0 < R < 1and e > 0, there exist X and 7]
corresponding to a family of erasure codes of rate I? that correct
a (1 — R)(1 — ¢) fraction of errors with high probability such
that

r
A1 —-p(1—2)) <

m, 0<zx< 1.

(7

This lemma allows the following theorem.

Theorem 2: For any 0 < R < 1 and € > 0, there exists a
family of codes of rate R that correct a

R VAR -3R?

fraction of errors with high probability using verification-based
decoding.

Proof: We use the X and g defined by the erasure codes
of Lemma 2, and apply the corresponding inequality to find the
asymptotic fraction of errors we can correct using verification-
based decoding for these degree sequences. Lety = (1—R)(1+
€). We seek the maximum value of by for which

boA(1 = p(1 = (1 = bo) M1 = p(1 — @) — x)) < .
By repeatedly using Lemma 2, we find
boA(1 = p(1 = (1 =bo)A(1 = p(1 — 7)) — x))
_ ({1 = b)A(L = p(1 = 2)) +)
2
+ boll?

bo(1—bo)=
< v
~
bo(1 — bo) + boy
72 '
Here, the first inequality follows by applying Lemma 2 to the
outer A(1 — p(1 — 2)) expression, and the second inequality
similarly follows by then applying it to the inner expression.
The final right-hand size is less than or equal to z whenever we
choose

bo(1 — bo) + boy <

1
v? -

and solving this quadratic we find we may choose

1 —V14+2y-392

As ~y can be arbitrarily close to 1 — R, asymptotically
there exist codes that can correct anything less than a fraction

1-— % — 7““32_3}%2 of errors with high probability using verifi-
cation-based decoding. O

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

As a comparison, we might consider Reed—Solomon codes,
which in the worst case can correct up to a fraction (1 — R)/2
errors very efficiently in practice. We find

R V4R —3R?

2 2
when R < 1/3. Hence, when R < 1/3, the verification-based
decoding of Theorem 2 outperforms the worst case bounds for
Reed-Solomon codes. This is admittedly a somewhat unfair
comparison, since verification-based decoding corrects random
errors, and the result above applies to worst case errors for
Reed—Solomon codes. As discussed in Section I-A, in theory,
for the qSC, Reed—Solomon codes can approach the capacity
1 — R as q goes to infinity, but we know of no such scheme that
requires only linear decoding time or for ¢ to be only polyno-
mial (as opposed to exponential) in . While verification-based
decoding does not meet the capacity 1 — R, its computational
complexity and the utility for packets with small numbers of
bits b is appealing.

1 > (1—R)/2

IV. IMPROVEMENTS
A. Additional Verification

We may improve our verification-based decoding by allowing
further means of verification. We describe the changes to the
message-passing algorithm. In the first stage, each variable node
passes to each neighboring check node its current value and
state. In the second stage, each neighboring check node ¢’ sends
to v a flag denoting whether ¢ can verify v directly, using one
of the two rules given previously. If so, ¢’ again sends the veri-
fied value as before. If not, ¢’ also sends to v a proposed value,
which is the value that v should take if all of the other neighbors
of ¢’ have sent the correct value. Now suppose v receives two
proposed values that are the same. In this case, v should change
its value to the proposed value and label itself as verified for the
next round.

The reasoning behind this improvement is similar to the orig-
inal argument for verification. If all neighbors besides v for a
check node ¢’ are in fact correct, the proposed value will be the
correct value for v. If not, the proposed value will be random
over all incorrect possibilities, and hence the probability of a
match is small. We must adopt the additional restriction that
there are no cycles of length four in the bipartite graph that rep-
resents the code, however. Otherwise, two check node neighbors
of v could be neighbors with the same variable node vs; if vo is
in error, the proposed values of the check nodes would match,
inducing a subsequent incorrect verification at v.

This improvement does increase the probability of a false ver-
ification, since there are now many additional ways a false ver-
ification could occur. The number of verification steps is pro-
portional to the sum of the squares of the degrees of the variable
nodes, instead of to the sum of the degrees of the variable nodes,
as in the original scheme. Assuming a constant maximum de-
gree, b = Q(logn) bits per packet still ensures that no false
verification occurs with high probability.

