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Simple Summaries for Hashing With Choices

Adam Kirsch, Student Member, IEEE, and Michael Mitzenmacher, Member, IEEE

Abstract—In a multiple-choice hashing scheme, each item is
stored in one of d > 2 possible hash table buckets. The availability
of these multiple choices allows for a substantial reduction in the
maximum load of the buckets. However, a lookup may now require
examining each of the d locations. For applications where this
cost is undesirable, Song et al. propose keeping a summary that
allows one to determine which of the d locations is appropriate for
each item, where the summary may allow false positives for items
not in hash table. We propose alternative, simple constructions
of such summaries that use less space for both the summary and
the underlying hash table. Moreover, our constructions are easily
analyzable and tunable.

Index Terms—Hash tables, router architecture, table lookup.

1. INTRODUCTION

N A multiple-choice hashing scheme, a hash table is built
I using the following approach: each item x is associated with
hash values h(z), ha(z), ..., ha(x), each corresponding to a
bucket in the hash table, and the item is placed in one (or pos-
sibly more) of the d locations. Such schemes are often used
to lessen the maximum load (that is, the number of items in
a bucket), as giving each item the choice between more than
one bucket in the hash table often leads to a significant im-
provement in the balance of the items [1], [4], [14], [17]. These
schemes can also be used to ensure that each bucket contains
at most one item with high probability [3]. For these reasons,
multiple-choice hashing schemes have been proposed for many
applications, including network routers [4], peer-to-peer appli-
cations [6], and standard load balancing of jobs across machines
[15].

Recently, in the context of routers, Song et al. [20] suggested
that a drawback of multiple-choice schemes is that at the time
of a lookup, one cannot know which of the d possible locations
to check for the item. The natural solution to this problem is
to use d lookups in parallel [4]. But while this approach might
keep the lookup time the same as in the standard single-choice
hashing scheme, it generally costs in other resources, such as pin
count in the router setting. Song et al. [20] provide a framework
for avoiding these lookup-related costs while still allowing in-
sertions and deletions of items in the hash table. They suggest
keeping a small summary in very fast memory (that is, signifi-
cantly faster memory than is practical to store the much larger
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Fig. 1. A comparative illustration of the hardware and connections in an imple-
mentation of a standard multiple choice hash table (left) and a multilevel hash
table (described in Section VI) equipped with a summary data structure (right).

hash table) that can efficiently answer queries of the form: “Is x
in the hash table, and if so, which of hy(x),. .., hq(x) was ac-
tually used to store 7 A simple illustration is given in Fig. 1.
Of course, items that are not actually in the hash table may yield
false positives; otherwise, the summary could be no more effi-
cient than a hash table. The small summary used by Song et al.
[20] consists of a counting Bloom filter [10], [16]. We review
this construction in detail in Section IV.

The specific applications that motivate this work are a
wide variety of packet processing techniques employed by
high-speed routers that rely on the use of a hash table. In
these applications, the worst-case performance of the standard
lookup, insertion, and even deletion operations can be a bot-
tleneck. In particular, hash tables that merely guarantee good
amortized performance may not work well in these settings
because it may not be practical to allow any exceptionally
time-consuming operations, even if they are rare, since that
might require buffering the operations that arrive in the interim.
Furthermore, the high cost of computational, hardware, and
even energy resources in this setting forces us to seek hash table
optimizations that are not only effective, but also extremely
amenable to simple, efficient, hardware-based implementa-
tions. These observations explain why both we and Song et al.
focus on the use of multiple-choice hash tables, prized for their
worst-case performance guarantees, along with a summary
data structure that allows for a further reduction in the cost of
lookups into the hash table.

In this paper, we suggest three alternative approaches for
maintaining summaries for multiple-choice hashing schemes.
The first is based on interpolation search, and the other two are
based on standard Bloom filters or simple variants thereof and
a clever choice of the underlying hash table. Our approaches
have numerous advantages, including less space for the hash
table, similar or smaller space for the summary, and better
performance for insertions and deletions. Another advantage of
our approaches is that they are very simple to analyze; while
[20] provides an analysis for a basic variation of the scheme
proposed therein, more advanced versions (which seem to be
required for adequate performance) have not yet been analyzed.
We believe that the ability to analyze performance is important,
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as it allows for more informed engineering decisions based on
formal guarantees.

An interesting feature of our work is that we use multiple-
choice hashing schemes that are sharply skewed, in the sense
that most items are placed according the first hash function,
fewer are placed according to the second, and so on. We show
how to take advantage of this skew, providing an interesting
principle: dividing the hash table space unequally among the
d sub-tables allows for skew tradeoffs that can allow significant
performance improvements for the corresponding summary.

II. RELATED WORK

There is a lot of work on multiple-choice hashing [17] and
on Bloom filters [2], [5]; for readers unfamiliar with Bloom fil-
ters, we give a brief review in Section III. Our primary starting
point is the work of Song et al. [20], which introduces an ap-
proach for summarizing the locations of items in a hash table
that uses multiple hash functions. We review this work in detail
in Section IV.

We are also influenced by a significant early paper of Broder
and Karlin [3]. For n items, they give a construction of a mul-
tilevel hash table (MHT) that consists of d = O(loglogn)
sub-tables, each with its own hash function, that are geomet-
rically decreasing in size. An item is always placed in the first
sub-table where its hash location is empty, and therefore this
hashing scheme is skewed in the sense described above. Our
main result can be seen as adding a summary to an MHT, and
so we give a more thorough description of MHTS in Section V1.

Finally, the problem of constructing summaries for multiple-
choice hash tables seems closely connected with the work on a
generalization of Bloom filters called Bloomier filters [7], which
are designed to represent functions on a set. In the Bloomier
filter problem setting, each item in a set has an associated value;
items not in the set have a null value. The goal is then to de-
sign a data structure that gives the correct value for each item
in the set, while allowing false positives, so that a query for an
item not in the set may rarely return a non-null value. In our set-
ting, values correspond to the hash function used to place the
item in the table. For static hash tables (that is, with no inser-
tions or deletions), current results for Bloomier filters could be
directly applied to give a (perhaps inefficient) solution. Limited
results exist for Bloomier filters that have to cope with changing
function values. However, lower bounds for such filters [7], [19]
suggest that we must take advantage of the characteristics of our
specific problem setting (e.g., the skew of the distribution of the
values) in order to guarantee good performance.

III. BLOOM FILTER REVIEW

In this section, we briefly review the fundamentals of Bloom
filters, based on the presentation of the survey [5]. A Bloom filter
for representing a set S = {x1, %2, . .., 2z, } of n elements from
a large universe U consists of an array of m bits, initially all
set to 0. The filter uses & (independent, random) hash functions
91, - .-, g, withrange {1,..., m}. For each element z € S, the
bits g;(x) are set to 1 for 1 < 4 < k. To check if an item y is in
S, we check whether all g;(y) are set to 1. If not, then clearly y
is not a member of S. If all g;(y) are set to 1, we assume that y
isin S, and hence a Bloom filter may yield a false positive.

The probability that some y ¢ S yields a false positive, or
the false positive probability, is easy to analyze. After all the
elements of S are hashed into the Bloom filter, the probability
that a specific bit is still 0 is

p/ _ (1 _ 1/m)kn ~ e—kn/m.
In this section, we generally use the approximation p = e~k"/™
in place of p’ for convenience.

If p is the proportion of O bits after all the n elements are
inserted in the table, then conditioned on p the probability of a
false positive is

(1=p)fm (1 =p)F m (1-p)f = (1= e7F/m)k,

These approximations follow since E[p] = p’, and p can be
shown to be highly concentrated around p’ using standard tech-
niques. It is easy to show that the expression (1 — e~*7/™)¥ jg
minimized when & = (m/n)In 2 (neglecting the integrality of
k), giving a false positive probability f of

f=a-

Finally, we note that sometimes Bloom filters are described
slightly differently, with each hash function having a disjoint
range of m/k consecutive bit locations instead of having one
shared array of m bits. We refer to this variant as a partitioned
Bloom filter. Repeating the analysis above, we find that in this
case the probability that a specific bit is O is

e~kn/myk — (1/2)% ~ (0.6185)™/™.

(1 _ k/m)n ~ efkn/m7

and so, asymptotically, the performance is the same as the orig-
inal, unpartitioned scheme.

IV. THE SCHEME OF SONG ET AL. [20]

For comparison, we review the summary of [20] before intro-
ducing our approaches. The basic scheme works as follows. The
hash table consists of m buckets, and each item is hashed via d
(independent, random) hash functions to d buckets (with multi-
plicity in the case of collisions). The summary consists of one
b-bit counter for each bucket. Each counter tracks the number
of item hashes to its corresponding bucket.

