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Improved Lower Bounds for the Capacity of i.i.d.
Deletion and Duplication Channels

Eleni Drinea, Member, IEEE, and Michael Mitzenmacher, Member, IEEE

Abstract—This paper considers the capacity of binary deletion
channels, where bits are deleted independently with probability d.
It improves significantly upon the best previous framework used
to obtain provable lower bounds on this capacity by utilizing a
stronger definition of a typical output from the channel. The new
results give the best known provable bounds on the capacity for
all values of d. Moreover, the techniques presented here extend to
yield lower bounds for channels with certain types of random in-
sertions, namely, duplications, or combinations of duplications and
deletions. To demonstrate these techniques in this context, two bi-
nary channels are analyzed: a channel where each transmitted bit
is copied with probability v and a channel where each transmitted
bit is copied a geometrically distributed number of times.

Index Terms—Binary deletion channel, channel capacity, chan-
nels with synchronization errors.

I. INTRODUCTION

THIS work is motivated by the goal of finding the capacity
of deletion channels, following on the previous work of

Diggavi and Grossglauser [2] and Drinea and Mitzenmacher [4].
Deleted symbols do not arrive at the receiver; undeleted sym-
bols remain intact, but might be shifted left, so the receiver does
not know what symbols have been deleted. Specifically, we are
interested in lower bounds for the capacity of the binary inde-
pendent and identically distributed (i.i.d.) deletion channel. In
this model, bits are sent, and each bit is deleted independently
with probability ; the capacity corresponds to the limiting case
as goes to infinity.

It is known that the capacity of such channels is related to
the mutual information between the codeword sent and the re-
ceived sequence [5], but this does not give an effective means
of proving capacity bounds. Recent work, which we describe
fully below, attempts to develop Shannon-style theorems that
allow computable lower bounds. Our work is a continuation in
this vein, but yields dramatically improved lower bounds; as far
as we know, they prove the best provable lower bounds for all
values of . As a further comparison point, Ullman provides a
combinatorial upper bound for channels with synchronization
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errors [11]. This bound has previously been used as though it
were an upper bound on the i.i.d. channel [2], as it seemed diffi-
cult to reach, even though it was not strictly a proven bound for
this specific type of channel. Our lower bounds when
surpass Ullman’s upper bound, and are first to demonstrate that
under i.i.d. errors this bound can in fact be broken.

A further advantage of our approach is that it can be ap-
plied to handle channels that (randomly) insert bits via duplica-
tions and channels that both duplicate and delete bits as well.
Specifically, we show how our argument generalizes to pro-
vide lower bounds for a binary channel that sends a number of
copies of each bit, where the number of copies is governed by a
fixed distribution and is independent for each bit. Sending zero
copies of a bit is equivalent to deleting it. Previous arguments
in this line of research were based on a decoding method that
is successful only if the received sequence is a subsequence of
exactly one codeword, and therefore only applied to deletion
channels. As a demonstration, we provide lower bounds for the
capacity of two channels which introduce i.i.d. insertions only.
The first channel, or elementary i.i.d. duplication channel, du-
plicates each transmitted bit independently with probability .
The second channel, or i.i.d. geometric duplication channel, in-
troduces a geometrically distributed number of copies indepen-
dently for each transmitted bit.

A. Previous Work

Let be the capacity of the i.i.d. deletion channel with
deletion probability , where the dependence on is implied
throughout. It has long been known that random codes, i.e.,
codes consisting of codewords chosen independently and uni-
formly at random from the set of all possible codewords of a
certain length, yield a lower bound on

bits for

where

is the binary entropy function [2]. (We denote the logarithm
base by and the natural logarithm by throughout.)

Diggavi and Grossglauser had the insight to examine code-
words chosen nonuniformly, in order to better cope with the
memory inherent in the output of the deletion channels [2].
Specifically, they examined codes consisting of codewords of
length generated by a symmetric first-order Markov process
with transition probability . The decoding algorithm they an-
alyze takes a received sequence and determines if it is a subse-
quence of exactly one codeword, using a greedy algorithm; if
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this is the case, the decoder is successful, and otherwise, the de-
coder fails. Their analysis yields the following lower bound for
the capacity, which proves strictly better than the lower bound
for random codes, and is substantially better for high deletion
probabilities :

(1)

where and
.

Drinea and Mitzenmacher in [4] improve on the lower bounds
in (1) by generalizing the framework above to consider code-
words of length that consist of alternating blocks of zeros
and ones. The lengths of the blocks are i.i.d. random variables,
determined by a distribution over the positive integers with
geometrically decreasing tails. For example, when the block
lengths are geometrically distributed with parameter , the re-
sulting code has the same distribution as codes generated by
the first-order Markov chain model with transition probability

. Again, the decoder is successful if and only if the received
sequence is a subsequence of exactly one codeword from the
randomly generated codebook. Their improvements arise from
two considerations. First, the analysis of Diggavi and Gross-
glauser considers only typical outputs, which consist of at least

bits, for some ; any output that is
atypical is assumed to give an error in the analysis. Note that the
probability of an atypical output is exponentially small. In [4], a
stronger notion of a typical output that contributes a super-poly-
nomially small error probability is used. For geometric block
length distributions, this analysis yields the following improved
bounds over (1):

(2)

for as in (1). A more important improvement in [4]
comes from allowing more general distributions for the block
lengths. While obtaining a closed formula for the capacity under
general distributions does not appear possible, specific distribu-
tions can be tested using numerical calculation. In [4], Morse-
code type codes were considered; with these codes, blocks are
either short (i.e., length ) with probability or long
(i.e., length ) with probability . Calculations
for these distributions, denoted henceforth as distri-
butions, yielded better bounds than the geometric distribution
when the deletion probability was greater than .

Prior to this work, the best provable lower bounds for the
i.i.d. deletion channel are given by the methods of Drinea and
Mitzenmacher in [4]. There has also been work bounding the
capacity via simulation techniques. For example, Vvedenskaya
and Dobrushin [12] attempt to bound the mutual information
between the input and output of the i.i.d. deletion channel via
simulation. They estimate lower bounds for the capacity of the
i.i.d. deletion channel using codewords generated by a low-order
Markov chain (up to order ). However, because at the time they

were only able to experiment with very short codewords, it is
not clear that their results give true bounds. Recent work by
Kavc̆ić and Motwani [8] also employs the Monte Carlo method
for estimating information rates, using much larger simulations
and codeword lengths. Although these bounds are not strictly
provable, they both suggest that the capacity of the i.i.d. deletion
channel is indeed much larger than the lower bounds proven in
previous theoretical work.

