IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 10, OCTOBER 2006

Recall that the rate R* computed in [1] is bounded by

R' < sup [=t-loge — (1 —d)log ((1—¢q)A+¢B)]
t>0
0<p<1

(see (1)). Let t* > 0 be such that for fixed d, p, R* (") is maximized.
Then forall 0 < ¢ < 1, A% B'"% < qA 4+ (1 — ¢) B by convexity.
Hence, we conclude that

R> R(t") > R'(t").

In fact, the optimization of (14) for fixed d, p has a closed form since
it results in a quadratic equation in ¢ (similar to (1)). O
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A Simple Lower Bound for the Capacity of the
Deletion Channel

Michael Mitzenmacher, Member, IEEE, and Eleni Drinea

Abstract—We present a simple proof that the capacity of the binary in-
dependent and identically distributed (i.i.d.) deletion channel, where each
bit is deleted independently with probability d, is at least (1 — d)/9, by
developing a correspondence between the deletion channel and an inser-
tion/deletion channel that we call a Poisson-repeat channel.

Index Terms—Binary deletion channel, channel capacity, insertion
and/or deletion channels.

[. INTRODUCTION

In this work, we consider a natural correspondence between the bi-
nary independent and identically distributed (i.i.d.) deletion channel
(referred to henceforth simply as the deletion channel), where a fixed
number of bits n are transmitted and each is deleted independently with
probability d, and a simple insertion/deletion channel that we call a
Poisson-repeat channel. Based on this correspondence, we are able to
conclude that the capacity of the deletion channel in bits, which we de-
note here by Cy, is at least 0.1185 - (1 — d) for every d,0 < d < 1.
We prefer to write this in the simpler form

Ca>(1-4d)/9

to emphasize that this bound is within a constant factor of the trivial
upper bound on the capacity of (1 — d) (based on the capacity of the
binary erasure channel) for all d. As far as we can tell, no previous work
has given a capacity lower bound that is within a fixed constant factor
of (1 —d). Our approach also naturally generalizes to larger alphabets,
but for this work we focus on the binary case.

The deletion channel has been the subject of recent study. The best
lower bounds known for the capacity arise from an argument of Drinea
and Mitzenmacher [2], [3], which we apply here to lower-bound the ca-
pacity of the Poisson-repeat channel. For deletion channels with larger
alphabets, the work of Diggavi and Grossglauser [1] gives the best
general capacity bounds. For more information and background, see

(21, [3].

II. THE POISSON-REPEAT CHANNEL

We define a Poisson-repeat channel with parameter A as follows:
the input is a binary string of length n. As each bit passes through the
channel, it is replaced by a discrete Poisson number of copies of that bit,
where the number of copies has mean A and is independent for each bit.
Notice that some bits will be replaced by 0 copies. The receiver obtains
the concatenation of the bits output by the channel.

We use basic facts about the Poisson distribution that can be found
in standard texts (see, e.g., [4]). For example, the sum of a constant
number of independent random variables with a Poisson distribution
also has a Poisson distribution; similarly, if we have a number of items
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X given by a Poisson distribution with mean A, and each item is inde-
pendently deleted with probability d, the number of remaining items Y
is given by a Poisson distribution with mean A(1 — d).

III. THE POISSON-REPEAT CHANNEL AND THE DELETION CHANNEL

We present two ways of deriving a correspondence between the dele-
tion channel and the Poisson-repeat channel. The first gives a determin-
istic correspondence that provides useful intuition. The second gives a
randomized correspondence that makes the analysis much easier and
cleaner for deriving our result. These correspondences are based on
the following idea: transmitting a codeword through a Poisson-repeat
channel can be mimicked by a deletion channel by repeating the code-
word bits an appropriate number of times.