In the static setting (where the hash table is built once and
never subsequently modified), all » items are initially hashed
into a preliminary hash table and each is stored in all of its hash
buckets. After all items have been hashed, the table is pruned,
for each item, the copy in the hash bucket with the smallest
counter (breaking ties according to bucket ordering) is kept, and
all other copies are deleted. Determining the location of an item
in the table is now quite easy: one need only compute the d
buckets corresponding to the item and choose the one whose
corresponding counter is minimal (breaking ties according to
bucket ordering). Of course, when looking up an item not in
the hash table, there is some chance that all of the examined
counters are nonzero, in which case the summary yields a false
positive. That is, the item appears to be in the hash table until
the table is actually checked at the end of the lookup procedure.

While asymptotics are not given in [20], Song et al. strive
for parameters that guarantee that there is at most 1 item per
bucket with high probability, although their approach could be
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used more generally. Under this constraint, as we show below,
one can achieve O(n(logn) loglog n) bits in the summary with
m = O(nlogn),d = O(logn), and b = O(loglogn); we
suspect this bound is tight.

Since the fraction F' of nonempty buckets in the hash table
before the pruning step satisfies E[F] = 1 — (1 — 1/m)"? =
1 — Q(1), we have F' > (1 + ¢)E[F] with probability at most
n =" for any constant ¢ > 0 (by a standard martingale argu-
ment). This observation tells us that if an (n + 1)-st item is in-
serted into the hash table just before the pruning step, the proba-
bility that all d of its hash buckets are already occupied is at most
n=") 4 [(1 4 €)E[F]]* < n=° for sufficiently small ¢ > 0,
any constant ¢, sufficiently large n, and some d = O(logn).
This probability is clearly an upper bound on the probability
that any particular item hashes to an already occupied bucket.
Taking a union bound over all n items tells us that even before
pruning, the maximum load is 1 with high probability. Finally,
a standard balls-and-bins result (e.g., [18, Lemma 5.1]) tells us
that the maximum value of the counters is O(logn) with high
probability, so we may choose b = ©(log logn).

This basic scheme is not particularly effective. To improve
it, Song et al. give heuristics to remove collisions in the hash
table. The heuristics appear effective, but they are not analyzed.
Insertions can be handled readily, but can require relocating pre-
viously placed items. Song et al. show that the expected number
of relocations per insertion is constant, but they do not give
any high probability bounds on the number of relocations re-
quired. Deletions are significantly more challenging under this
framework, necessitating additional data structures beyond the
summary that require significant memory (for example, a copy
of the unpruned hash table, where each item is stored in all
of corresponding hash buckets, or a smaller variation called a
Shared-node Fast Hash Table) and possibly time; see [20] for
details.

V. SEPARATING HASH TABLES AND THEIR SUMMARIES

Following Song et al. [20], we give the following list of goals
for our hash table and summary constructions:

* Achieving a maximum load of 1 item per hash table bucket
with high probability. (All of our work can be generalized
to handle any fixed constant maximum load.)

* Minimizing space for the hash table.

¢ Minimizing space for the summary.

* Minimizing false positives (generated by the summary) for
items not in the hash table.

* Allowing insertions and deletions to the hash table, with
corresponding updates for the summary.

As a first step, we suggest the following key idea: the sum-
mary data structure need not correspond to a counter for each
bucket in the hash table. That is, we wish to separate the format
of the summary structure from the format of the hash table. This
change allows us to optimize the hash table and the summary in-
dividually. We exploit this additional flexibility in the specific
constructions that we present.

The cost of separating the hash table and the summary is ad-
ditional hashing. With the approach of [20], the hashes of an
item are used to access both the summary and the hash table.
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Fig. 2. Inserting an item « into an MHT. The lines represent the hash locations
of x, the black cells represent occupied buckets, the white cells represent unoc-
cupied buckets, and the grey cell represents the bucket in which = is placed. In
this example, we place « in T>[ho ()] since that bucket is empty and T [k ()]
is occupied.

By separating the formats of the summary and the hash table,
we must also separate the roles of the hash functions, and so we
must introduce extra hash functions and computation. However,
hashing computation is unlikely to be a bottleneck resource in
the applications we have in mind, where all of the computations
are done in parallel in hardware. Thus, the costs seem reasonable
compared to what we will gain, particularly in storage require-
ments.

A further small disadvantage of separating the summary
structure from the hash table is that the summaries we suggest
do not immediately tell us if a hash table bucket is empty or not,
unlike the summary of [20]. To handle insertions and deletions
easily, we therefore require a bit table with one bit per bucket to
denote whether each bucket contains an item. Strictly speaking
this table is not necessary — we could simply check buckets
in the hash table when needed — but in practice this would be
inefficient, and hence we add this cost in our analysis of our
summary structures.

Having decided to separate the summary structure from the
underlying hash table, the next design issue is what underlying
hash table to use. We argue that the multilevel hash table of
Broder and Karlin [3] offers excellent performance with very
small space overhead.

VI. THE MULTILEVEL HASH TABLE (MHT) [3]

The multilevel hash table (MHT) for representing a set
of n elements consists of d = loglogn + O(1) sub-tables,
Ty, ..., Ty, where T; has cé_lcln buckets that can each hold a
single item, for some constant parameters c; > 1 and ¢ < 1.
Since the T;’s are geometrically decreasing in size, the total
size of the table is linear (it is bounded by cin/(1 — c2)).
For simplicity, we assume that T4, ...,T; place items using
independent fully random hash functions hq,. .., hg.

To place an item x in the MHT, we simply find the smallest ¢
for which T;[h; ()] is empty, and place x at T;[h;(z)]. We illus-
trate this procedure in Fig. 2. Of course, this scheme relies on
the assumption that at least one of the T;[h;(x)]’s will always
be empty. Following [3], we say that a crisis occurs if this as-
sumption fails. By slightly modifying the original analysis, we
can show that when c;co > 1, the probability that there is any
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crisis is polynomially small.! The formal statement and proof of
our result can be found in Appendix L.

Finally, we note that deletions can be handled by simply re-
moving items from the hash table. While theoretical bounds are
harder to come by when deletions occur, related work shows
that multiple-choice hashing still does very well [17].

A. Approximate and Exact Calculations for MHTs

Given a specific configuration of the MHT and the number of
items 7, one can easily approximate and exactly calculate the
probability that a crisis occurs during the sequential insertion of
n items into an initially empty MHT. The ability to calculate
such numbers is important for making appropriate engineering
decisions and is a useful feature of this approach.

A simple approximate calculation can be made by using ex-
pectations. In general, if we attempt to hash an items into a
sub-table of size An, the expected number of nonempty buckets
(which is the same as the expected number of items placed in
the sub-table) is

fn[l = (1=1/Bn)*"] = fn(l — exp(=a/B)). ()

Thus the expected number of items left to be placed in subse-
quent sub-tables is

an = Anfl = (1= 1/8n)*] < nfa — A1 — exp(—a/A))].
2)

Note that the inequalities are quite tight for reasonable n.

To approximate the behavior of the MHT, we can assume that
the number of items placed in each sub-table exactly follows
(1) (or, to give a little wiggle room, the near-tight inequality).
Of course, these quantities may deviate somewhat from their
expectations (particularly when an is small), and so these are
only heuristic approximations. Once the number of items under
consideration is very small, one can use Markov’s inequality;
if the expected number of items in hashed into a sub-table is
z < 1, then the probability that it is nonzero is at most z.

An exact calculation can be performed similarly. Here, we
successively calculate the distribution of the number of items
passed to the each sub-table, using the distribution from the pre-
vious sub-table. The computation uses the combinatorial fact
that when 7 items are placed randomly into s buckets, the dis-
tribution of the number of buckets that remain empty can be
calculated. For details, see Appendix III.

In Table I, we compare the results of the heuristic approxi-
mation with the exact calculations for a sample MHT. As one
would expect, the approximation is extremely accurate when a
reasonable number of items are hashed into a sub-table of rea-
sonable size. However, as mentioned above, the approximation

IThe original Broder—Karlin result shows that crises can be effectively dealt
with in certain settings by replacing certain hash functions when a crisis occurs.
Since rehashing is not a viable technique in our setting, we consider the occur-
rence of a crisis to be a serious failure, and so we need our high probability result
to theoretically justify using the MHT.