Subsequent to this work, the authors use these techniques
to obtain a simple lower bound for the i.i.d. deletion channel:
the capacity is at least for any value of [9]. This
result shows that the capacity of the i.i.d. deletion channel is
within a constant factor of the corresponding erasure channel
(where deletions become erasures); it also proves the capacity
is bounded away from for all constant . This result
stems from showing the capacity of the deletion channel can be
bounded by bounding the capacity of a single specific channel
dubbed a Poisson-repeat channel, which falls into the class of
channels where bits are duplicated or deleted considered here.
This channel is analyzed numerically using the techniques pre-
sented in this paper; the fact that the capacity of a Poisson-repeat
channel with parameter has capacity at least translates di-
rectly into the corresponding result for the deletion channel. See
[9] for more details.

B. Our New Approach

Our work extends the approach of previous work by consid-
ering both a stronger definition of a typical output and a corre-
sponding stronger method for decoding. In [4], codewords are
generated by laying out alternating blocks of zeros and ones;
the received sequence, too, can be thought of in terms of al-
ternating blocks, and the block length distribution for the re-
ceived sequence can be derived from the block-length distribu-
tion for the codewords and the deletion probability . Infor-
mally, the definition of a typical output in [4] requires that the re-
ceived sequence consists of approximately the expected number
of blocks of length for each . In this paper, our stronger notion
of a typical output is motivated by the idea of mutual informa-
tion. Specifically, consider a block of length in the received se-
quence. Such a block arises from a group of one or more blocks
from the transmitted codeword. We call the ordered sequence
of lengths of this group of blocks in the codeword the type of a
block in the received sequence; that is, a type corresponds to a
compact description of the group of blocks from the codeword
that generated the block in the received sequence. We now re-
quire that for a typical output with respect to a codeword, the
number of blocks of length in the received sequence arising
from groups of type is close to its expectation for every pair

that appears sufficiently often. This will be described in
more detail below.

In conjunction with this stronger notion of a typical sequence,
we also make use of a stronger decoding algorithm. In [2], [4], a
greedy algorithm is used to determine if the received sequence is
the subsequence of just one codeword. This decoding approach
is limited to deletion channels. Our new decoding algorithm
checks if there is only one corresponding codeword for which
the received sequence is a typical output. While this decoding al-
gorithm is remarkably inefficient (exponential time), efficiency



DRINEA AND MITZENMACHER: IMPROVED LOWER BOUNDS FOR THE CAPACITY OF I.I.D. DELETION AND DUPLICATION CHANNELS 2695

is not required to prove capacity bounds. Also note that the re-
ceived sequence might be a subsequence of more than one code-
word with this approach; we only need it to be a typical output
with regard to one codeword.

We introduce a useful way of thinking about this decoding
process. Suppose for the received sequence, we knew for each
block length exactly how many blocks were derived from each
possible type. (We know this approximately if the received se-
quence is typical.) We could then think of there being a specific
number of jigsaw puzzle pieces, with each piece corresponding
to a type/block length pair ; a piece would cover a block
in the received sequence, and give the relative position of the
blocks corresponding to the type from which the received block
was derived. Covering the entire received sequence with jigsaw
puzzle pieces would then give a potential codeword; considering
all possible ways of laying out the pieces consistent with the re-
ceived sequence would give all possible codewords from which
the received sequence could have been derived. If just one ac-
tual codeword appears with this algorithm, the decoding is suc-
cessful. We analyze this decoding algorithm, although some ad-
ditional work beyond what we have just described is necessary
since we do not know the exact number of pieces corresponding
to each pair .

In our analysis, we allow the input block-length distribution
to either be the geometric distribution or a distribution with

finite support. We specifically consider codewords with geomet-
rically distributed block lengths as well as Morse-type codes
suggested in [4]. Geometrically distributed codewords yield the
highest rates under our analysis for all values of deletion prob-
ability ; Morse-type codes perform almost as well under our
analysis when is very large (larger than ). While other dis-
tributions might perform better, searching for such distributions
remains a point for future work. Again, even with this restric-
tion, our bounds are the best provable bounds for this channel.

The remainder of the paper is organized as follows. In Sec-
tion II, we review the necessary parts of the model from [4] and
introduce the notion of the type of a block in the received se-
quence. In Section III, a general bound (under permissible input
distributions) for the capacity of the i.i.d. deletion channel is pre-
sented. In Sections IV and V, we derive specific lower bounds
in the special cases of the geometric and the distri-
bution, respectively; a discussion of these bounds and the upper
bounds provided by Ullman in [11] and Dolgopolov in [6] fol-
lows in Section VI. Section VII extends our new approach to
a more general class of channels with i.i.d. deletions and du-
plications. In Section VIII, we derive specific lower bounds for
some simple channels with duplications to demonstrate our ap-
proach in this context. We conclude with a discussion of further
directions for the challenging problems related to deletion and
insertion channels.

II. CODEBOOKS AND TYPES

We describe the generation of our codebook, following [4],
and define the notion of types. We consider a code with
binary codewords of length , where is the rate of the code
in bits. Each codeword consists of alternating blocks of zeros
and ones and is generated independently by the following sto-
chastic process. The first block is chosen to be zeros or ones each

with probability . The lengths of successive blocks are i.i.d.
random variables given by a distribution , so that the length is
with probability for . While this approach could be ex-
tended to use different distributions and for zeros and ones,
we have not found this gives larger lower bounds, and hence we
restrict ourselves to a single distribution. We assume throughout
that is either the geometric distribution or has finite sup-
port. We keep generating blocks until the codeword length
is reached or exceeded. If the last block exceeds , it is trun-
cated; this does not affect the asymptotics for large . Applying
a standard large-deviations bound, we can show that for large
and , the number of blocks in the codeword is

with probability at least (see [4,

Proposition 1] for a proof). Note that here and throughout the
paper we use the notation to refer to a number that is
meant to be between and where the meaning
is clear.

Now consider a transmitted codeword and the associated
received sequence . The sequence can also be broken into
alternating blocks of zeros and ones. With each block we may
associate a type depending on the blocks in that it was derived
from. Specifically, consider a block of zeros in
(everything is entirely similar for blocks of ones). We associate
with a group of consecutive blocks in , starting with the
first block in which had an undeleted zero that was received
as a bit in , and including all blocks up to (but not including)
the block in which the next undeleted one appears. The type is
just a tuple giving the lengths of all these blocks.

More concretely, a type is a tuple of numbers repre-
senting the lengths of consecutive blocks in , for .
If the first block is a block of zeros, the blocks of ones in the
type must be completely deleted since the type gives rise to a
single block of zeros in . The first block of ones in from
which at least one bit is not deleted gives rise to a new block in

and thus begins a new type. We represent the type of a block in
by the ordered -tuple . We now

find the probability that a block in has type . Let the random
variable be the type of the block. Also, let be
the probability that a block is deleted. We have

(3)

The first term on the middle expression in (3) is the conditional
probability that the block in starting the type has length
given that at least one bit from the block is not deleted. The
second term corresponds to the remaining blocks in , with
every other block necessarily being deleted. The third term is
the probability that the block after these blocks has at least
one undeleted bit, starting a new block in . Note that here and
throughout the paper we ignore boundary effects, which have
no effect on the asymptotics.