The resulting equations describing the asymptotic behavior
in this situation are somewhat more difficult. Again we have

aj+1 = agA(1 — p(1 — b))

LUBY AND MITZENMACHER: VERIFICATION-BASED DECODING FOR PACKET-BASED LDPC CODES 125

by the same reasoning as before. To determine an equation for
bj+1, note that for v to continue to hold an incorrect value to
pass to ¢, one of the following events must occur:

* all neighbors of v other than c received an incorrect value
from some other neighbor in the previous round; or

* all but one neighbor of v other than ¢ received an incorrect
value from some other neighbor in the previous round, and
the one neighbor that received all correct values did not
have all of these values verified.

The probability that the first case occurs is just A(1 — p(1 —
b;)). For the second case, when v has 7 — 1 other neighbors,
the probability that a specific set of 7 — 2 neighbors other
than c receive at least one incorrect value during round j is
(1 — p(1 — b;))i~2. Ignoring (temporarily) the probability that
the last neighbor sends a correct value, since there are ¢ — 1
possible ways of choosing the correct neighbor, we have the
term

oAl = (1= p(1 = b)) = N (L= p(L = by)

where) is the derivative of A. We multiply this term by the
probability that the last check node sends the correct but unveri-
fied proposed value, whichis (p(1—b;) — p(1—a; —b;)). (Here
p(1 — b;) is the probability of that all of the other neighbors of
the last check are correct, and p(1 — a; — b;) is the probability
that all of the other neighbors are verified.) Putting this all to-
gether yields

bj+1 = bo [A(1 — p(1 = b;))
+ X (1= p(1=b;))(p(1 = bj) = p(1 —a; = b;))]. (9

Again, we can modify the equation for b; into one that does not
involve a; by replacing a; by a;41 and substituting the equation
for a;41 in (9).

bia1 = bo [A(L = p(1 = b;)) + N(L = p(L = b;))(p(L — by)
— (1= (1= bo)A(1 = p(1 = b)) = b;))]. (10)

Finding codes of a specified rate that asymptotically handle a
fraction by of errors now corresponds to finding an appropriate
A(z) and p(x) satisfying the rate condition and

2> bo (1= p(1 = 2)) + N(1 = p(1 =))(p(1 -)
— (= (1 =b)A(1 = p(l =) —a))]. (D)

Equation (11) corresponds to a design criterion for codes using
verification-based decoding under the described decoding
algorithm. Again, attempting to maximize the tolerable error
probability for a given rate is a complex nonlinear optimization
problem that we do not delve into here. Also, we have not
developed a theorem similar to Theorem 2, because of the chal-
lenging form of (10). Because the decoding rules are a superset
of those of the original scheme, a greater fraction of errors can
be tolerated. The improvement can be nontrivial; for example,
for a regular rate 1/2 code with all nodes having degree 3 on
the left and degree 6 on the right, the fraction of tolerable errors
jumps from approximately 17% to approximately 21%. The
price, as we have mentioned, is a higher probability of a false
verification, which is still negligible for a sufficiently large
number of bits per packet.

The decoding algorithm we have described is still, in some
sense, rather conservative. A variable node repeatedly passes
on its received value until it is corrected. At each step, each
variable node receives a proposed value from each neighboring
check node, but nothing is done with these proposed values un-
less some two of them match. One might extend such a scheme
so that each variable node keeps track of a list of proposed
values received each round and passes this entire list on to the
check nodes. The check nodes can then determine if any pos-
sible set of values within the cross-product of proposed values
of its neighbors appropriately satisfy the check node, and re-
spond accordingly. The advantage of such a scheme is that al-
lowing proposed values to propagate and be verified may lead
to more verifications, more quickly. The problem with such a
scheme is that the lists of proposed values may become too
long. This may cause a great deal of additional computation,
since the cross-product of all proposed values from the mes-
sage nodes would be considered at a check node. Additionally,
this approach greatly increases the probability that an erroneous
verification occurs, since the number of possible combinations
grows with the product of the lengths of the lists. We leave the
possibility of designing looser verification codes that pass more
extensive information for exploration in future work.