TABLE I
THE APPROXIMATE AND EXACT EXPECTED NUMBERS OF ITEMS STORED IN
EACH OF THE FIVE SUB-TABLES IN AN MHT FOR 10K ITEMS WITH ¢; = 3
AND ¢ = 1/2

Lt | 2 | 3 | ¢ | 5
Approximate 8504.18 | 1423.70 | 71.78 | 0.34 | —3.00 x 10—°
Exact || 8504.18 | 1423.67 | 71.80 | 0.35 1.62 x 107°
TABLE II

THE APPROXIMATE AND EXACT EXPECTED NUMBERS OF ITEMS STORED IN
EACH OF THE FIVE SUB-TABLES IN AN MHT FOR 10K ITEMS WITH SUB-TABLE
SIZES 40K, 10K, 5K, 2.5K, 2.5K (WHERE “K” DENOTES 1000)

v | 2 |3 | 4| 5
Approximate 8848.07 | 1088.11 | 63.42 | 0.40 | —4.80 x 10—°
Exact || 8848.07 | 1088.08 | 63.45 | 0.41 3.37 x 1075

becomes less useful as the number of items left to be placed be-
comes small, since then the random variables of interest become
less concentrated around their expectations.

Table I also shows us that the distribution of the items in the
MHT is highly skewed towards the first few tables. This prop-
erty is extremely important, and it is a recurring theme in this
work. Indeed, in Section VIII-B we show how to exploit this
skew in our summaries, and we propose a slight modification
to the original MHT design in order to create more skew to
exploit. To illustrate that our approximation technique remains
valid under this sort of modification, we compare the results
of our heuristic approximation and our exact calculations for a
sample modified MHT (which we discuss in more detail when
we present more complete numerical results in Section IX) in
Table II. As before, the approximation is quite accurate until
the last sub-table.

B. The MHT Skew Property

We have mentioned that MHTs have a strong skew property,
in the sense that the first sub-table contains most of the items,
the second sub-table contains most of the rest, and so on. While
this can be seen by experimenting with various values in (1), we
provide a cleaner (albeit looser) presentation based on [3].

Suppose that we insert a set Sy of items into the MHT, one-by-
one. For 7 = 1,...,d, let S; be the set of items that are not
placed in tables 17, ..., T;, and let m; be the size of T;. First,
we note that |.S;| is at most the number of pairwise collisions
between elements of S;_; in T;. Next, we see that given S;_1,
there are (|57£1|) possible pairwise collisions of elements in
Si—1, and each of these collisions occurs in T; with probability
1/m;. By linearity of expectation,

. X 2
wisi s < (19571) L < Bl

2 m; — 2m;

Using the heuristic approximation that | S;| < |S;—1]?/2m;, itis
not difficult to show that the |S;|’s decay doubly exponentially
when c¢jco > 1/2. Indeed, this result is the intuition for the
choice of d = O(loglogn). The result also tells us to expect
the distribution of the |.S;|’s to be very skewed.
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VII. AN INTERPOLATION SEARCH SUMMARY

A straightforward approach to constructing a summary is to
hash each item placed in the table to a uniformly distributed b-bit
string, for sufficiently large b. We associate each such string with
a value (requiring log d = logloglogn + O(1) bits) that indi-
cates what hash function was used for the corresponding item.
Searching for an item in the summary can now be done using
interpolation search [11], which requires only O(log log n) op-
erations on average.

Insertions and deletions are conceptually easy; simply add or
remove the appropriate string. However, interpolation search is
typically defined over a sorted array of strings, and in this case,
adding or removing a string in constant time requires a block
copy operation in hardware to shift the contents of the array as
needed. Using more sophisticated data structures, it is possible
to implement the summary so that lookups, insertions, and dele-
tions all require O(log log n) time with high probability, where
the insertion and deletion times are amortized. In certain ap-
plications, it may even be possible to strengthen the amortized
bounds to worst-case bounds. For more details, see [8]. Such
data structures result in a much more complicated summary than
the Bloom filter-based constructions presented in Section VIII,
especially if they must be implemented in hardware.

In this summary construction, a failure occurs if two items
yield the same b bit string. In this case, one might not be able
to record the proper value for each item. Therefore b must be
chosen to be large enough to make this event extremely unlikely.
Of course, b must also be chosen to be large enough so that the
false positive probability is also quite small.

We note that two items with the same bit string do not ac-
tually constitute a problem if they hash to the same sub-table.
For convenience we are choosing to call any such collision a
failure here, since allowing any collisions would make han-
dling deletions problematic. In principle, however, we could
deal with such collisions if we so desired. One approach would
be to record the maximum value associated with each string. In
this case, when doing a search, one might have to look at mul-
tiple locations in the hash table. For example, if the value 2 is
stored with the hash of an item, the item is most likely in the
second sub-table, but it might be in the first. Since our goal is to
guarantee that only one hash table lookup is necessary for each
lookup operation, we do not consider this technique. However,
this approach might be useful in some applications and similar
ideas are applicable to our other summary constructions as well.

The failure and false positive probabilities for this summary
can be computed very easily. The probability of a failure can be
calculated using standard probabilistic techniques, as it is just a
special case of the birthday paradox [18]. The probability of a
false positive, conditioned on no failure occurring (so all n items
have distinct b bit strings), is n/2°.

For concreteness, we describe two specific instances of this
scheme. Choosing b = 61 allows 3 bits for the associated value
and for everything to fit into a 64 bit word; 3 bits is enough for 8
hash functions, which should be suitable for most implementa-
tions. Setting n = 100000 gives a failure probability less than
2.17 x 10~ and a false positive probability (conditioned on no
failure occurring) less than 4.34 X 10~14, For n = 10000, we
can achieve similar results for b = 55. For these values of n
and b, the failure probability is less than 1.39 x 10~ and the
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false positive probability (conditioned on no failure occurring)
is 2.78 x 10713,

This scheme requires only ©(n log n) bits to ensure that fail-
ures occur with asymptotically vanishing probability; in this
case, false positives occur with vanishing probability as well. In
practice, however, the hidden constant factor is nontrivial, and
hence the number of bits required can be significantly larger than
for other approaches. Also, this approach requires that the ap-
plication be amenable to a fast implementation of interpolation
search. It is not clear whether any such application exists at this
time, especially since we are not aware of any work on hardware
implementations of interpolation search. Nevertheless, there are
some theoretical advantages of this summary over the others dis-
cussed in this paper, most notably the ability to handle insertions
and deletions easily (in certain cases) and the very small false
positive probability.

VIII. BLooM FILTER-BASED MHT SUMMARIES

In this section, we propose summaries that exploit the skew
property of MHTSs, making extensive use of the theory of Bloom
filters. For now we consider insertions only, deferring our dis-
cussion of deletions until Section XI. We start with an initially
empty summary and MHT and insert » items sequentially into
both. The summaries presented here never require items to be
moved in the MHT, and with high probability, they correctly
identify the sub-tables storing each of the n items.

A. A Natural First Attempt

Our first Bloom filter-based MHT summary can be seen as a
simple Bloomier filter that allows insertions. To better illustrate
this point, we start by placing our problem in a general setting.

Suppose we have a set of n items, where each item has an
integer type in the range [1,...,¢]. Our Bloom filter variant
consists of m cells, where each cell contains a single value in
{0,1,...,t} (requiring log(¢ + 1) bits), and k hash functions
(whose domain is the universe of possible items). For conve-
nience, we assume the m cells are divided into k disjoint groups
of size m/k, and that each group is the codomain of one hash
function. Alternatively, the structure could be built so that all
k hash functions hash into the entire set of cells. This decision
does not affect the asymptotics. However, the partitioned ver-
sion is usually easier to implement in hardware, although the
unpartitioned version may give a lower false positive probability
[5].

Each cell in the structure initially has value 0. When an item
is inserted, we hash it according to each of the hash functions
to obtain the set of cells corresponding to it. For each of these
cells, we replace its value with the maximum of its value and
the type of the item. Thus, any cell corresponding to an inserted
item gives an overestimate of the type of the item, and if some
cell corresponding to an item has value 0, that item is not in the
set represented by the structure. The lookup operation is now
obvious; to perform a lookup for an item z, we hash z using the
k hash functions and compute the minimum =z of the resulting
counters, and then either declare that x is not represented by the
summary (if z = 0), or that = has type at most z (if z > 0).
Note that the lookup operation may give several different kinds
of errors: false positives, where the summary returns a positive
type for an element not in represented set, and type j failures,
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where the structure returns the incorrect type for an element of
type j. The analysis of this structure now follows easily from
the standard analysis of a Bloom filter [5].

Lemma 8.1: Suppose that we insert a set S of n items into the
structure described above. Then the probability that a particular
item =z ¢ S gives a false positive is

(1= (1= k/m)™)"

and if there are 3;n items of type greater than j, then the prob-
ability that a specific item of type j causes a failure is

(1= (1= k/m)»m™)E.