For notational convenience, we introduce a more concise rep-
resentation motivated by (3), which we use henceforth. Let

. For all ,
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Fig. 1. The blocks with lengths i ; j ; and i from X give rise to block B1 in Y ; the type of B1 is in the family F (1; i ; i ; j ). The blocks with lengths j ;

i ; j ; i ; and j give rise to block B2; the type of B2 is in the family F (2; j ; j + j ; i + i ). The thick contours of blocks j1; i3; and i4 indicate that these
blocks were necessarily completely deleted.

we define to be the family of types that consist of
blocks, where the first block has length , the blocks

whose bits are the same as the first block have total length ,
and the blocks whose bits differ from the first block have total
length . For examples, see Fig. 1.

We introduce some additional notation. Let be the prob-
ability that the total length of blocks, each i.i.d. with
distribution , is . For convenience, we may also take

. We note that is easily computed by the recur-
sion

(4)

With the same reasoning as for (3)

(5)

With this notation, we can write an expression for the dis-
tribution of block lengths in . We denote this distribution by

; like is symmetric with respect to blocks of zeros and
blocks of ones. Let and be random variables representing
the length and type of a block in . Conditioned on arising from
type in family , a block of
zeros in will have length if exactly of the zero bits
of are not deleted, with at least one arising from the first block
of length . Thus, the joint probability of a block having length

and arising from type is given by

(6)

and similarly, by (5)

(7)

This implies that the probability that a block in the received
sequence has length is given by

(8)

since is simply the probability that blocks from
are deleted, and this probability equals . Similar formulas ap-
pear in [4], where types were implicitly used. Explicitly identi-
fying the existence of types and studying their behavior proves
crucial to improve the lower bounds for the capacity of the i.i.d.
deletion channel. In essence, we can think of the received sym-
bols as being the lengths of the blocks, and the transmitted sym-
bols as being the types that give rise to the blocks. Further, in
effect the mutual information for these symbols gives a com-
putable bound that we can use to bound the capacity of the dele-
tion channel.

III. A NEW LOWER BOUND

We start by giving a new definition of typical outputs and
show that a received sequence is a typical output for some
codeword with probability all but super-polynomially small
in . Then we show that, upon reception of a typical output

, our decoding algorithm fails with probability exponentially
small in for appropriate rates. This yields our lower bound
on the capacity.

A. Typical Outputs

We introduce some notation that will be used throughout this
section. Let be the class of all distributions such that is
either the geometric distribution, i.e., for
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some constant , or for , where
is an integer constant. Here corresponds to the largest block
length assumed by any of the finite distributions in . (We note
that any constant can be chosen; it is just that some of our
arguments will require that we have an upper bound available.
Any distribution with finite support can be handled with this
approach, using the appropriate constant .) If not otherwise
stated, it should be assumed that the lengths of the blocks in the
input are from a distribution .

Let if is geometric with parameter and let
if has finite support. (As will soon be clear, the choice

of here is arbitrary. Any constant would do.) Also, let
and . It is straightforward

to show via a union bound that with probability at least
, both of the following happen: no block in is

longer than , and, since the probability of a type is at
most , no type consists of more than blocks.
We conclude that with probability at least , no
type is longer than . This
immediately implies that no block in is longer than

with probability at least .
Although types as long as appear with nonnegli-

gible probability (given that we want our results to hold with
probability at least ), for distributions ,
there may be types that appear sufficiently frequently that we
must consider them, but not sufficiently frequently that we can
apply standard Chernoff bounds to them. Fortunately, (3) im-
plies that the vast majority of types appearing in our codeword
are relatively short (a formal proof of this statement appears
in Section III-C, Proposition 1, which shows that the total ap-
pearances of “long” types for a suitable definition of long are

). Therefore, our subsequent analysis will mainly focus
on the large set of “short” types as long types will be easier
to handle due to their small number of occurrences. We de-
fine the set of short types to consist of all types with at most

bits.1 Similarly, we define to be the set of block
lengths that are no longer than ; hence is the set
of all possible block lengths arising from types in . We also
define to be the set of pairs such that
and .2 Let , and

. A standard application of Chernoff bounds (e.g.,
[10, Theorems 4.2 and 4.3]) shows that the received sequence
consists of bits, with probability at least

. For

conditioned on bits in , the number of blocks
in is with probability at least
(again, see [4, Proposition 1] for a proof). A received sequence

1The choice of (logN) is by no means unique: it is simply a choice that
allows for our analysis to go through. Other o(logN) values might work as
well; no attempt has been made to optimize for this quantity hence should
not be considered as the typical set of types but rather as a convenient set that
includes the vast majority of the most frequently occurring types.

2The choice of the threshold probability N is only to keep the analysis
clean; Section III-C concludes that other choices for this probability work as
well.

is a typical output for some codeword if it consists of
blocks of length

arising from type , for all pairs in . The following the-
orem shows that a received sequence is a typical output for
some codeword with all but vanishingly small probability.

Theorem 1: A received sequence fails to be a typical output
for some codeword with probability at most .

Proof: Consider a pair in . Using a standard ap-
plication of Chernoff bounds (e.g., [10, Theorems 4.2 and 4.3]),
conditioned on the number of blocks in being ,
the probability that such a pair fails to comply with the definition
of a typical output is at most . For any distribution ,
a fixed family with may consist of at most

types. (When there is just one type in the
family.) Then the size of is at most

and we obtain the following upper bound for the size of :

(9)

Conditioned on blocks in , the probability that
there exists a pair in that causes to be an atypical output is
at most

Since consists of blocks with probability at
least , the theorem follows.

B. Decoding Error Probability: A Simplified Analysis

We now develop the main analysis of our paper. In the fol-
lowing, we temporarily simplify the analysis by assuming that
the number of blocks of length derived from groups of blocks
of type , denoted by , exactly equals
for all . Conditioned on the output being a typical output, the
number of such blocks is really
for pairs in , i.e., pairs that occur with sufficiently high prob-
ability. A more careful analysis, given in Section III-C, shows
that the terms and the effect of pairs outside affect the
asymptotic capacity bounds we derive by an term, which
can be ignored.

Fix a received sequence . We will use as a shorthand for
. Consider an enumeration of all families ; let

be the th family in that enumeration and denote by the th
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type in family . For each , the number of blocks of length
in is given by . There are

ways we can place the types corresponding to the blocks of
length in an attempt to reconstruct all different codewords that,
when transmitted through the deletion channel, might generate
these blocks according to the definition of a typical output. That
is, given the received sequence , our decoding algorithm con-
siders all possible blocks of length in , and considers all
possible ways of choosing the type of each block in so that
would have been a typical output. In intuitive terms, we have a
jigsaw puzzle, with each piece corresponding to a pair of
a type and a block length, and initially we have the right number
of pieces for each pair. We consider all possible ways of putting
the jigsaw puzzle together consistent with the received sequence
and the pieces we begin with. After doing this, the decoding al-
gorithm has an exponentially large list of all possible strings of
length for which would have been a typical output. If ex-
actly one of these strings is a codeword in our codebook, then
(assuming that was indeed a typical output, which occurs with
high probability) the algorithm decodes successfully.