Let s = 1—d be the probability a bit successfully arrives. For our de-
terministic correspondence, temporarily assume that 1/s is an integer.
A natural idea is to take a message that we want to send and replace
each bit with 1/s copies of the bit, because then the expected number
of copies that make it through the deletion channel is 1. If exactly one
copy of each bit did make it through the channel, we would obtain the
original message. Of course, the deletion channel is not so kind. In-
stead, each successive block of 1/s bits will yield B(1/s, s) bits at the
receiver, where B(t, p) is a binomial random variable corresponding
to ¢ trials with success probability p. As s goes to 0, B(1/s, s) con-
verges to a Poisson random variable with mean /. That is, each bit in
the original message yields a number of copies that is approximately
distributed as a Poisson random variable.

This naturally gives a connection to the Poisson-repeat channel. Sup-
pose that we have a codebook and a decoding scheme for the Poisson-
repeat channel, with codewords of length m = ns. A corresponding
codebook for the deletion channel can be obtained by taking each code-
word for the Poisson-repeat channel and replacing each bit with 1/
copies. Now, after passing a derived codeword through the deletion
channel, each bit in the original codebook yields a number of copies
that is approximately Poisson distributed with mean 1, and hence we
can simply apply the decoding scheme for the Poisson-repeat channel
to determine the original codeword from the codebook for the Poisson-
repeat channel. If we have a lower bound L, on the capacity of the
Poisson-repeat channel with parameter 1, we should obtain a lower
bound of approximately Lis = Li(1 — d) for the deletion channel.
When 1/s is not an integer we may use blocks of [1/s] bits; this just
slightly changes the mean associated with the Poisson-repeat channel.
While this is a reasonable and functional approach that can be made to
yield an appropriate asymptotic result, it requires some care in dealing
with the convergence issues to handle the asymptotics appropriately.

Armed with this intuition, we can greatly simplify the argument by
considering a somewhat less natural but quite useful randomized cor-
respondence. Again, we consider a codebook and decoding scheme for
the Poisson-repeat channel with m-bit inputs. However, instead of re-
placing each bit in a codeword with exactly 1/ s copies of the same bit to
obtain a codeword for the deletion channel, we now independently re-
place each bit with a random number of copies, according to a Poisson
random variable with mean 1/s. As a result, the number of copies of
a bit that arrive at the receiver has exactly a Poisson distribution with
mean 1, and the number of copies is independent for each bit. There-
fore, we can directly apply the decoding algorithm for the Poisson-re-
peat channel when decoding to determine the original codeword from
the codebook for the Poisson-repeat channel. A visualization of this
correspondence is given in Fig. 1.

The one potential problem with this correspondence is that now
the number of bits to be transmitted over the deletion channel is not
fixed, but random, potentially violating our definition for the deletion
channel. The sender therefore determines what to send by performing
the replacements as described above, but only sends the resulting
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Fig. 1. We expand a Poisson-repeat codeword by replacing each bit with a
Poisson-distributed number of copies with mean 1/(1—d) to obtain a codeword
for the deletion channel. Transferring this derived codeword through a dele-
tion channel with deletion probability d is equivalent to transferring the original
codeword through a Poisson-repeat channel with parameter 1; this equivalence
yields the capacity lower bound.

sequence through the deletion channel if it has exactly n = [m/s]
bits; otherwise, the replacement procedure is repeated until n bits
are obtained. A simple application of Stirling’s formula (again, see
[4]) shows that the probability that n bits are obtained on each trial is
©(1/+/n). Specifically, letting X be the number of bits obtained, we
have

e_m/s(m/s)“
n!
efm/s(m/s)”
V2rnnte (1 + o(1))
71—711/5 -\ 7
e m/ns
— #(1 —o(1))

2mn

Pr(X =n)=

which is O(1//n) when n = [m/s]. Hence, on average the replace-
ment procedure would have to be repeated (/1) times.