To use this structure as a summary for an MHT, we simply
insert items into the structure as they are inserted into the MHT,
and define the type of an item to be the sub-table of the MHT
containing the item. (Of course, the type of an item is not well-
defined if inserting it into the MHT causes a crisis; that is a
different sort of failure that must be considered separately.) A
false positive now corresponds to the case where the summary
returns a positive type for an item not in the underlying MHT,
and a type 7 failure now corresponds to the case where an item
is in 7} in the underlying MHT, but the summary returns some
other type when queried with that item. While false positives
are not problematic if they appear sufficiently infrequently, we
want to avoid any failures in our summary.2

In general, Lemma 8.1 can be used in conjunction with a
union bound to bound the probability that there are any type j
errors; if there are «;n items of type j, then the probability that
any type j failure occurs is at most

(ajn)(1— (1 —k/m)Pm™)* = (an)(1 — e FAm/myk,

In our setting, Lemma 8.1 demonstrates that the most impor-
tant tradeoff in constructing the summary is between the proba-
bility of a type 1 failure and the false positive probability, which
both depend significantly on the numbers of hash functions used
in the filter. Following the standard analysis from the theory
of Bloom filters, to minimize type 1 failures, we would like
k = (In2)m/B1n. Typically this gives a rather large number
of hash functions, which may not be suitable in practice. Fur-
ther, this is far from the optimal number of hash functions to
minimize false positives, which is & = (In2)m/n, and there-
fore choosing such a large number of hash functions may make
the false positive probability unreasonably high. In general, the
choice of the number of hash functions must balance these two
considerations appropriately.

There are other significant tradeoffs in structuring the MHT
and the corresponding summary. Specifically, one can vary the
number of sub-tables and their sizes in the MHT, as well as the
size of the summary and the number of hash functions used.
Generally, the more hash functions used in the MHT, the smaller
the probability of a crisis (up to some point), but increasing the
number of hash functions in the MHT increases the number of
types, increasing the storage requirement of the summary struc-
ture. Moreover, the division of space in the MHT affects not

2Technically, we may wish to differentiate between the false positive proba-
bility and the false positive rate, as defined in [12], but the distinction is unim-
portant in practice. See [12] for an explanation.

only the crisis probability, but also the number of items of each
type, which in turn affects the probability of failure.

As an aside, we note that several bit-level tricks can be used to
minimize summary space. For example, three cells taking values
in the range [0, 5] can be packed into a single byte easily. Other
similar techniques for saving bits can have a non-trivial impact
on performance.

Asymptotically, choosing m = O(nlogn),k = ©O(logn),
and using O (log log log n) bits per cell suffices to have the prob-
ability of failure vanish, for a total of ©(n(logn)logloglogn)
bits. The constant factors in this approach can be made quite
small by taking advantage of skew. We present a complete anal-
ysis in Appendix II.

B. On Skew, and an Improved Construction

Lemma 8.1 highlights the importance of skew: the factor of 3;
in the exponent drastically reduces the probability of a failure.
Alternatively, the factor of 3; can be seen as reducing the space
m required to achieve a certain false positive probability by a
non-trivial constant factor.

In the construction above, the most likely failure is a type 1
failure; there are many fewer items of types greater than 1, and
so there is very little probability for a failure for these items.
A natural way to reduce the probability of a type 1 failure is to
introduce more skew by making the size of the first sub-table
larger (while still keeping linear total size). This can signifi-
cantly reduce the number of elements of type larger than 1,
shrinking (31, which leads to dramatic decreases in the total
failure probability (the probability that for some j, some item
causes a type j failure). That is, if one is willing to give addi-
tional space to the MHT, it is usually most sensible to use it in
the first sub-table. We use this idea when designing specific in-
stances of our constructions in Section IX.

A problem with using a single filter for classifying items of
all types is that we lose some control, as in the tradeoff be-
tween false positives and type 1 errors. Taking advantage of
the skew, we suggest a multiple Bloom filter approach that al-
lows more control and in fact uses less space, at the expense
of more hashing. Instead of using cells that can take on any of
t + 1 values, and hence requiring roughly log, (¢ + 1) bits to
represent, our new summary consists of multiple Bloom filters,
By, By, ..., Bi_1. The first Bloom filter, By, is simply used to
determine whether or not an element is in the MHT; that is, itis a
standard, classical Bloom filter for the set of items in the MHT.
In convenient terms, it separates items of type greater than or
equal to 1 from elements not in the MHT, up to some small
false positive probability. (But note that if an element gives a
false positive in By, we do not care about the subsequent re-
sult.) Next, B; is a standard Bloom filter designed to represent
the set of items with type greater than or equal to 2. An item that
passes By but not B is assumed to be of type 1 (and therefore
in the first sub-table of the MHT). A false positive for B; on an
item of type 1 therefore leads to a type 1 failure, and hence we
require an extremely small false positive probability for the filter
to avoid such a failure. We continue on with By, B3, ..., B;_1
in the corresponding way (so the assumed type of an item x that
passes By is the smallest j such that  does not pass B, or ¢ if
x passes all of By, By, ..., Bi_1).

’ ’
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Because of the skew, each successive filter can be smaller than
the previous one without compromising the total failure prob-
ability. The skew is key for this approach to yield a suitably
small overall size. Indeed, the total size using multiple Bloom
filters will often be less than using a single filter as described in
Section VIII-A; we provide an example in Section IX. Further,
by separating the filters, one can control the false positive prob-
ability and the probability of each type of error quite precisely.
Also, by separating each type in this way, at some levels small
Bloom filters could be replaced by lists of items, for example
using a Content Addressable Memory (CAM).

The only downside of this approach is that it can require sig-
nificantly more hashing than the others. For many applications,
especially ones where all of the hashing computation is paral-
lelized in hardware, this may not be a bottleneck. Also, it turns
out that the calculations in Section IX hold even if the hash func-
tions used by the B;’s are not independent, as long as all of the
hash functions used in any particular B; are independent. Thus,
if £ is the least common multiple of the sizes of the codomains
of the hash functions, we can just use a few hash functions with
codomain {0, ...,¢ — 1}, and compute hashes for the B;’s by
evaluating those hash functions modulo the sizes of the desired
codomains.

As a further improvement, one might try to combine this
technique with a variant of double hashing [9], [12] to reduce
the total number of hash functions even further. However,
despite the encouraging practical and asymptotic results sur-
rounding double hashing, some simple experiments suggest
that this approach is not effective in our setting because we re-
quire extremely small false positive probabilities. The situation
appears to improve as we increase the number of hash functions
(triple hashing, quadruple hashing, etc.), but our desire for
extremely small false positive probabilities makes it impos-
sible to prove the effectiveness of this modification through
experiments. If this approach could somehow be proven viable,
however, it would allow for a drastic reduction in the required
amount of hashing computation, although it would not reduce
the number of bits of the summary that must be examined for
each lookup operation.

As for asymptotics, if we knew that foreachj =1,...,d—1,
there were at most X>; items of type at least j, then
O(X>;logn) bits in B; would suffice for the proba-
bility of a type j failure to vanish. Since X>; < n and
d = O(loglog n), the failure probability can be made to vanish
with O(n(logn) loglog n) bits. However, it turns out that since
the first loglog n + ©(1) of the X'>;’s decay doubly exponen-
tially with high probability for a well-designed MHT, we can
actually get the failure probability to vanish with ©(nlogn)
bits. We give the proof in Appendix II.

IX. NUMERICAL EVALUATION (INSERTIONS ONLY)

In this section, we present constructions of our three sum-
maries for 10 000 and 100 000 items and compare their various
storage requirements, false positive probabilities, and failure
probabilities. For completeness, we compare with results from
Song et al. [20]. We continue to work in the setting where there
are insertions, but not deletions, because handling deletions in-
troduces too many subtle issues to allow for a straightforward
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comparison. Nevertheless, this restriction allows for a fair com-
parison against the scheme in [20], which requires additional
structures to handle deletions.

For the MHT summaries, our preliminary goal is to use at
most 6 buckets per item; this is less than 1/2 the size of the
hash table (in terms of buckets) in [20], and seems like a reason-
able objective. From here, we arrive at the following underlying
MHTs (where “k” represents 1000). For 10k items, there are
five sub-tables, with sizes 40k, 10k, 5k, 2.5k, and 2.5k, giving
a crisis probability less than 1.01 x 102 (calculated using the
method of Section VI-A). For 100k items, there are 6 sub-ta-
bles, with sizes 400k, 100k, 50k, 25k, 12.5k, and 12.5k, giving
a crisis probability less than 7.78 x 10715, Both of these crisis
probabilities are dominated by the failure probabilities of the
corresponding summaries (except in one case, with 10k items
using multiple filters, where the crisis probability is still smaller
than the failure probability).