If and are again random variables denoting, respectively,
the type of a block in and its length, the number of potentially
transmitted codewords considered by the decoding algorithm is
then

(10)

(11)

The first inequality follows from using Stirling’s formula (e.g.,
see [10]) to bound the factorials. Also, the expression of (11) is
an upper bound, as a received sequence may correspond to
a codeword under many different segmentations into types
while still having the property that is a typical output for .
Improving this bound may directly yield improvements on the
rate, and is an open problem.

To upper bound the probability that a fixed codeword in
our codebook could yield one of the sequences of types counted
in (11), we restrict the codebook to consist only of the likely
codewords. That is, standard methods (e.g., see [1, Ch. 3]) give
that almost all codewords arise with probability at most

so that the probability of including a codeword with greater
probability of being chosen is exponentially small. We can
throw out such improbable codewords, to guarantee that all
possible codewords are chosen with probability at most

Ignoring the term, which does not affect the final capacity
bound, yields the following upper bound for the probability that

is a typical output for a randomly selected codeword in our
codebook:

By a union bound, the probability that the received sequence
is a typical output for more than one codeword is at most

(12)

Since all typical outputs share the same structural properties,
the probability that the decoding algorithm will fail to identify a
unique codeword upon reception of any that is a typical output
for a codeword chosen uniformly at random is given by the right-
hand side of (12). For the decoder to fail with probability that
goes to zero asymptotically it suffices that the rate is upper-
bounded by

Therefore, we obtain the following theorem.

Theorem 2: Consider a channel that deletes every transmitted
bit independently and with probability and a binary input al-
phabet. The capacity of this channel in bits is lower-bounded by

(13)

for given by (6) and given by (8).

Although the above argument only provides a random code-
book to be sent through the deletion channel, via standard ar-
guments it implies the existence of a fixed set of codewords of
length for the deletion channel that could be used in place of
the random generating process.

The following lemma provides a simplified formula for
for arbitrary (the proof appears in the Appendix).

Lemma 1: The joint entropy of the joint distribution
of the types in and the block lengths in is given by

(14)

(15)

Although it might be difficult to derive a closed formula for the
summation term in (14) for arbitrary distributions , one can
easily compute it numerically for fixed over a limited range
of and . Since each term inside the summation is positive and

appears negated in (13), summing over a finite number
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of these terms yields strict underestimates of the actual lower
bounds derivable by our approach. We immediately obtain the
following simplification of Theorem 2.

Theorem 3: Consider a channel that deletes every transmitted
bit independently and with probability and a binary input al-
phabet. The capacity of this channel in bits is lower-bounded by

(16)

for given by (6), given by (8), and
standing for .

C. Analysis Revisited

As mentioned early in the previous section, the capacity
bound given by Theorem 2 considers outputs satisfying more
properties than the typical outputs defined in Section III-A. In
particular, in our simplified analysis, we assume that the number
of occurrences of each pair matches its expectation. How-
ever, the definition of typical outputs allows for deviations from
the expectation for pairs in , and the deviations for all other
pairs may be significantly larger. In this section, we show that
due to the asymptotic nature of our bounds, the effect of these
deviations can be ignored. That is, the new decoding algorithm,
which we describe below, implied by these deviations considers
a number of potentially transmitted codewords which is within
a factor of the upper bound of (11), with probability
at least . Hence, the subsequent analysis in
Section III-B still holds under the new decoding algorithm.

The new decoding algorithm, to cope with the deviations in
the number of occurrences of every pair , can be thought
of in the following way. First, instead of solving one jigsaw
puzzle, the algorithm will try to solve many different jigsaw
puzzles. Each puzzle will correspond to a set of values for ,
giving the number of pieces for each pair. Second, since
for certain rarely occurring pairs, the number of such pairs
may deviate largely from their expectation, we develop special
jigsaw puzzle pieces to more easily cope with such pairs.

We therefore start by explicitly specifying the range of values
may take on for every . Consider a fixed received se-

quence ; Section III-A guarantees that is a typical output for
some codeword with super-polynomially high probability.
In the previous section, we assumed that in a typical output

exactly equals for all , and exactly equals
for all . However, the definition

of a typical output in Section III-B allows and to
assume values within a permitted range. More specifically,
may be any number between and

, where denote
variations from the expectation in the number of bits and the
number of blocks in , respectively, while denotes variations
in the number of blocks of length . Similarly, may be any
number between

and , where de-
notes variations in the number of blocks of length arising from
type . In Section III-A, (and, therefore, the permitted range
of ) was determined for a certain subset of pairs . The
following proposition determines the permitted range of for
all .

Proposition 1: Let denote the length of type . With prob-
ability at least , a typical output with respect
to some codeword satisfies all of the following.

• For pairs

where
— for ; hence

— if

and otherwise, for

; hence is .
• For pairs such that and

, let denote their total number of appearances.
Then for constant , and any positive constant

is at most

• No pair such that occurs.
Proof: In Section III-A, we showed that for each

and

with probability at least . For ,
we obtain

Now consider a pair . Since
, the expected number of

appearances of this pair may be too small to allow for as small
and as strong probability bounds as the pairs in do. To

this effect, let

if

By standard Chernoff bounds (e.g., [10, Theorems 4.2 and
4.3]), the probability that such a pair exceeds its expectation
by more than is at most

. Since the expectation of is at
most , we obtain

with probability at least .
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For and ,
standard Chernoff bounds (e.g., [10, eq. (4.10)]) for large
yield that the probability that such a pair exceeds its expected
number of appearances by more than is at most

. An entirely similar reasoning to
the previous case yields that with probability
at least . Hence, for upper-bounded
by (9), the probability that any of the first two events in the
proposition statement fails to happen is at most

(17)

The total number of appearances of pairs such that
and is upper-bounded

in Lemma 2, which we prove immediately below; this bound
holds with probability at least for sufficiently
large . The proposition follows from the discussion in Sec-
tion III-A showing that the probability of a type longer than

is at most .

Remark 1: Proposition 1 can be used directly to pro-
vide bounds for the deviations of the block lengths

, if in the first part of the proposition (i.e., the part
referring to pairs ), pairs
are replaced with lengths . This further implies
that is replaced with with

, and with .
The proposition may be used to provide bounds for the devi-
ations from the conditional probabilities
of the pairs in an entirely similar fashion:

is replaced with and
with . This

latter observation will actually be used in Lemma 5.

Lemma 2: Let be a constant given by

if
if for

for as in the definition of and . For any
positive constant , the total number of appearances of pairs

such that and , denoted
by , is upper-bounded as

with probability at least .
Proof: Note that is essentially the number of appearances

of types with (since there is no
constraint on ). Given this interpretation for , we prove the
lemma in two steps. We start by computing the expected value
for . To this end, we need compute the probability that a type

with blocks, , has length for distributions
. Then we apply Chernoff bounds (e.g., [10, Theorems

4.2 and 4.3]) to show that does not deviate significantly from
its expectation.