Because the length of the string sent through the deletion channel is
now fixed to be n, the numbers of copies of each bit obtained by the
receiver are not independent; there is some very slight dependence. To
see that this dependence does not substantially change the error prob-
ability of the decoding, we handle this dependence explicitly. Suppose
that we could provide a variable number of input bits to the deletion
channel, so the replacement followed by the passage through the dele-
tion channel exactly mimicked the Poisson-repeat channel. Let X be
the resulting input length. Also, let F be the event that the decoder fails
to decode successfully for the Poisson-repeat channel. Then the proba-
bility of failure for the deletion channel with the restriction on the input
length is just
Pr(FN(X =n))

Pr(X =n)

Pr(F)

~ Pr(X=n)’

Pr(F|X =n)

As we have already stated, Pr(X = n) = O(1/y/n), so as long as
Pr(F) is super-polynomially small in n, the decoding is successful
with high probability even when the input length for the deletion
channel is fixed. With this caveat, we find that Cy > L1s = L, (1—d).

Although this argument gives a randomized process for determining
what to send through the deletion channel, via standard arguments, it
implies the existence of a fixed set of codewords of length n for the
deletion channel that could be used in place of the random generating
process.

Notice that by replacing each bit in the codeword with a random
number of copies that is distributed according to a Poisson distribution
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with mean A/s for some constant A, if we find a lower bound L on the
capacity of a Poisson-repeat channel with parameter A, we can repeat
the argument above to obtain a lower bound of Cy > Ly (1 — d)/\.

To conclude, we formalize our results with the following statement,
which follows from our discussion.

Theorem 1: Suppose that for some constant A there exists a family
of codes for the Poisson-repeat channel with parameter A such that on
m-bit inputs, the corresponding code has ¢(m) codewords and error
probability f(m ). Then for any constant d with 0 < d < 1, there exists
a family of codes for the deletion channel with deletion probability
d such that on [Am /(1 — d)]-bit inputs, the corresponding code has
O(c(m)) codewords and error probability O(y/m f(m)).

IV. THE CAPACITY OF THE POISSON-REPEAT CHANNEL

While it seems obvious that the Poisson-repeat channel with param-
eter 1 has a capacity bounded away from 0, until recently there has
not been a general approach for obtaining provable lower bounds on
the capacity of specific insertion/deletion channels. We derive a lower
bound using the “jigsaw-puzzle” decoding approach for insertion/dele-
tion channels described in [3]. This approach gives a lower bound for
capacity in terms of a summation that can be evaluated numerically.
Error bounds derived via this approach show that the probability of
decoding error is super-polynomially small in n, as required by the ar-
gument of Section III. We emphasize that jigsaw-puzzle decoding is
essentially just a variation of the standard Shannon-style argument; the
challenge is in determining the appropriate typical codewords and the
typical received sequences for each codeword for this type of channel.

We describe how we utilize the approach of [3] in the Appendix,
and provide just a brief overview here. We consider random code-
books, where codewords are generated by laying out successive alter-
nating blocks of zeroes and ones, until the desired codeword length
n is reached. The length of each block is independently determined by
some fixed distribution P, satisfying some minimal properties. We con-
sider channels where each bit is independently replaced by a random
number of copies of the same bit, with the number of copies given by a
distribution &, again satisfying some minimal properties. We note that
it is sufficient, for example, for GG to have a tail that decreases at least
geometrically fast, and the Poisson distribution has this property. Zero
copies of a bit corresponds to a deletion. The Poisson-repeat channel
fits this channel model.

Given P and G, there is an expression that gives a lower bound for
the capacity of the channel; this expression is complex, but can be eval-
uated numerically. It is not clear how to optimize the choice for P; how-
ever, in previous work on deletion channels, codes based on random
codebooks selected according to a first-order Markov chain, where each
symbol is the same as the previous one with probability p, have per-
formed well. Equivalently, codebooks are constructed by laying out al-
ternating blocks of zeroes and ones, where the length of each block is
geometrically distributed with mean 1/(1 — p) for some p. (The case
p = 1/2 corresponds to codewords chosen uniformly at random.) We
have found the optimal value of p to two decimal places to maximize
the resulting lower bound. Our current estimate gives L; > 0.1171
using p = 0.87.