Also, for the MHT summaries discussed in Section VIII, we
do not attempt to optimize all of the various parameters. Instead
we simply exhibit parameters that simultaneously perform well
with respect to all of the metrics that we consider. Also, we note
that it is not practical to exactly compute the false positive and
failure probabilities for these schemes. However, it is possible
to efficiently compute estimates of these probabilities, and we
have built a calculator for this purpose. We believe that our es-
timates are fairly tight upper bounds when the probabilities are
very small, and so we use them as if they were the actual prob-
abilities. For more details, see Appendix III.

We configure the Bloom filter-based MHT summaries as fol-
lows. For 10k items, we configure our first summary to have
120k cells and 15 hash functions. When computing the storage
requirement, we assume that 3 cells (each taking integral values
in [0,5]) are packed into a byte. For the multiple Bloom filter
summary, we use filters of sizes 106k, 87.5k, 5.5k, 500, and 100
bits, with seven hash functions for the first filter and 49 for each
of the others.3 For 100k items, we configure the first Bloom filter
based summary to have 1.2m cells (where “m” represents one
million) and 15 hash functions, and here we use three bits for
each cell (taking integral values in [0,6]). We configure the mul-
tiple Bloom filter summary to have filters of sizes 1.06m, 875k,
550k, 1k, and 1k, with 7 hash functions for the first filter and 49
for each of the others.

The results of our calculations are given in Table III. In that
table, IS denotes the interpolation search scheme of Section VII,
SF denotes the single filter scheme of Section VIII-A, and MBF
denotes the multiple Bloom filter scheme of Section VIII-B. We
configure the interpolation search summary according to the ex-
amples in Section VII. The notation “*” for the Song et al. [20]
summary denotes information not available in that work. All
storage requirements for our summaries include the space for
the bit table mentioned in Section V.

In the last column of Table III, note that the sum of the failure
and crisis probabilities can be thought of as a bound on the
overall probability that a scheme does not work properly. (Also,
as mentioned previously, except in the case of 10k items with
multiple filters, the failure probability dominates). As can be
seen in the table, interpolation search performs extremely well at

3For the multiple Bloom filter construction, we use unpartitioned Bloom fil-
ters, so the number of hash functions need not divide the size of a filter.
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TABLE III
NUMERICAL RESULTS

(a) 10k items

Hash Table | Summary | False Failure
Size Space Positive + Crisis
Scheme (buckets) (bytes) Probability Probability
[20] 131072 49152 .002 *
IS || 60000 80000 2.78 x 10713 | 1.39 x 107°
SF || 60000 47500 .006 7.64 x 1010
MBF || 60000 32450 .006 4.97 x 10712
(b) 100k items
Hash Table | Summary | False Failure
Size Space Positive + Crisis
Scheme || (buckets) (bytes) Probability Probability
[20] * * * *
IS || 600000 875000 4.34 x 107 | 2,17 x 1079
SE || 600000 525000 .006 7.27 x 107°
MBF || 600000 379000 .006 1.38 x 10— 11

the expense of a fairly large summary. The single filter scheme
appears comparable to the structure of [20] for 10k items, but
uses much less space. The multiple filter scheme allows further
space gains with just slightly more complexity. Our schemes
also appear quite scalable; for 100k items, we can maintain a
ratio of 6 buckets per item in the hash table, with just a slightly
superlinear increase in the summary space for our proposed
schemes.

For the scheme presented by Song et al., there is no failure
probability as we have described, as an item will always be in the
location given by the summary. There may, however, be a crisis,
in that some bucket may have more than one item. (Technically,
there can be a failure, because they use only three-bit counters
with ten hash functions; however, the probability of a failure
is very, very small and can be ignored.) They do not have any
numerical results for the crisis probability of their scheme when
including their heuristics, and hence we leave a “*” in our table
of results. However, they do report having found no crisis in one
million trials. Finally, we note that [20] does not include results
for 100k items. Since it is not clear how to properly configure
that scheme for 100k items, we do not attempt to analyze it.

It is worth noting that our improvements in summary space
over the scheme in [20] are not as dramatic as the improvement
in hash table size. The intuitive explanation for this phenomenon
is that the hash table in [20] seems to require ©(n log n) buckets
in the hash table, while the MHT requires only ©(n) buckets,
giving our schemes a factor ©(log n) reduction in the size of the
hash table. However, from Sections IV, VII, VIII-A, and VIII-B,
we know that if we require the failure probability to vanish, the
summary in [20] seems to require ©(n(logn)loglogn) bits,
the interpolation search summary requires ©(nlogn) bits, the
single filter summary requires O(n(logn)logloglogn) bits,
and the multiple Bloom filter summary requires ©(n log n) bits.
Thus, while these summaries seem to require fewer bits than
the one in [20], the gain appears to be smaller than the factor
O (logn) reduction in hash table size.

X. EXPERIMENTAL VALIDATION (INSERTIONS ONLY)

Ideally, we would be able to directly verify the extremely low
failure probabilities given in the previous section through ex-
periments. However, since the probabilities are so small, it is

impractical to simulate the construction of the summaries suffi-
ciently many times to accurately estimate the real failure prob-
abilities. We have attempted to validate the calculator we have
developed for the summaries based on Bloom filters, and have
found that it does give an upper bound in all of our tests. In fact
it can be a fairly weak upper bound when the failure probability
is very large (greater than 0.1, for example). In all our experi-
ments, we simulated random hashing by fixing hashes for each
item using a standard 48-bit pseudorandom number generator.

We have simulated the single filter for 10k items in Table III;
in one million simulations, we saw no errors or crises, as pre-
dicted by our calculations. We also experimented with a variant
on this filter with only 100k counters and 10 hash functions. Our
calculations for this filter gave an upper bound on the probability
of failure of just over 2.1 x 1075; in one million trials, we had
one failure, a natural result given our calculations.

While further large-scale experiments are needed, our exper-
iments thus far have validated our numerical results.

XI. DELETIONS

Handling deletions is substantially more difficult than han-
dling insertions. For example, the scheme proposed in [20] for
handling deletions requires significant memory; it essentially re-
quires a separate version of the hash table that records all of
the hash locations of every item. Moreover, deletions can re-
quire significant repositioning of elements in the hash table. To
address these issues, we explore two deletion paradigms: lazy
deletions and counter-based deletion schemes.

A. Lazy Deletions

A natural, general approach is to use lazy deletions. That is,
we keep a deletion bit array with one bit for each cell in the hash
table, initially 0. When an item is deleted from some bucket b,
we simply set the deletion bit corresponding to b to 1. When
looking up an item, we treat it as deleted if we find it in a
bucket whose deletion bit is 1. When a preset number of dele-
tions occurs, when the total number of items in the hash table
reaches some threshold, or after a preset amount of time, we
can reconstruct the entire data structure (that is, the hash table,
the deletion bit array, and the summary) from scratch using the
items in the hash table, leaving out the deleted items. If we want
to guarantee good performance whenever there are at most an
deleted items and at most . undeleted items in the hash table,
it suffices to simply build our data structures to be able to cope
with (14 a)n items, rebuilding them whenever there are at least
(1+a)n items in the hash table, at least an of which are marked
for deletion. The obvious disadvantage of this approach is that
expensive reconstruction operations are necessary, potentially
frequently, depending on how often insertions occur. Also, extra
space is required to maintain the deleted items until this recon-
struction occurs.

However, reconstruction operations are much cheaper than
one might expect. Indeed, the time required to perform the MHT
reconstruction is essentially determined by the number of items
in the MHT that must be moved, and the time required to per-
form the summary reconstruction is essentially just the time re-
quired to scan the MHT and rehash all of the items using the
summary hash functions. We find that the MHT skew property
ensures that very few items need to be moved in the MHT during
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a reconstruction, which tells us that the MHT reconstruction is
much less expensive than the analogous procedures for other
multiple-choice hash tables.

As for the scan of the MHT required to rebuild the summary,
we note that while this procedure may be somewhat expensive,
its simplicity may be an asset, and it may be cheaper than
moving the items in the MHT. Also, the cost of this scan can
be ameliorated in various ways. For example, if we store the
summary hash values of the items in a structure analogous to
the MHT (in slow memory), then we only need to scan the
hash values of the items when reconstructing the summary,
as opposed to scanning the items themselves, which might be
much larger. Using the hash reduction techniques discussed
in Section VIII-B reduces the storage requirement of this data
structure, further reducing the cost of the scan.