B. Using Reed—Solomon Codes With Verification-Based
Decoding

We may vary our codes by allowing the check nodes to hold
information other than the sum of the variable nodes. A natural
approach is to constrain k-tuples of variables to belong to an
Reed-Solomon code with more than one redundant symbol, and
store these redundant symbols in the check nodes. For example,
consider the case where pairs of check nodes are associated with
k variable nodes, so that the check node values are calculating
using a (k+2, k, 1) Reed—Solomon code. The check nodes then
have the property that they can correct any single error among
the k neighboring variable nodes. As we explain later, the check
nodes have further correction properties; however, it is instruc-
tive to consider a decoding scheme which just uses the above
property.

Consider our message-passing decoding scheme in this set-
ting. For any pair of check nodes and the associated set of vari-
able nodes, if there is a single error among the variable nodes, it
can be corrected and all the associated variable nodes verified.
Again, we have used here our assumption that an error replaces
a value with a value taken uniformly at random. Because of this
assumption, with high probability throughout the execution of
the decoding no set of variable nodes containing multiple errors
will be falsely verified with high probability.

In the message-passing algorithm, a variable node v will
transmit an incorrect value to a neighboring check node pair ¢
after j 4+ 1 rounds if and only if it was received incorrectly and
every other neighboring check node pair had another incorrect
message node neighbor after round j. This yields the following
recurrence equation to describe b;:

bj+1 = boA(1 = p(1 = bj)).

This is exactly the same recurrence for the erasure codes de-
veloped in [7]. By using Reed—Solomon codes, we are making

12)

126

errors “‘equivalent” to erasures in the LDPC code setting. As de-
scribed in [7, Lemma 2], vectors X and g were determined that
are essentially optimal: for codes of rate R we can come ar-
bitrarily close to the optimal tolerable loss probability 1 — R.
We can apply these distributions (or other essentially optimal
distributions, as described in [20], [21]) to obtain the following
theorem.

Theorem 3: For any 0 < R < 1 and € > 0, there exist
sequences X and p corresponding to a family of codes of rate
R such that verification-based decoding with Reed—Solomon
codes as described above corrects a (1 — R)/2 — e fraction of
errors with high probability.

Proof: We use the A and /' for an erasure code of rate
(1 + R)/2 as guaranteed by Lemma 2. Such a code corre-
sponds to a rate R code in this setting since each check node
uses two Reed—Solomon values per node. (To see this, consider
that a rate (1 + R)/2 erasure code with n message nodes has
n(l — R)/2 check nodes, which in this case corresponds to
n(1 — R) symbol values.) Since we obtain the same recurrence
(12) for these codes as for the erasure codes, we can correct a
(1 — R)/2 — e fraction of errors with high probability. O

We find that under this simple decoding rule we can correct al-
most the same fraction of errors as Reed—Solomon codes under
the worst case. Again, we emphasize the caveat that our results
hold only asymptotically with high probability for the qSC.

The decoding scheme above can be improved slightly. We
are not taking advantage of the following additional power of
the check nodes: whenever a check node pair has at most two
unverified neighbors, the remaining neighbors can be corrected,
as the correct and verified values suffice to reconstruct the re-
maining ones. A decoding scheme that takes advantage of this
fact is not substantially more complex, although the equations
that describe it are. Consider again a recursive description of
the b;. It is now not enough that every neighboring check node
pair of a variable node v has another incorrect variable node
neighbor; now it must also have at least one other unverified
neighbor.

Consider the probability that after round j a check node pair
¢’ neighboring v has one other incorrect variable node neighbor
but no other unverified neighbors. For a pair with k neighbors,
we must choose the one other incorrect neighboring message
node, and all other nodes are verified. Hence, this probability is

Zﬂk - 1)b

k>2

i(1—aj—b;)k™

which equals b, p' (1 — a; — b;), where p’ is the derivative of the
p. This yields the recurrence

bj+1 = boA(1 = p(1 = b;) = b;p'(1 — a; — by)).