First, suppose that the block lengths in the codeword follow
a geometric distribution. In this case, the only restriction for the

blocksis that theyconsistofat leastonebit.Therefore, thenumber
ofways to assign bits into blocks is : the lastblock of
the type ends at the th bit, so we only need choose endpoints for
the remaining blocks. It follows that when blocks are geomet-
rically distributed with parameter , each arrangement of bits
into blocks is equiprobable, and occurs with probability

. Also, since at least blocks of the type
are deleted, the deleted bits contribute at least to the proba-
bility of the type. The latter is now upper-bounded as

Next, consider distributions with finite support. Recall that
the probability of a type with blocks is upper-bounded by

, where is the probability that a block is deleted. Then the
probability of a type with total length is at most ,
since at least blocks are required to obtain a total length .

Let for geometric , and for
distributions with finite support; in both cases, .
There are types in . The expected number of types with
lengths between and (in other words, the
expected value of ), is at most

Now the Chernoff bounds in Theorems 4.2 and 4.3 in [10]
guarantee that does not exceed its expectation by more than

with probability at least

Therefore, with the same probability.
Since

for sufficiently large for any positive constant , we can
conclude the derivation.

We now proceed to describe our decoding algorithm in more
detail. Our algorithm will attempt to solve multiple jigsaw puz-
zles. A jigsaw puzzle is determined by the numbers of various
pieces. Every pair introduces a piece; the number
of such pieces is allowed to be any number in the range satis-
fying the constraint that the output is typical. Similarly, must
take on an appropriate value under this constraint. Of course
for each . For each such that

, the decoder considers all remaining
blocks of this length as arising from the same special type ,
which could correspond to any binary string of length between

and . The jigsaw puzzle will have a cor-
responding number of pieces for the pair . (Of course, al-
lowing any string of a suitable length for puzzle pieces with a
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special type will simply overestimate the number of possible
resulting codewords. We are ignoring, for example, that this bi-
nary string must be such that the output block could be derived
from this string. Since we are seeking a lower bound on the ca-
pacity, such overestimates are valid, and because pieces with
type are so rare, they do not affect our asymptotic bound.)
Note that each may introduce some pieces to a
puzzle, while every introduces only such pieces. Given
the received (i.e., given the value of for every ), and given
a valid assignment of values to for is fully de-
termined for every (and, therefore, no new puzzles need to be
introduced because of these pieces). The number of jigsaw
puzzles formed by the decoding algorithm is upper-bounded by
the following lemma.

Lemma 3: The number of jigsaw puzzles introduced by
deviations in the within the ranges permitted by Proposition
1 is at most with probability at least .

Proof: For every pair , Proposition 1 specifies at
most deviations
from expectation. Therefore, there are at most pos-
sible values for each such . Similarly, for

may assume any value up to . As these values
determine each puzzle to be solved, for upper-bounded
by (9), is upper-bounded by

This bound fails with probability at most which
is the probability that there exists a pair in that
exceeds its expectation by an amount larger than the amount
specified by Proposition 1 for this pair.

Each jigsaw puzzle is input to a slightly modified version
of the decoding algorithm of Section III-B that handles the
types: when such a type is encountered, the decoder lists all bi-
nary strings with lengths between and
as possible substrings of the codeword at the position of the .
Clearly, the total number of appearances of pairs , given
by , is given by , for as in Proposition 1. Since

each type may be replaced by at most strings,
the number of sequences which the new decoder considers as
potentially transmitted codewords is at most

(18)

where the last equation follows from the bound on in Propo-
sition 1 (e.g., for ). The upper bound on holds with
probability at least , since each of the upper
bounds on and fails with probability at most
(see Lemma 3 and Proposition 1). The new decoder is successful
if only one of these sequences (the actual sequence sent) corre-
sponds to a codeword in our codebook.

We are now ready to show the main result of this section in
Lemma 4 below: the expression in (18) is upper-bounded by
the right-hand side of (10), with the possible addition of a multi-
plicative term of , with probability at least .
We can then infer that the analysis of our new decoding algo-
rithm results in the same capacity bounds proven in Theorems
2 and 3 under the simplified analysis.

Lemma 4: With probability at least , expres-
sion (19) at the bottom of the page holds.

Proof: We first observe that ignoring the effect of the types
yields an upper bound for the left-hand side of (19). We write

as (from the discussion pre-
ceding Proposition 1). Recall also that

(from Proposition 1). We intro-
duce a further expression , and rewrite

, where
. The role of will be clarified

below. Using the standard entropy-based bound for combina-
tions we now obtain the following upper bound for the left-hand
side of (19):

(20)

In order to prove the lemma, if suffices to show that, with
probability at least , the total effect of terms in
(20) which include the and/or the
factor is . This would imply that the expression in (20) is
equivalent, up to terms, to

which is clearly upper bounded by the expression in (10).

(19)
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Let denote a set of pairs . We define

(21)

(22)

Every term in the exponent of (20) where a
and/or factor appears is included in exactly one
of the and . Lemma 5 below shows that

, with probability at least
. By our discussion above, the proof of the lemma

is complete.

Lemma 5: With probability at least

Proof: We will prove this statement by considering pairs in
and separately.
First, consider pairs . For each such pair,

is upper-bounded by some constant . Since
, we

have

From Proposition 1, for each pair in , hence
. Since

, Remark 1 yields for all , and
we therefore have that . Finally, by
(9)

Substituting the above into (21), (22), and (23), we obtain for
and , respectively

The above bounds hold with probability at least
.

Next, consider pairs in . In our analysis for
these pairs, we will assume that all blocks in and all pairs

arise with probability at least . By a union
bound over the blocks in and the
pairs, the subsequent analysis will hold with probability at least

.
In the process of bounding the effect of the deviations of pairs

in , we first show that the absolute value of
the effect of all these pairs in (10) is at most . Then it will
be easy to deduce that their deviations also contribute at most

to (20).
More specifically, let denote the logarithm of the absolute

value of the effect of all in (10), i.e.,

(24)

We will show that is . As argued previously,
provides an upper bound for

. Therefore, to upper-bound the
right-hand side of (24), a lower bound for
is required. A rather crude yet sufficient for our purposes such
bound arises from (6)

(25)

Here, we used our assumption that all blocks in arise with
probability at least . Since for each in

, substituting the result of
(25) into (24), we obtain

(26)

We now move to computing each of
and . We start by providing upper bounds for
and . For the former, Proposition 1 guarantees that

since .
Next, we bound the deviations of the pairs in .

To this end, we observe that, from Proposition 1 and our assump-
tion that no pair occurring with probability less than
arises, is at most

Again, since , Re-
mark 1 yields for all , with
probability at least .
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Hence, . We im-
mediately obtain from (21)

Using (25) and (26), we now obtain from (22)

Similarly, from (23) we obtain

The lemma follows.