We now focus on the number of items that must be moved
during a reconstruction of the MHT. We consider a natural
implementation of the MHT rebuilding process. Before pro-
ceeding, recall that the MHT consists of tables 77, ...,T,; and
corresponding hash functions hq, ..., hg, and that an item z
should be placed in T;[h;(x)], where j is as small as possible
subject to Tj[h;(z)] being unoccupied. The natural MHT
reconstruction algorithm is then as follows: for: = 1,...,d,
iterate over the items in 7; (using the bucket occupancy bit
table described in Section V), and for each item z in T}, deter-
mine (again using the bucket occupancy table) if there is some
smallest j < ¢ such that T;[h;(z)] is empty, and move z to
T;[hj(x)] if this is the case. (Of course, a bucket is considered
empty if its deletion bit is set; we move an item by copying
it to its destination and then marking its origin as deleted; we
update the occupancy bit table as we go; and at the end of the
algorithm, we reset all of the deletion bits to 0.)

Consider, for example, the case where we reconstruct an
MHT with (1 + «)n items, exactly an of which are marked
as deleted. For the moment, assume that the deleted items are
chosen randomly. While this assumption may be unrealistic,
it allows us to analyze the number M of items moved and
gives a good indication of general performance. To this end,
we let M’ be the number of items z that are not deleted and
are in some table 5 > 1 such that at least one of the items in
Ti[hi(z)],...,Tj—1[hj—1(z)] is deleted. We claim that E[M]
can be used as an approximate upper bound on E[M]. Indeed,
if, for example, an item ¥ in 77 is deleted, it is intuitively likely
that there are a few items = with hy(x) = hy(y), but unlikely
that all of those items are moved. However, those items x that
are not moved are counted in M’ but not M, which suggests
that E[M'] is an approximate upper bound for E[M]. The
only complication is that an item x in T} for some j > 2 can
be moved even if none of T1[h1(z)],...,Tj—1[h;_1(x)] are
deleted; one of those items could simply move. But in practice
we expect that almost all moves will be from items in the
second sub-table to buckets in the first sub-table, and so we
expect the effect of this complication to be minimal.

To estimate E[M’], we consider some item z in table j > 1.
The probability that « is not deleted is clearly

i} (1 - ﬁ)

=0
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and given that x is not deleted, the probability that there is some
i < j such that the item at T;[h; ()] is deleted is

(M) =

1- =1- .
((1+a)n—1) H 14 an

i= n—i
an i=1

From these probabilities and the expected numbers of items
in sub-tables when (1 + «)n items are inserted (which are
obtainable using the method of Section VI-A), we can easily
compute E[M']. Asymptotic high probability bounds can then
be obtained by standard martingale techniques (for example,
[18, Sec. 12.5]).

We give a concrete example using a sample MHT for 10 000
items discussed in Section IX. The MHT consists of five sub-ta-
bles, with sizes 40k, 10k, 5k, 2.5k, and 2.5k, respectively (where
“k” denotes 1000). We set « = 0.1 and n = 9090, so that
(1+ a)n < 10000. Performing the calculations above, we find
that E[M'] ~ 100.02. That is, only about 1.1% of the n items
are moved on average during an MHT reconstruction! This re-
sult shows that periodic MHT reconstructions in the standard
lazy deletion scheme are likely to be significantly less expen-
sive than full reconstructions.

To confirm the correctness of our calculations, we estimated
the expected number of moves required by an MHT reconstruc-
tion in a simple experiment. We averaged the required number
of moves over 100 000 trials, where each trial consisted of in-
serting (1 + a)n items into an initially empty MHT, deleting
an of those items at random, and then counting the number of
moves required to reconstruct the MHT. The resulting estimate
of E[M] was 96.98, which is smaller than but close to the calcu-
lated value, as expected. The minimum and maximum observed
values of M were 58 and 113, respectively, demonstrating that
M is unlikely to deviate too far above E[M].

While it may be initially surprising that reconstructing the
MHT requires so few moves, there is some simple intuition be-
hind the result. Indeed, Table II suggests that (approximately)
88% of the (1 + a)n = 1.1n items are placed in the first
sub-table and the rest are placed in the second sub-table. Under
this assumption, an item is moved only if it is initially placed in
the second sub-table, it is not deleted, and the item at its hash
location in the first sub-table is deleted. But only 12% of the
items are initially placed in the second sub-table, and only about
1 — a = 90% of them are not deleted, and of those that re-
main, only about o« = 10% hash to buckets in the first sub-table
that contain deleted items. Thus, the fraction of the n items
that are moved is about (1.1)(0.12)(0.9)(0.1) = 1.2%, closely
matching the results above.

One might reasonably wonder how dependent these results
are on our assumption that deletions occur randomly. As evi-
dence that the results are fairly robust, we now consider a more
pessimistic deletion model. As before, we assume that we per-
form a reconstruction of an MHT with (1 + «)n items, exactly
an of which are marked as deleted. However, rather than as-
suming that the an deleted items are chosen randomly from all
(1 4+ a)n items, we assume that they are chosen randomly from
the items in the first sub-table of the MHT. (For a well-designed
MHT, it is overwhelming likely that there are at least an items
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in the first sub-table.) Then, as before, we focus on the number
M of items that must be moved.

To analyze E[M], we let S; denote the set of items not placed
in first sub-table. We let M’ be as before, and expect that E[M']
is an approximate upper bound on E[M]. Clearly, if |Si| > n,
then M’ = n. Next, consider the case where |S;| < n. Then
any particular item z of any type j > 1 is counted in M’ if
and only if the item at T1[hy ()] is deleted, which occurs with
probability

an—1

I

=0

<1‘ Trap- |51|—z'>'

By linearity of expectation, we conclude that

E[M' | |S1]]
if |Sl| >n

n,
- { |51 (1 - H?:noil (1 - m)) , otherwise

which is easily computed. We can then compute the distribution
of | S1| (using the method of Section VI-A) and use it to calculate
E[M'].

We examined this deletion model for the same MHT and
parameters as before. We calculated that E[M’'] ~ 118.34,
which is approximately 1.3% of the n items. Through an exper-
iment (with 100 000 trials, as before), we also estimated E[M]
as about 114.25. Over the course of the experiment, the smallest
and largest observed values of M were 70 and 166, respectively.
We concluded that M is reasonably concentrated around E[M].

We can also predict the above results by slightly modifying
the intuitive reasoning for the original deletion model. As be-
fore, about 8848 of the (1 + a)n = 1.1n = 9999 items are
placed in the first sub-table. The probability that any particular
item x of the remaining 1151 items must be moved is therefore
about an /8848 = .1. Therefore, the fraction of the n items that
must be moved is about (1.1)(1151/9999)(0.1) =~ 1.3% (again
neglecting the fact that only one item in the second sub-table
can be moved into a particular bucket in the first sub-table).

One might hope to improve these results by allowing items
marked for deletion in the MHT to be overwritten by newly in-
serted items. We do not provide a detailed analysis of this ap-
proach, but do give some basic caveats. First, we expect any
gains to be minor, given the excellent performance of the basic
lazy deletion scheme. Second, one must beware of additional
pollution in the summary. In the specific case of our Bloom
filter-based summaries, when an item x that is marked for dele-
tion is overwritten by a new item, x cannot be simply removed
from the summary (just as a standard Bloom filter does not sup-
port deletions). But leaving = in the summary while adding the
new item adds noise to the summary, increasing its false posi-
tive rate and failure probability. Furthermore, all future queries
for z will now result in false positives. In situations where a
recently deleted item is likely to be the subject of a lookup
query, the latter issue may constitute a very serious problem.
Of course, both summary pollution issues could be ameliorated
by increasing the size of the summary and/or adding additional

data structures (e.g., to track overwritten items), but such mod-
ifications add non-trivial overhead and complications. There-
fore, we believe that for most applications, the best approach
is likely to be either the standard lazy deletion scheme analyzed
above or one of the counter-based schemes that we discuss next
in Section XI-B.

B. Counter-Based Deletion Schemes

While the lazy deletions schemes of Section XI-A may be
appropriate for many applications, their reliance on periodic
reconstructions of the summary might preclude their use in
certain situations, such as very high speed data streams. In
other words, one might require good worst case time bounds for
hash table operations and be unable to settle for the amortized
bounds offered by lazy deletion schemes. Of course, in order to
achieve good worst case bounds, the underlying hash table must
allow for easy deletions. Indeed, an item can be deleted from an
MHT simply by removing it from its bucket; no repositioning of
the elements is necessary. This observation is another excellent
reason for using the MHT as our underlying hash table.

Now, whenever an item is deleted from its bucket in the MHT,
our summary must be updated to reflect the deletion. The Bloom
filter-based summaries of Section VIII can be easily modified
so that these updates can be performed quickly. For the single
filter summary of Section VIII-A, we require that each cell now
contain one counter for each type, and that each counter tracks
the number of items in the MHT of the corresponding type that
hash to the cell containing the counter. Both insertions and dele-
tions can now be performed extremely quickly, simply by in-
crementing or decrementing the appropriate counters. A sim-
ilar modification works for the multiple Bloom filter summary
of Section VIII-A; we simply replace each Bloom filter by a
counting Bloom filter.