We also used this approach to find the capacity for the Poisson-repeat
channel with parameter A for various A, in order to find the value A
that maximizes the lower bound Ly (1 — d)/\. The best lower bound
on the ratio Ly /) that we have found is at A = 1.79 using p = 0.77,
with L1 79/1.79 > 0.1185. Again, we prefer to more succinctly and
conveniently say that Cy > (1—d)/9. Since insertions appear easier to
handle than deletions (e.g., see the results in [3]), it is perhaps natural
that a Poisson-repeat channel which on average yields slightly more
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than one copy of each transmitted bit can allow higher transmission
rates.

It is worth contrasting this result with the bounds reported in [2], [3],
which give the best current lower bounds on the capacity of the deletion
channel for specific rates. While for low values of d the lower bound
we have derived here is far from optimal, it is very close to the reported
bound for large d, being slightly smaller than the reported bound for
d = 0.9 and slightly larger than the reported bound for d = 0.95 in
[3]. This is perhaps not surprising, since fundamentally the results use
the same underlying approach. We emphasize what is interesting about
this result, in contrast to [2], [3], is that here our argument gives a very
simple expression for the capacity lower bound, good for all values of d,
based on a reduction argument. The approach of [3], in contrast, gives a
method for calculating a specific lower bound given a specific value of
d. This calculation can be quite time-consuming as d approaches 1, as
it involves considering bit sequences on the order of length 1/(1 — d).

V. CONCLUSION

We have demonstrated a connection between deletion channels
and Poisson-repeat channels, and specifically with the Poisson-repeat
channel with parameter 1. We have used this connection to provide
a capacity result, showing that the capacity of the deletion channel
with parameter d is within a constant factor of 1 — d, the capacity
of the erasure channel with parameter d. This connection could also
be possibly used constructively to give an efficient algorithm: an
algorithm for encoding and decoding on a Poisson-repeat channel
would immediately give a corresponding algorithm for the deletion
channel. We believe that the approach of mapping one channel to
another via a randomized encoding may prove useful more generally
for proving bounds on insertion/deletion channels.

It is interesting to consider whether our argument might be asymp-
totically tight. That is, perhaps there exists some constant A such that
the capacity C'y of the Poisson-repeat channel with parameter A and the
capacity C'y of the deletion channel with deletion probability d satisfy

More generally, it would be interesting to obtain some insight into the
behavior of the function Cq/(1 — d), both for the binary alphabet and
for more general alphabets.

APPENDIX

We summarize the framework [2], [3], following the notation in
these works, to explain our calculations to lower-bound the capacity of
Poisson-repeat channels. The lower bounds are based on an analysis
of random codebooks, where codewords are generated by laying out
successive alternating blocks of zeroes and ones, until the desired
codeword length n is reached. The length of each block is inde-
pendently determined by some fixed distribution P, with P; being
the probability that the block has length j. For our result, we use
block lengths that are geometrically distributed, or equivalently, our
codewords are generated by a first-order Markov chain.

We may think of the received string as also consisting of alternating
blocks of zeroes and ones, with block lengths being given by a distri-
bution P depending on P, and P being the probability that a block
has length k. A block of length % in the received sequence arises from
a group of one or more blocks from the transmitted codeword. Specit-
ically, a block S in the received sequence is associated with the fol-
lowing blocks in the transmitted codeword: the block the first bit of S
was derived from, and all consecutive blocks up to but not including
the block the first bit of the block after S was derived from. The or-
dered sequence of lengths of this group of blocks in the codeword is
called the type of the block in the received sequence. For geometrically



4660

distributed block lengths, types can naturally be grouped into families
[3], where each type in a family occurs with the same probability. For
alli >0,z > 1,7 >i,s > i, F(i, z,r, s) is defined to be the family
of types that consist of the following: 2¢ + 1 blocks, the first of which
has length z; the lengths of the i blocks whose bits differ from the first
block sum up to s; and the lengths of the remaining ¢ blocks whose bits
are the same as the first block sum up to r.