A similar formula for the a; values can be obtained. Here,
a variable node with the correct value will become verified if
there is a neighboring check node pair ¢’ such that all other
variable node neighbors of ¢’ have the correct value, or if there
is a neighboring check node pair ¢’ with only one erroneous
neighbor. This yields the recurrence

13)

ajy1 = aoA(1 — p(1 —b;) = b;pf

(1-b)). (14

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Following our standard practice, we can combine these into
a single equation that can be used as a design criterion for good
sequences.

bjv1 = boA(1 = p(1 —b;) = bjp'(1 = (L= bo)A(L — p(1 —bj)

—b;ip'(1 = b;)) = b;)). (15
Similar equations can be developed for Reed—Solomon codes
that can correct more errors. If the check nodes are associated
with k variable nodes, and the check node values are calculated
using a (k + £, k, £/2) Reed—Solomon code (where / is an even
integer), then
» when a check node collection ¢’ has at most ¢/2 neigh-
boring variable nodes that are in error, it can correct and
verify all of its neighbors, and
» when a check node collection ¢’ has at most £ neighboring
variable nodes that are unverified, and all other neigh-
boring nodes are verified, it can correct and verify all of
its erroneous neighbors.
The appropriate recurrences are

Z/Z . .
bip()(1 —b;)
ajy1 = aoA 1_237:4'J
i=0 ’
0/2—1 4; ¢
bip() (1 —
b =bor [1- 3 2

=0

(16)

b;)

2!

SIS
2 my

‘ b;)
/2 k=0

- a7
Here p(¥) () is the ith derivative of p at z, with the Oth derivative
just being p itself.

V. CODE SCRAMBLING

Up to this point, we have assumed that our codes function
on a qSC. This is a rather strong assumption; one might expect
that errors introduced in packets are correlated in some non-
trivial way. For example, perhaps it is always the last bit that
is changed. In this case, verification-based decoding as we have
described will perform poorly, since the sum of two erroneous
packets will be the same as two correct packets, and hence the
analysis of Lemma 1 will not apply. In general, we cannot know
ahead of time what types of correlated errors might be intro-
duced by the channel.

It is well known to data communications engineers that any
g-input, g-output channel may be reduced to a memoryless qSC
by randomization techniques such as scrambling and inter-
leaving. In this section, we discuss this idea in the framework
of [12], which gives the precise theorem we will use. (We
rediscovered this theorem ourselves independently.)

Suppose the sender and receiver have a source of shared
random bits. We model the errors introduced by the channel
as being governed by an oblivious adversary, who is unaware
of the random bits shared by the sender and receiver. In this
setting, the sender and receiver can use the random bits to
ensure that regardless of the strategy of the adversary, the errors
introduced appear equivalent to those introduced by a qSC, in
the following sense: if the adversary modifies d transmitted

LUBY AND MITZENMACHER: VERIFICATION-BASED DECODING FOR PACKET-BASED LDPC CODES 127

symbols, the effect is as though d randomly selected transmitted
symbols take on erroneous values taking on random values
from GF (q).

The sender and receiver use their shared random bits as fol-
lows. When sending values z1, . . ., x,,, the random bits are used
to determine values ay, ..., a, chosen independently and uni-
formly at random from the nonzero elements GF (¢)* and values
b1, ..., by, chosen independently and uniformly at random from
GF (q). Instead of sending the symbol z;, the sender sends the
symbol a;z; + b;. Further, before sending the modified symbols,
a permutation 7 on {1,...,n} is chosen uniformly at random
and the symbols are sent in the order given by the permutation.

Informally, it is clear that these steps stifle the adversary.
Since each symbol is now equally likely to take on any value
from GF (g), after the permutation of the symbols to be sent the
adversary cannot distinguish the original position of any trans-
mitted symbol. Hence, if the adversary modifies d symbols, their
locations will appear random to the receiver after the permuta-
tion is undone. Further, suppose the adversary adds an error e;
to the transmitted symbol a;x; + b;, so that the received value is
a;x; + b; + e;. The receiver will reverse the symbol transforma-
tion, obtaining the symbol z; + (a;)'e; in place of z;. Since
a; is uniform over GF (¢)* and unknown to the adversary, the
erroneous symbol appears to take on a random erroneous value
over GF (¢). A more formal proof appears in [12]. Specified to
our situation, we have the following.