Unfortunately, these modified summaries consume much
more space than the originals. However, the space requirements
of the modified Bloom filter-based summaries can be mini-
mized by aggressively limiting the number of bits used for each
counter. Of course, we must guarantee that the probability that
some counter overflows is extremely small, since the existence
of an overflow can eventually lead to the summary returning an
incorrect answer.

Choosing the appropriate number of bits for a counter there-
fore requires some work. First, we observe that if there are n el-
ements associated with m counters (all initially 0), and for each
element we increment ¢ randomly chosen counters, then the dis-
tribution of the resulting maximum counter value is the same as
the distribution of the maximum load resulting from throwing
nc balls randomly into m bins. If nc/m is not too small, we can
derive nontrivial high probability bounds for this distribution
using the Poisson approximation [18, Sec. 5.4]. For the Bloom
filter-based summaries, this approach allows us to keep the sizes
of the counters reasonable while simultaneously ensuring that,
with high probability, no false negatives or type j failures occur,
for all but the largest couple values of j. This approach is effec-
tive until the expected number of items in a table becomes so
small that either the variance is too big or the Poisson approxi-
mation is inaccurate.

One approach might be to avoid the problems caused by small
sub-tables by replacing them with a CAM. Alternatively, if we
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use small sub-tables, the expected number of items that hash to
any counter in them is so small each counter can be represented
by a bit or two. A detail that must be dealt with is that for a small
table, if multiple hash functions for an item being inserted (or
deleted) hash to the same counter, that counter should be incre-
mented (or decremented) only once. Otherwise, the insertion of
a single item could, with small but non-negligible probability,
result in a particular counter being incremented multiple times.
This issue is not problematic when we have larger counters and
hash tables, and it does introduce some overhead, so we only
modify the increment and decrement operations in this way for
smaller tables, which are rarely used (by the MHT skew prop-
erty).

As a concrete example of our design techniques, we modify
the multiple bloom filter summary for 10000 items given in
Section IX to use counting Bloom filters with appropriately
sized counters. Based on the heuristic calculations described
above, we suggest using the modified insertion and deletion op-
erations in the last two filters, using 4 bits per counter in the
first three filters, 3 or 4 bits per counter in the fourth filter, and
1 or 2 bits per counter in the last filter. We suspect that the more
conservative choices might be necessary to obtain failure proba-
bilities comparable to those in Section IX, but that the less con-
servative ones are still fairly effective.

The two choices give summaries of essentially the same size.
For the conservative choices, we can easily build the summary
so that it uses 99 775 bytes (with two 4-bit counters per byte
in the first four filters, and four 2-bit counters in the last filter),
neglecting the 7500 bytes needed for the bit table described in
Section V. The less conservative choices yield a summary that
uses at least 99 700 bytes (neglecting byte-packing issues for
the 3-bit counters). In both cases, the total storage requirement
of the summary (including the 7500 byte bit table) is essentially
3.3 times that of the corresponding summary in Section IX.

To test the resulting data structure, we instantiated the sum-
mary (with 16-bit counters) and the underlying MHT with
10000 items one million times and recorded the largest counter
values vg, . ..,v4 ever seen in each of the filters By, ..., By4.
The results were v = 12,07 = 11,v9 = 12,v3 = 4, and
v4 = 1. We concluded that the results of the experiment were
consistent with the results of our heuristic analysis. More
detailed analysis and more extensive simulations could provide
more insight into appropriate values for extremely small failure
probabilities comparable to those in Section IX.

XII. CONCLUSIONS AND FURTHER WORK

We have shown that designing small, efficient summaries to
use in conjunction with multiple-choice hashing schemes is fea-
sible, improving on the results of [20]. We believe the fact that
our summaries can be analyzed to bound performance is a useful
characteristic that will ease adoption.

There are several potential extensions to this work. Our ideas
and theoretical results can be extended easily to the case where
buckets can hold any constant number of items, but more anal-
ysis and experiments must be done. Also, more experimenta-
tion could be done to test our summary structures, including
large-scale tests with hash functions commonly used in practice,
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as well as tests for specific applications. A detailed analysis of
deletion workloads to determine the effect of and best approach
for deletions would also be worthwhile.

APPENDIX I
AN ASYMPTOTIC BOUND ON THE CRISIS PROBABILITY

This Appendix is devoted to the following result, which we
consider to be the theoretical justification for the MHT’s ex-
tremely low crisis probabilities.

Theorem 1.1: Suppose we hash n items into an MHT with
tables 11, ..., Ty (with corresponding fully random hash func-
tions h1, ..., hq), where the size of T; is m} = [m;]| for m; =
ci{lcln, for any constants ¢; > 1 and ¢ < 1 with ¢yeo > 1.
Then for any constant ¢ > 0, we can choose d = loglogn +
©O(1) so that the probability that a crisis occurs is o(n~°).

Proof: We begin the proof with a sequence of lemmas.

Lemma 1.1: Let Sy denote the set of items being
hashed, and for ¢+ = 1,...,d, let S; denote the set of items
not placed in the first ¢ tables. Then for i > 1 and any
B Z |Si,1|2/mi, we have E[|Sz| | |Si,1|] S |Si,1|2/2mi and
Pr(Si] > B |[Si-1]) < (¢/4)5/?

Proof: Condition on S,y = {z1,...,z¢}. For
k = 1,...,4, let Y} indicate whether there exists j < k
with h;(z;) = hi(zy), so that |S;| = >, Y. Also,
let Zy,...,Z; be independent 0/1 random variables with
E[Z;] = min(1,(k — 1)/m;), let Z = >, Zj, and note that
E[Z] < |Si_1|?/2m; < B/2.1tis easy to see that

PI‘(Yk =1 | {hl(xj) 1 < k})
= {hi(a;) : 5 < k}|/m; < E[Z].

It follows that Pr(Y, = 1|Y1,...,Ys_1) < E[Z]. Thus,

Y;,] < E[Z;,

B[Y;, -+ 2]

for any 71,...,j,, implying that E[|S; ;|’] < E[Z7] for any
integer 7 > 0. Now for any ¢ > 0,

B[e!S:) = Z HE| |S| i tE

j=0 3=0

E[etz] .

| /\

We can now complete the proof by deriving a Chernoff bound

in the usual way (e.g., [18, Theorem 4.4]). |
Lemma 1.2: Let {z;}i>0 be a sequence where 2o = n and
z = 22 l/ml for 4 > 1. Then for # > 0, we have z; =
(1/c1e2)? ~'chn.
Proof: The proof is an easy induction on ¢ > 0. |
Lemma 1.3: For any events Aq,..., Ay,
I‘<UAZ> SZPI‘ Az ﬂ_'AJ
i i j<i

Proof: This result is standard, and the proof is trivial. H
Lemma 1.3: For any ¢ > 1, we have

Pr(3j <i:[S;] > z) <i(e/4)*/2.
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Proof: Applying Lemmas 1.3, 1.1, and 1.2 gives

Pr(3j <i:|S;| > z;)

<Y Pr(ISi] > #l1Sj-1] < 2j-1)
j=1

< S /)5 < ife/ 1)
7j=1

|
We are now ready to prove the theorem. By Lemma 1.2, we
can choose r = loglogn 4+ ©(1) and obtain

2(C+ 1) 10g4/en <z = O(\/ﬁ),

so Lemma 1.4 implies that

Pr(|S.| > z.) <rn~ ¢t = o(n™°).

Since z2/m,+1 = O(logn), Lemma 1.1 tells us that we can
choose some w = O(logn) so that

Pr(|Srq1] > w | |Sr] < 2) < p (et — o(n™°).

Markov’s inequality and Lemma 1.1 now imply that for¢ > 1
and any v’ < w

Pr(|St14il > 1| [Sr4i| = w')
< E[|Srt14il [ [Sril = w']

1
S w2/2mT+1+7; =0 < Ogn> .
n

Since |So| > [Si| > --- > |S4],

Pr([S,r1qreqyl 2 1] [Sr1] < w)
[e+1]
< T Pr(ISerisa] > 1] 1Sr4] < w)

=1

o\ Tet]
<0 <logn> =o(n"°).

n
Setting d = r + 1 + [¢+ 1] and applying Lemma 1.3 gives

Pr(1S4] > 1) < Pr(IS| > )
+ Pr([Sr1] > w | [S] < z)
FPr(Sd > 1] [Srs1] < w)

= o(n™)

completing the proof.