Let K and T be random variables representing the length and type
of a block in the received string. Also, let H (X') be the entropy of X
measured in bits. Finally, following the notation of [3], note that if we
let p,,» be the probability that a bits transmitted over a Poisson-repeat
channel with parameter X yield b bits of output, we have

e M (Aa)?
Pab = .

since the sum of « independent Poisson random variables with mean A
has a Poisson distribution with mean Aa. The following lower bound
derives immediately from Theorem 4 in [3] (simply by specifying for
the Poisson-repeat channel):

Theorem 2: Consider a Poisson-repeat channel with parameter A
and a geometric distribution I’ with parameter p governing the creation
of a random codebook. The capacity of this channel is lower bounded
by

1
sup 0 — o
0<p<i 1t_1_) ' Zz zPZ

HP)+ > Y 3 " Pr[T =t K = k]

kI tel

r+s+z\k
log [7(1 = -(<r+z>‘7—r“>” (1)

ford=e D= >, P.d?, and F standing for F'(¢, z, r, s).

Various simplifications can be made to this expression, particularly
when choosing codewords governed by block lengths determined by a
geometric distribution; the key, however, is that a lower bound for the
expression can be calculated numerically. (Truncating the sum appro-
priately to make it finite will still yield lower bounds, as in [3].)
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How to Generate Cyclically Permutable Codes
From Cyclic Codes

Minoru Kuribayashi, Member, IEEE, and
Hatsukazu Tanaka, Fellow, IEEE

Abstract—On the basis of the characteristics of cyclic codes, the code-
word space can be partitioned into small subspaces where cyclically shifted
codewords of a particular codeword occupy the same subspace. A cyclically
permutable code generates codewords belonging to each subspace. How-
ever, no approach for the efficient construction of cyclically permutable
code from binary cyclic codes has been proposed thus far. In this study,
we propose an approach for the efficient and systematic construction of
a cyclically permutable code from a cyclic code by utilizing an algebraic
property. The proposed coding method improves the robustness of water-
marking, particularly for video frames, against a clipping attack.

Index Terms—Cyclically permutable code, cyclic shift invariant, water-
mark, clipping attack.

I. INTRODUCTION

A cyclic code [1] is a block code in which a cyclic shift of every
codeword yields another codeword belonging to the same code. In
this correspondence, a linear cyclic code, which is both linear and
closed under cyclic shifting, is employed. Gilbert [2] defined cycli-
cally permutable code (CPC) as a binary block code of block length
n such that each codeword has a cyclic order n and the codewords
are cyclically distinct (i.e., the same codeword cannot be obtained by
cyclically shifting another codeword once more than once). In this
scheme, large sets of cyclically permutable codewords are created by
interleaving the cyclic shifts of several shorter words and selecting
cyclically inequivalent subsets from the resulting set. Maracle and
Wolverton [3] proposed an efficient algorithm for generating these
cyclically inequivalent subsets. However, in order to use this proce-
dure, sets of cyclically inequivalent placement vectors which indicate
the positions of shorter words being interleaved should be selected;
consequently, the codeword space is not exploited efficiently. In [4],
the correspondence between m X n arrays and N -tuples, where
N = mn, is utilized to construct binary constant-weight cyclic codes.
This method, when combined with a simple method that selects a large
subset of codewords with a full cyclic order, is used to construct a
constant-weight CPC. In [5], on the basis of the combinatorial design
of a difference family, several constructions for constant-weight CPC
are presented. Further, by modifying the recursive constructions for
the difference families, other constructions for constant-weight CPC
are shown. Although such codes are applied in code-divisible mul-
tiple-access (CDMA) communication systems, their procedure for
CPC construction is fairly complicated; further, their error correction
capability is not discussed. To the best of our knowledge, no approach
for efficient and systematic CPC generation directly from binary cyclic
codes has been proposed thus far.

Based on the characteristics of cyclic codes, the existence of cycli-
cally equivalent sets can be intuitively determined. Inaba and Nakahara
[6] proposed an encoding procedure for obtaining cyclically inequiv-
alent subsets from a cyclic code. However, the scheme only shows an
example of the procedure, and the generated code is not a CPC because
the cyclic order may be a divisor of the code length.
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