Theorem 4: The probability p that an adversary who intro-
duces d errors when using code scrambling as described above
causes a decoding error is equal to the probability that the veri-
fication code makes an error when d errors are introduced in the
gSC.

In practice, a truly large sequence of random bits would not
be necessary. A pseudorandom generator of small complexity
would perform adequately, as errors introduced in real chan-
nels are not generally adversarial and specifically would almost
surely be independent of the pseudorandom generator.

VI. CONCLUSION

Verification-based decoding with code scrambling demon-
strates that the power of LDPC codes can be exploited for
handling errors at the packet level. Using the simple paradigm
that a check node can verify when its neighbors are correct in
the case where errors are random and the alphabets are suffi-
ciently large, verification-based decoding allows for extremely
fast and simple packet-level encoding and decoding algorithms.
By making use of code scrambling, verification-based decoding
can be made to apply in settings even where errors may not be
random.

The most important open problem is to gain more insight into
the equations that arise in the analysis of verification-based de-
coding in order to design optimal families of codes from them.
We have shown that by using families of codes that are known
to be good for erasures we can prove that verification-based
decoding can perform as well as the worst case bounds for
Reed-Solomon codes, which in itself is an interesting result.
These families of codes were not designed specifically for the

equations that arise from verification-based decoding, however,
so better bounds are clearly possible. The goal remains to use
verification-based decoding to approach the capacity as g grows
large.

The framework for verification-based decoding may also
apply to other settings. For example, the second author has
described codes for packet-based deletion channels using this
framework that can be encoded and decoded in polynomial
time [22].

REFERENCES

[1] S. Chung, G. D. Forney, T. Richardson, and R. Urbanke, “On the de-
sign of low-density parity-check codes within 0.0045 dB of the Shannon
limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58-60, Feb. 2001.

[2] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman, “Im-
proved low-density parity-check codes using irregular graphs,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 585-598, Feb. 2001.

[3] D. J. C. MacKay, “Good error correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar.
1999.

[4] D.J.C. MacKay and R. M. Neal, “Near Shannon limit performance of

low density parity check codes,” Electron. Lett., vol. 32, pp. 1645-1646,

1996.

T. Richardson, M. A. Shokrollahi, and R. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. Inf.

Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001.

T. Richardson and R. Urbanke, “The capacity of low-density parity-

check codes under message-passing decoding,” IEEE Trans. Inf. Theory,

vol. 47, no. 2, pp. 599-618, Feb. 2001.

[71 M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman, “Effi-
cient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 569-584, Feb. 2001.

[8] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
content delivery across adaptive overlay networks,” in Proc. ACM SIG-
COMM °02, vol. 32, 2002, pp. 47-60.

[9] J. W.Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple mirror
sites in parallel: Using Tornado codes to speed up downloads,” in Proc.
IEEE INFOCOM ’99, Mar. 1999, pp. 275-283.

[10] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital foun-
tain approach to reliable distribution of bulk data,” IEEE J. Sel. Areas
Commun., vol. 20, no. 8, pp. 1528-1540, Oct. 2002.

[11] G. D. Forney, Jr., Concatenated Codes. Cambridge, MA: MIT Press,
1966.

[12] P.Gopalan, R. Lipton, and Y. Z. Ding, “Codes, adversaries, and informa-
tion: A computational approach,” paper, 2001, submitted for publication.

[13] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[14] J. M. Chung and J. J. Metzner, “Theoretical analysis of the error cor-
rection performance of majority-logic-like vector symbol codes,” IEEE
Trans. Commun., vol. 49, no. 6, pp. 979-987, Jun. 2001.

[15] J.J. Metzner, “Majority-logic-like decoding of vector symbols,” IEEE
Trans. Commun., vol. 44, no. 10, pp. 1227-1230, Oct. 1996.

[16] M. C.Davey and D. J. C. MacKay, “Low density parity check codes over
GF(q),” IEEE Commun. Let., vol. 2, no. 6, pp. 165-167, Jun. 1998.