APPENDIX II
ASYMPTOTICS OF THE BLOOM FILTER SUMMARIES

This Appendix provides rigorous analyses of the asymptotics
for the Bloom filter-based summaries of Section VIII.

A. The Single Filter Summary

We show that for any constant ¢ > 0, it is possible to con-
struct the single filter summary of Section VIII-A so that it has
failure probability o(n~°) and requires n = O(nlogn) bits
and k = O(logn) hash functions. We assume that the filter
is partitioned into k sub-filters of size m/k, one for each hash
function, although our analysis can be modified for an unparti-
tioned filter.

Proceeding, we set ¢/ = (¢ + 2)/1n 2, and then choose the
smallest m > c'nlogyq,7 n such that for k = [(m/n)In2],
we have that k divides m. The probability that a particular item
gives a failure, regardless of its type, is then at most

(1= (1= kfm)")F < (1= mmb/mni /)

S (1 _ e—ln?—(an)Q/n)k
< (0.7)% < (10/7)n=c72

where the first step follows from the inequality 1 —x > e—z—’
for z < 1/2. Taking a union bound over all » items yields a
total failure probability of o(n~°).

B. The Multiple Bloom Filter Summary

We now show that for the MHT of Theorem 1.1, it is pos-
sible to construct a multiple Bloom filter summary with failure
probability o(n~¢) that uses O(n log n) bits, where ¢ > 0 is the
same constant as in Theorem 1.1.

We continue to use the notation introduced in the state-
ment and proof of Theorem 1.1. As in Section VIII-B, let
By, ...,Bg_1 denote the Bloom filters in the summary. Let
b; denote the size of Bj, and let k; denote the number of
hash functions used by B;. For simplicity, we assume that
each B, is partitioned into k; sub-filters of size b, /k;, one for
each hash function, although our analysis can be modified for
unpartitioned filters.

By the same argument as in Appendix II.A, conditioned on
there being at most y;_; elements of type at least j, if b; >
'yj—1logyg 7 n for ¢ = (c+2)/In2and k; = [(b;/n)In2],
then the probability that any particular item of type j yields a
type 7 failure is at most (10/7)n~(°*+2) Taking a union bound
over all n items gives an overall failure probability of o(n~°).

To complete the proof, it suffices to show that we
can choose the y;’s so that Z‘j;é y; = O(n) and
Pr(3j : [S;] > y;) = o(n™°). To this end, we set yo = n,
followed by y; = (1/c1c2)? ~in for j = 1,...,r, and then
y; =yrforj =r+1,...,d — 1. Then

d—1 T
Dy < (@d=rn+) y;
7=0 j=1

<(d-rn+nd (1/e1e)* 7 = O(n)

=1

where we have used the fact that d — r = O(1) and we have
bounded the sum by a geometric series. For the high probability
result, observe that by definition of the y;’s

Pr(3j:1S;|>y;) =Pr(31 < j <r:[S;| > y;).
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Lemma 1.2 implies that z; < y;, and therefore we may apply
Lemma 1.4 to conclude that this probability is o(n~¢).

APPENDIX III
CALCULATING VARIOUS QUANTITIES OF INTEREST

This Appendix describes the calculator that we use in
Section IX. It is fairly easy to implement, although some care
is required to ensure that the computation is efficient and that
the memory requirement is reasonable.

A. Performing the MHT Calculations
Consider an MHT with tables 17, ..., T,;, where T;; has size

m;. Let Sy be a set of size n items hashed into the MHT, and for
1=1,...,d,let S; be the set of items not placed in 77, ..., T;.
We show how to compute the individual marginal distributions
of the |.S;|’s. In particular, this allows us to compute the crisis
probability of the MHT: 1 — Pr(|S4| = 0).

First, note that conditioned on |S; 1|, the distribution of
|Si—1| — |S;| is the same as the distribution of the number of
nonempty bins resulting from randomly throwing |S;_1| balls
into m; bins. Letting p; ,,; denote the probability that ran-
domly throwing j balls into 7 bins yields exactly b nonempty
bins, we have that forb = 1,...,m,

Pjm,p = pj—l,m,b—l(l - (b - 1)/m) +pj—1,m,b(b/m)- (3)

Letting P;;[b] = pjm,» for b = 0,...,m;, we can now

compute the individual marginal distributions of the |.S;|’s using
the following pseudo-code:
Set Pr(|S;|=¢)=0fori=0,...,dand £ =1,...,n.
Set Pr(|So| = n) = 1.
for i = 1toddo
Set Py ;[0] = 1 and Py ;[j] = 0 for j > 0.
for j = 1ton do
Compute P;; from P;_1 ; using (3).
for / = 1to j do
Pr(|Si| = £)4= Pr(|Si_1] = j) - Pilj — ]
Of course, Pr(]|S;—1| = j) is typically negligible for suffi-
ciently large j, so we can optimize the pseudo-code to greatly
reduce the number of iterations of the second loop.
B. The Failure Probability of the Single Filter Summary

Consider an instance of the single filter summary of
Section VIII-A with m cells and k£ hash functions. We show
to compute upper bounds on the various failure probabilities
of the summary that we believe to nearly tight when those
probabilities are small.

We continue to use the notation of Appendix III.A. First, note
that if |S;_1| = j and |S;| = ¥, then the probability that a
particular item of type ¢ yields a failure is

(1= (1 —k/m))* 2 q
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and so the conditional probability that any type ¢ failure occurs
is at most (j — £)qe, by a union bound. We believe that this
bound is very tight when ¢, is small, since other Bloom filter
results [12] suggest that these 7 — ¢ potential failures are almost
independent, and the union bound is extremely accurate for in-
dependent events with very small probabilities.

Now, the conditional distribution of |.S; _1|—|S;| given | S;_1]|
is the same as the distribution of the number of nonempty bins
resulting from randomly throwing |S;_;| balls into m; bins.
Therefore, given that |:S;_1| = j, the probability that any type 4
failure occurs is at most

J—1

> Pl

(=1

— (G —Oac = fi,j “)

and so the overall probability that any type ¢ failure occurs is at
most E?Zl Pr(|Si—1| = 7)fi; £ #,. By another union bound,
the total failure probability is at most Z,‘ilz_ll f; £ f.Once again,
we believe that this bound is fairly tight when the f;’s are small.

We can now compute bounds on the various failure probabil-
ities with the following pseudo-code:

fori =1tod —1do
Set f; = 0.
for j = 1ton do
Compute P;; from P;_; ; using (3).
Compute f; ; using (4).
fir=Pr(|Si1l = J) - fi;
Compute f = Y177 fi.

As in Appendix II-A, Pr(]S;—1| = j) is typically negligible
for sufficiently large j, so we can optimize the pseudo-code to
greatly reduce the number of iterations of the second loop.

C. The Failure Probability of the Multiple Bloom Filter
Summary

Consider an instance of the multiple Bloom filter summary
of Section VIII-B with filters By, ..., B4_1, where B; has b;
bits and k; hash functions. We show to compute estimates of
the various failure probabilities of the summary that we believe
to nearly tight upper bounds when those probabilities are small
and the number 7 of items is large.

We continue to use the notation of Appendix III-A. First, note
that if |S;_1| = j and |S;| = /, then the probability that a
particular item of type ¢ yields a failure is#

(1= (1= ki/b))% & qus,

and so the conditional probability that any type ¢ failure occurs
is at most (j — £)ge i, by a union bound. As in Appendix III-B,
we believe that this bound is tight when gy ; is small.

4Technically, this formula is only valid if we use partitioned Bloom filters,
as in the single filter summary. Unfortunately, designing a summary is usually
easier if we use unpartitioned Bloom filters, as in our examples in Section IX.
These two varieties of Bloom filters are asymptotically equivalent, however, and
a partitioned Bloom filter usually has a higher false positive probability than its
unpartitioned counterpart [5]. Therefore, we expect this formula to give a nearly
tight upper bound.



KIRSCH AND MITZENMACHER: SIMPLE SUMMARIES FOR HASHING WITH CHOICES 231

Now, the conditional distribution of |.S;_1|—|.S;| given | S;_1]
is the same as the distribution of the number of nonempty bins
resulting from randomly throwing |S;_1| balls into m; bins.
Therefore, given that |:S;_1| = j, the probability that any type ¢
failure occurs is at most

j—1

Y Piili =00 = Oaei £ fig ®)

(=1

and so the overall probability that any type ¢ failure occurs is at
most Y7 Pr(|Si—1| = j) fi; £ f;. By another union bound,
the total failure probability is at most 2?;11 ; = f.Once again,
we believe that this bound is fairly tight when the f;’s are small.

We can now compute (approximate) bounds on the various
failure probabilities using essentially the same pseudo-code as

in Appendix III-B; we simply use (5) instead of (4).
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