We should mention here that Lemma 5 (and in partic-
ular, (26)) further implies that with probability at least

, (10) is an asymptotic upper bound for

It is clear that above may be substituted by any subset of
in which pairs occur with probability at least , for small
positive constant .

IV. GEOMETRIC DISTRIBUTIONS

In this section, we use Theorem 3 to derive a lower bound
for the capacity of the i.i.d. deletion channel in the special case
where the block lengths in are geometrically distributed, i.e.,

.
In this case, the probability that blocks from have length
given by (4) is simply , since

there are bits from which to choose the last bits of the first
blocks (the last block ends at the th bit). Hence, a family

consists of equiprobable members and
the probability of a type becomes

(27)

(Again, the case is special but the final (27) is correct.)
Then the joint probability of length and type becomes

(28)

When the block length distribution in is geometric with pa-
rameter , the block lengths in are also geometrically dis-
tributed with parameter (e.g., see [2], [4]). It

is easy to show that . Since , we
immediately obtain the following corollary to Theorem 3.

Corollary 1: Consider a channel that deletes every trans-
mitted bit independently and with probability , a
binary input alphabet, and geometric block-length distribution

. The capacity of this channel in bits is lower-bounded by

where .

Note that is given by the right-
hand side of (28) multiplied by the size of , which is

for .
Although it seems difficult to derive a closed formula for the

summation above, one can easily compute it numerically for
fixed . Then it is a matter of optimizing over all values of .
Our optimization was over only two decimal digits for . Also,
our numerical calculations were over a limited range of and

. Hence, the graph in Fig. 2 presents an underestimate
of the actual rates. Numerical results are given in Table I.

V. A LOWER BOUND FOR DISTRIBUTIONS

In this section, we use Theorem 3 to derive a lower bound
for the capacity of the i.i.d. deletion channel in the special case
where codewords are generated by distributions.
Under such distributions, a block in is either assigned a
short integer length with probability or a larger integer
length with probability . Under the less effective
decoding methods of [4], such distributions outperformed the
geometric distribution for .

Consider the concatenation of blocks in of which
are short; here . Since , it follows easily that
for each choice of , there are exactly distinct lengths that
the concatenation of blocks may undertake with nonzero prob-
ability; each length corresponds to a value of ranging from
to . Moreover, if is the length of the concatenation, for fixed
and there is a unique such that .
Therefore, using our standard notation for the probability
that blocks have length , we have , if

, for some ; otherwise, .
Given our preceding discussion, for in

, a type is in the family

if the following happens: it consists of blocks; the first
block has length ; exactly of the blocks which are the same
as the first block have length ; and, exactly of the blocks
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Fig. 2. Improvement in rate with our framework for codewords with geometrically distributed block lengths (Section IV). Comparison with lower bounds for
(m;M; x) distributions (Section V), lower bounds for geometric and (m;M; x) distributions from [4], and Ullman’s upper bound.

TABLE I
LOWER BOUNDS BASED ON CODEBOOKS DERIVED FROM

GEOMETRIC DISTRIBUTIONS

which differ from the first block have length . This family is
well defined since it is unique for each quadruple .
Further, each type in
occurs with the same probability given below

and the joint probability of length and type from (6) becomes

(29)

For , (8) yields

(30)

We obtain the following corollary to Theorem 3.

Corollary 2: Consider a channel that deletes every trans-
mitted bit independently and with probability , a
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binary input alphabet and block-length distribution
. The capacity of this channel in bits is lower-bounded by

where is given by (30).

Although deriving a closed form for seems difficult, one
can easily compute it numerically for fixed and .
Then it is a matter of optimizing over all integers of and

, and real . The rates in Fig. 2 are underesti-
mates of the best achievable rates under distributions,
derived as follows.

Let be the rate achieved by the best possible distribution
for the fixed deletion probability . Similarly, let

be the rate achieved by the best pair when
are fixed; and be the rate achieved by the best for
fixed and . We compute local maxima that approximate
these quantities; computation becomes fairly time consuming
even for moderate deletion probabilities. Let and

denote our approximations to and ,
respectively. For each , we only consider a limited number
of triplets . Let be the rate we com-
pute according to Corollary 2 for the distribution
when the deletion probability is . Starting at
and , and successively incrementing by ,
we set for the first that satisfies

; we only optimize over two
decimal digits. Similarly, we set for the first

such that . Finally, we set
for the first that satisfies . The graph in
Fig. 2 shows ; clearly, . Numerical results are given
in Table II.

VI. DISCUSSION OF OUR RESULTS

As discussed in the Introduction, upper bounds for the ca-
pacity of channels with synchronization errors are provided by
Ullman [11] and Dolgopolov [6].

Ullman considers binary channels for which the limiting
value of the fraction of synchronization errors over the block
length of the code as the latter goes to infinity is . Specifically,
he considers a channel that introduces insertions in the
first bits of the codeword. His upper bound on the
zero-error capacity of such channels is given by

(31)

TABLE II
LOWER BOUNDS BASED ON CODEBOOKS DERIVED FROM (m;M; x)

DISTRIBUTIONS

All previous theoretical lower bounds for the capacity of the
i.i.d. deletion channel ([2], [4], [6]) were strictly below this
bound, and it was used in [2] as a comparison point for their
lower bounds, but of course the channel studied is quite dif-
ferent. Our current bounds exceed this upper bound for

. This is not a contradiction, as the channels studied are dif-
ferent, but it is the first time this bound has been provably ex-
ceeded for the i.i.d. deletion channel.

Dolgopolov [6] relies on a theorem by Dobrushin [5] relating
the capacity of the i.i.d. channel with synchronization errors to
the mutual information between the transmitted codeword and
the received sequence to derive the following upper bounds for
the binary i.i.d. deletion channel:

(32)

These bounds hold for codebooks with nonzero probability of
error and therefore are closer to the nature of our bounds. How-
ever, they rely on an unproven assumption, and arise from con-
sidering codebooks where each codeword is chosen uniformly
at random. Therefore, it is not surprising that we exceed (32)
for : random codes seem to perform well only for very
small deletion probabilities (e.g., see [2], [4]).