[17] G.D.Forney, Jr., “Burst-correcting codes for the classic bursty channel,”
IEEE Trans. Commun. Technol., vol. COM-19, no. 5, pp. 772-781, Oct.
1971.

[18] T. Richardson and R. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
638-656, Feb. 2001.

[19] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of random
processes via and-or tree evaluation,” in Proc. 9th Annu. ACM-SIAM
Symp. Discrete Algorithms, 1998, pp. 364-373.

[20] M. A. Shokrollahi, “New sequences of linear time erasure codes
approaching the channel capacity,” in Proc. 13th Int. Symp. Applied
Algebra, Algebraic Algorithms, and Error-Correcting Codes (Lecture
Notes in Computer Science). Berlin, Germany: Springer-Verlag,
1999, vol. 1719, pp. 65-76.

[21] P. Oswald and M. A. Shokrollahi, “Capacity-achieving sequences for
the erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp.
3017-3028, Dec. 2002.

[22] M. Mitzenmacher, “Verification codes for deletions,” in Proc. 2003
IEEE Int. Symp. Information Theory, Yokohama, Japan, p. 217.

[5

—

[6

—_

	toc
	Verification-Based Decoding for Packet-Based Low-Density Parity-
	Michael G. Luby and Michael Mitzenmacher, Member, IEEE
	I. I NTRODUCTION
	A. Coding for the qSC
	B. Previous Work

	II. F RAMEWORK FOR L OW -D ENSITY P ARITY -C HECK C ODES
	III. D ECODING A LGORITHMS FOR THE Q SC
	A. A Simple Decoding Algorithm
	Lemma 1: At any step where a check node attempts to verify all o
	Proof: For an erroneous verification to occur, two or more neigh

	B. A Message-Passing Decoding Algorithm

	Fig. 1. The neighborhood around (v,c) .
	Theorem 1: Given a design rate R and an error probability $b_{
	Lemma 2: For any $0 < R < 1$ and $\epsilon > 0$, there exist $\v
	Theorem 2: For any $0 < R < 1$ and $\epsilon > 0$, there exists
	Proof: We use the $\vec {\lambda }$ and $\vec {\rho }$ defined b

	IV. I MPROVEMENTS
	A. Additional Verification
	B. Using Reed Solomon Codes With Verification-Based Decoding
	Theorem 3: For any $0 < R < 1$ and $\epsilon > 0$, there exist s
	Proof: We use the $\vec {\lambda }$ and $\vec {\rho }$ for an er

	V. C ODE S CRAMBLING
	Theorem 4: The probability p that an adversary who introduces

	VI. C ONCLUSION
	S. Chung, G. D. Forney, T. Richardson, and R. Urbanke, On the de
	M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman, Im
	D. J. C. MacKay, Good error correcting codes based on very spars
	D. J. C. MacKay and R. M. Neal, Near Shannon limit performance o
	T. Richardson, M. A. Shokrollahi, and R. Urbanke, Design of capa
	T. Richardson and R. Urbanke, The capacity of low-density parity
	M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman, Ef
	J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, Informe
	J. W. Byers, M. Luby, and M. Mitzenmacher, Accessing multiple mi
	J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, A digital fo
	G. D. Forney, Jr., Concatenated Codes . Cambridge, MA: MIT Press
	P. Gopalan, R. Lipton, and Y. Z. Ding, Codes, adversaries, and i
	R. G. Gallager, Low-Density Parity-Check Codes . Cambridge, MA:
	J. M. Chung and J. J. Metzner, Theoretical analysis of the error
	J. J. Metzner, Majority-logic-like decoding of vector symbols, I
	M. C. Davey and D. J. C. MacKay, Low density parity check codes
	G. D. Forney, Jr., Burst-correcting codes for the classic bursty
	T. Richardson and R. Urbanke, Efficient encoding of low-density
	M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, Analysis of ran
	M. A. Shokrollahi, New sequences of linear time erasure codes ap
	P. Oswald and M. A. Shokrollahi, Capacity-achieving sequences fo
	M. Mitzenmacher, Verification codes for deletions, in Proc. 2003