VII. A GENERAL FRAMEWORK FOR ANALYZING CHANNELS

WITH I.I.D. INSERTIONS (DUPLICATIONS) AND DELETIONS

As mentioned in the Introduction, a critical advantage of our
new approach is that it can be applied to other types of chan-
nels with i.i.d. synchronization errors besides channels where
deletions only occur. In this section, we show how to use our
technique to analyze the following class of channels. Let be
a probability distribution over the nonnegative integers, and let

be the probability of integer . We only consider with
geometrically decreasing tails, i.e., there exist real constants

and integer constant
such that for and for

. Consider a channel which, independently
for each transmitted bit, either deletes the bit with probability
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or transmits the bit together with copies of it
with probability . We call this class of channels i.i.d.
channels with effective probability . Since is the deletion
probability, we shall henceforth denote it by to emphasize the
correspondence with the deletions-only channel. For example,
for the i.i.d. deletion channel, we have and

for . Also, the average number of bits that a single
bit from contributes to the received sequence is given by

, which in the case of the i.i.d. deletion channel is .
We derive a generalization of Theorem 2 for i.i.d. channels

with effective distribution . We first consider distributions
such that . For codebooks generated as in
Section II, the distribution of the types is still given by

Let be the probability that bits transmitted over an
i.i.d. channel with effective distribution generate bits.
Let be the number of bits that the th of the bits generates;
clearly, and . Then

(33)

Consider a type , giving rise to a block of length
in . Since at least one of the bits comes from the first

bits, the joint probability of type and block length becomes

(34)

Then for , the block-length distribution in the
received sequence is given by

(35)

In order to extend our analysis for the i.i.d. deletion channel,
we will need large deviation bounds on the number of blocks in
the received sequence. To apply such bounds, we need to show
that the moment-generating function of , denoted by ,
is finite in a small interval around for distributions . The
following lemma computes .

Lemma 6: Let be the moment-gener-
ating function of the effective distribution with .
The moment-generating function of the block-length
distribution in the received sequence is given by

where , and
. Moreover, the average block length in the received

sequence is given by

(36)

Proof: Using (35), we obtain for the moment-generating
function

(37)

Let . By (33), we obtain

It follows that . Observing that

(37) becomes

(38)

where (38) is obtained by an argument entirely similar to the
proof of Lemma 1 in [4], which shows that

for

(the argument is a simple application of the recursive definition
of ).



DRINEA AND MITZENMACHER: IMPROVED LOWER BOUNDS FOR THE CAPACITY OF I.I.D. DELETION AND DUPLICATION CHANNELS 2707

To calculate the average block length in , we first observe
that

Hence and we obtain for

Since we only consider distributions with geometrically
decreasing tails, is upper-bounded by

(39)

Therefore, the moment-generating function of is finite in an
interval around . It follows that and hence are
also finite in an interval around . Since

is finite for all permitted . A standard application of
the Chernoff bounds in Theorems 4.2 and 4.3 of [10] shows that
for , the received sequence consists of

bits, with probability at least . Hence, for
and

Proposition 1 in [4] guarantees that the number of blocks in the
received sequence is with probability at least

.
As mentioned in Section III-A, for distributions ,

the longest type in consists of at most bits with
probability at least . Unlike the i.i.d. deletion
channel, where a received block is always shorter than the type
it arises from, in an i.i.d. channel with effective distribution a
received block may be longer than the type from which it arises.
Therefore, for as in Section III-A (i.e., if and only if

), the set of possible block lengths arising from
types in is now a superset of . We argue that
this increase does not affect in any critical way the analysis in

Section III. Consequently, the analysis in Section III holds for
i.i.d. channels with effective distribution , with the sole change
of replacing (which is the average of for the deletion
channel) with . We conclude the section with the analog
of Theorem 3 for channels with i.i.d. deletions and duplications.

We first upper-bound the size of the set in this context.
To upper-bound the length of the longest block in , we
reason as follows. Consider the longest type in . At any
individual bit of the type, the effective distribution introduces
more than copies with probability at most .
By a union bound, the probability that there is at least one bit
of the type where more than bits are introduced is at
most . Therefore, with
probability at least , there is no insertion of
more than copies at any individual bit of the type. This
implies that, conditioned on the longest type having length at
most , every block in has length at most
with probability at least . It follows that the
latter is also the unconditional probability of a block in
having length at most , hence .

The increase in only affects arguments where the quantity
appears, as well as the first line of (18) and (25). It is

easy to check that these changes affect only terms in our
arguments, and the remaining analysis holds unchanged.

We therefore obtain the following theorem, following the
same argument as Theorem 2.

Theorem 4: Consider an i.i.d. channel with effective distribu-
tion such that , and a binary input alphabet. The
capacity of this channel in bits is lower bounded by

for and .

Following the proof of Lemma 1, we also obtain

Here is shorthand for as usual. Therefore, we
obtain the following corollary.

Corollary 3: Consider an i.i.d. channel with effective distri-
bution such that , and a binary input alphabet.
The capacity of this channel in bits is lower-bounded by

for and , and standing for .
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VIII. I.I.D. CHANNELS WITH DUPLICATIONS

In the special case of channels that only duplicate bits
the type of a block in the received sequence is

simply the length of the block in the original codeword from
which it arose. Then the equivalent of (3) for such channels is

. This implies that and
for

(40)

Hence

(41)

and

(42)

Note that for i.i.d. insertion channels which introduce copies
only, the number of blocks in the received sequence exactly
equals the number of blocks in the codeword (no blocks disap-
pear and no new blocks are generated). From (41) and the proof
of Lemma 1, we easily conclude that

Therefore, we obtain the following corollary to Theorem 4.

Corollary 4: Consider an i.i.d. channel with effective distri-
bution such that , and a binary input alphabet. The
capacity of this channel in bits is lower-bounded by

for given by (40), given by (42), and
given by (41).

Finally, it is easy to follow Lemma 6 and show that
. Therefore, the average block length in the received se-

quence given by is

(43)

A. Elementary i.i.d. Duplication Channel

In this section, we apply Corollary 4 to lower-bound the ca-
pacity of the elementary i.i.d. duplication channel when

.
The effective distribution of the elementary i.i.d. duplication

channel is for
; hence, . Then the probability that a

block of length generates a block of length from
(40) becomes

Therefore, the joint probability of a block in having length
and arising from type from (41) becomes

(44)

Then the probability that a block in the received sequence has
length is given by

(45)

By (43), for and , the average block
length in the received sequence is given by

(46)

The following lemma simplifies the quantity inside the summa-
tion of Corollary 4 (the proof appears in the Appendix).

Lemma 7: Consider the elementary duplication channel with
duplication probability . Then

(47)

Substituting into Corollary 4, we obtain the following
theorem for the capacity of the elementary i.i.d. duplication
channel.

Theorem 5: Consider a channel that duplicates every trans-
mitted bit independently and with probability and a binary
input alphabet. The capacity of this channel in bits is lower
bounded by

(48)

for given by (44) and given by (45).
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Although it might be difficult to derive a closed formula for
the summation in (47) for arbitrary distributions , one can
easily compute it numerically for fixed and over a limited
range of and . Similarly to the i.i.d. deletion channel, sum-
ming over a finite number of these terms yields strict underesti-
mates of the actual lower bounds derivable by our approach.

We use (48) to derive a lower bound for the capacity
of the elementary i.i.d. duplication channel in the special case
where the block lengths in are geometrically distributed, i.e.,

. Since the probability that the type of a block
in is is given by , the joint
probability of type and length from (44) becomes

(49)

The following combinatorial lemma provides a closed form for
(the proof appears in the Appendix).

Lemma 8: Let . Then for all

By (46), the average block length in equals . Also,
is given by

(50)

Each term inside the infinite summation above is negative, there-
fore, its contribution to (50) is positive. Since appears
unnegated in (48), summing over a finite range of strictly un-
derestimates our final derived bounds. Finally,
and we obtain the following corollary to Theorem 5.

Corollary 5: Consider a channel that duplicates every trans-
mitted bit independently and with probability , a
binary input alphabet and geometric block length distribution

. The capacity of this channel in bits is lower bounded by

where is given in (50) and is given
in (49).

B. I.I.D. Geometric Duplication Channel, With Geometric

In this subsection, we use Corollary 4 to derive a lower bound
for the capacity of the i.i.d. geometric duplication channel
in the special case where the block lengths in are geometri-
cally distributed, i.e., .

Consider a binary i.i.d. channel with the following effective
distribution: and for
(we remind that for is the probability that the channel
transmits the original bit together with new copies of the
bit). Then the probability that a block of length generates a
block of length from (40) becomes

Therefore, the joint probability of a block of length in
giving rise to a block of length in is

(51)

If is geometrically distributed, i.e., for all
, then for , we obtain

This immediately yields that the entropy is and that
the average block length in in . Also, since
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Fig. 3. Rates for the elementary i.i.d. duplication channel and the i.i.d. geometric duplication channel (Sections VIII-A and VIII-B) for codewords with geomet-
rically distributed block lengths.

it is easy to show that

Hence, by Corollary 4, the capacity of this channel is lower-
bounded by the following theorem.

Theorem 6: Consider a channel that independently at every
transmitted bit inserts a nonnegative integer number of copies
distributed according to a geometric distribution with parameter

, and a binary input alphabet. The capacity of this channel in
bits is lower-bounded by

for given in (51) and .

C. Discussion of Our Results

Fig. 3 presents an underestimate of the rates for the elemen-
tary i.i.d. duplication channel and the i.i.d. geometric duplica-
tion channel derived in Sections VIII-A and VIII-B, respec-
tively. The graphs are underestimates because we optimized
over only two decimal digits for the parameter , and our numer-
ical calculations were over a limited range of and . Again, we
performed extensive simulations for codewords with geometri-
cally distributed block lengths and . The simu-
lations verified the convergence of and to the
values predicted by the theory, giving us confidence in the re-
sults of Fig. 3.

Notice that as one would expect, for the i.i.d. duplication
channel the capacity approaches as the probability that every
bit is duplicated approaches .

IX. CONCLUSION

We have presented new lower bounds for the capacity of the
i.i.d. binary deletion channel, improving on previous analysis
by using a stronger definition of a typical output. We focused on
channels with binary alphabets although our results generalize
in a natural way. We also presented a general lower bound for
binary channels with i.i.d. deletions and duplications, as well as
lower bounds for binary channels with i.i.d. copies only.

In an earlier version of this paper we suggested exploring
stronger notions of typical outputs to achieve a better bound.
In particular, considering types for several consecutive blocks
in the received sequence at a time, instead of just one, would
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attempt “block decoding” in the standard information-theoretic
sense. Recently, Drinea and Kirsch [3] characterized the im-
provement induced by block decoding when considering any
number of consecutive blocks in the received sequence at a time
by analyzing the information capacity of the deletion channel
(instead of the operational capacity addressed in this paper).
Their work basically expands on the ideas from renewal theory
presented here, and gives clean theoretical results by using el-
ementary facts from renewal theory instead of combinatorial
arguments. Open directions to advance this work include the
following.

• There may be better ways of selecting codewords, such
as using different distributions. For example, the experi-
mental bounds in [8] and [12] suggest that higher order
Markov chains yield better bounds.

• Our approach could possibly be applied to channels with
more general insertions and deletions, or other errors such
as transpositions. The most natural next step would be to
consider the insertion channel where a random bit can be
inserted after each bit with some probability. While we ex-
pect our approach can be used for this channel, there are
difficulties to consider. In particular, our work thus far to
handle duplication makes strong use of the block struc-
ture of the input and output sequences. With insertions
of random bits, this block structure would be lost at the
output, and thus it appears there is additional work neces-
sary to analyze this kind of channel.

Finally, providing good upper bounds for the capacity of i.i.d.
deletion channels is a clear challenging open question.

APPENDIX

Lemma 1: Consider a binary i.i.d. deletion channel. The joint
entropy of the distribution of the types in and the
block lengths in is given by

Proof: For given by (6), we have

The first two terms as well as the last one depend only on
the family where the type belongs, and not on

which specific member of the family is represented by . On
the other hand, the third term explicitly depends on the specific
member of represented by . Therefore, we obtain
for

(52)

(53)

(54)

(55)

We will show that for all distributions , the sum of (52) and

(53) equals , while the term (54) equals

First, we derive closed forms for two quantities that will pro-
vide useful in the following computations. For , let

and . Let
(hence, stands for the expected length of a deleted

block). Then

(56)
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The solution to the above recurrence is .
Similarly

(57)

The solution to the above recurrence is .
Now let

where is given by (7). Then is
simplified as follows:

The last equality follows from Lemma 1 in [4] giving the av-
erage block length in the received sequence after the i.i.d. dele-
tion channel as .

Since the term (52) equals , we conclude
that the sum of the terms (52) and (53) equals

(58)

Now consider (54) and let

with given by (6). Summing first over , we
obtain that

Then after some rearranging of the terms, becomes

where the last equality again follows from the formula for the
average block length in the received sequence. The proof is
complete.

We now derive a formula for the entropy of the distri-
bution of types.

Lemma 9: The entropy of the distribution of the types
in is given by

(59)



DRINEA AND MITZENMACHER: IMPROVED LOWER BOUNDS FOR THE CAPACITY OF I.I.D. DELETION AND DUPLICATION CHANNELS 2713

Proof: By (8) and the proof of Lemma 1, we have

(60)

(61)

(62)

We compute (60), (61), and (62) separately. First, for
and given by (57), (60) becomes

Also, (61) coincides with (54), and therefore equals .
Finally, (62) is simplified to

We immediately obtain the following corollary for geometri-
cally distributed codewords.

Corollary 6: When the blocks in are geometrically dis-
tributed with parameter , the entropy of the distribution
of the types is given by

Lemma 7: Consider the elementary duplication channel with
duplication probability . Then

Proof: By (42), we have

(63)

(64)

Let

Since the term (63) equals , by (46), we
conclude that the sum with the term (64) simplifies to

The proof is complete.

Lemma 8: Let . Then for all , the block
length distribution in the sequence received after the i.i.d. ele-
mentary duplication channel with duplication probability is
given by

Proof: Let , for . Then

(65)

where the last equality follows from standard texts, e.g., [7,
p. 204] (otherwise, it is easy to observe that

, with and ; the solution to this recurrence
is given by (65)). The lemma follows.
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