IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTER SYSTEMS, VOL. i1, NO. 1, JANUARY 2000

How Useful Is Old Information?

Michael Mitzenmacher

Abstract—We consider the problem of load balancing in dynamic distributed systems in cases where new incoming tasks can make
use of old information. For example, consider a multiprocessor system whare incoming lasks with exponentially distributed service
requirements arrive as a Paisson procsss, the tasks must choose a processor for service, and a task knows when making this choice
the processor queus langths from T seconds ago. What is a good strategy for choosing a processor in order for tasks 1o minimize their
expacted time in the system? Such models can alsc be used to describe settings where there is a transfer delay between the time a
task enters a system and the time it reaches a processor for service. Our models are based on constdering the behavior of limiting
systems where the number of processors goes to infinity, The limiting systems can be shown to accurately describe the behavior of
sufficiently large systems and simulations demonstrate that they are reasonably accurate even for systems with a small number of
processors, Our studies of specific medels demeonstrate the importance of using randomness to break symmetry in these systems and
yield important rules of thumb for system design. The most significant result is that only small amounts of queue length information can
be axtremely usaful in these seltings; for example, having incoming tasks choosa the least loaded of iwo randomiy chosen processars
is extremaly offective over a large range of possible system parameters. In contrast, using global information can actually degrade
performance unless used carefully; for example, unlike most setlings where the load information is current, having tasks go to the
apparently least loaded server can significantly hurt perfermanca.

Index Terms—Load balancing, stale information, old infermation, queuing theory, large deviations.

+

INTRODUCTION

STRIBUTED computing systems, such as networks of

workstations or mirrored sites on the World Wide
Web, face the problem of using their resources effectively. If
some hosts lie idle while othérs are extremely busy, system
performance can fall significantly. To prevent this, load
balancing is often used to distribute the workload and
imprave performance measures such as the expected time a
task spends in the system. Although ‘determining an
effective load balancing strategy depends strongly on the
details of the underlying system (such as, for instance, the
time for a task to access various servers), general models
from both queuning theory and computer science often
provide valuable insight and general rules of thumb.

In this paper, we develop gencral analytical models for
the realistic sofling where old information about queue
lengths is available. For convenionce, we generally refer to
the number of tasks queued at a server as its load. For
example, suppose we have a system of n servers and
incoming tasks must cheose a server and wait for service. [f
the incoming tasks know the current number of tasks
queued at each server, it is often best for the task to go to the
server with the shortest queue [25]. Tn many actual systoms,
however, it is unrealistic to assume that tasks will have
access to up to date load information; global load informa-
tion may be updated only periodically or the lime delay for
a task to move to a server may be long enough that the
loed information is out of date by the timc the task

o The author fs with the Division of Engineering and Applied Sciences,
Farvard University, Cambridge, MA 02138.
B-mail: michaelm@eees harvard.edu,

Mawnnscript recefved 4 Nov. 1997; vevised 10 Now. 1938, nccepied 10 June
1999,

For information on obiafufng veprints of this article, plense send e-nmil tor
tpds@eamputer.arg, and reference IEEECS Log Number 105884,

arrives. In this case, it is not clear what the best load

balancing strategy is.
Our models yield surprising results. Unlike similar

gystems in which up-to-date information is available, the
strategy of going to the shorlest quene can lead to extremely
bad behavior when load information iz out of date;
however, the strategy of going to the shortest of two
randomly chosen queues performs well under a large range
of system parameters. This tesult suggests that systems
which attempt to exploit glebal information to balance load
too aggressively may suffer in performance, either by
misusing it or by adding significant complexity.

1.1 Related Previous Work

The problem of how to use old or inexact information is
often neglected in theoretical wark, even though balancing
workload from distributed clients based on incomplete or
possibly out-of-date server load information may be an
increasingly common system requirement. In the control
theory community, some work has considered how to
design optimal control policies in the face of delayed
information, although currently these results appear to
apply only to a single queuc {see, e.g., [2], [3], [13]).

The idea of cach task choosing from a small number of
processors in order to balance the load has been studied
before, both in theoretical and practical contexts. In many
madels, using just two choices per task can lead to an
exponential improvement over one choice in the maximum
load on a processor, In the static setling, this improvement
appears to have first been noted by Karp et al. [11]. A more
complete analysis was given by Azar et al. [4]. Tn the
dynamic setting, this work was cxtended to a queuing
theoretic model in [18], [19]; similarr results woere indepen-
dently reported in [29].

1045-0218/00/310,00 & 2000 IEEE

MITZENMACHER: HOW USEFUL 1S OLD INFORMATION?

Other similar previous work includes that of Towsley
and Mirchandaney [24] and that of Mirchandaney ot al. [15],
[16]. These authors examine how some simple load sharing
policies are affected by communication delay, extending a
similar study of load balancing policies by Eager ot al. [6],
[7]. Their analyscs are based on Markov chains associated
with the load sharing policies they propose, as well as
simulation resulis.

Our work is mosl related to the queuing maodels of the
above wark, although it expands on this work in several
directions, We apply a fluid-limit approach in which we
develop a deterministic model corresponding to the limit-
ing system as n — oo, We often: call this system the fimiting
systest. This approach has successfully been applied
previously to study load balancing problems in [1], [18],
[19], [20], [22], [29] {zec also [1] for more references or [21},
[28] for the use of this approach in different settings), and it
can be seen as a gencralization of the previous Markov
chain analysis. Using this technigue, we examine several
new medels of load balancing in the presence of old
information. In conjunction with simulations, our models
demonstrate several basic but powerful rules of thumb for
load balancing systems, including the effectiveness of using
just two choices.

The remainder of this paper is organized as follows: In
Section 2, we describe a general queuing medel for the
problems we consider. In Sections 3, 4, and 5, we consider
different models of eld information. For each such model,
we present a corresponding limiting system and, using the
limiting systems and simulations, we determine important
behavioral properties of these models. In Section 6, we
briefly consider the question of cheating tasks, a concept
that ties our models to natural, but challenging, game
theorelic questions. We conclude with a section on open
problems and further directions for research.

2 THE BuLLeTIN BoARD MODEL

Our work will focus on the following natural dynamic
model: Tasks arrive as a Poisson stream of rate Az, where
A < 1, at a collection of » servers, Bach task chooses one of
the servers for service and joins that scrver’s queue; we
shall specify the policy used to make this choice subse-
quently. Tasks are served according o the First In First Out
(FIFQ} protocol and the service time for a task is
expanentially distribuled with mean 1. We are interested
in the expected lime a task spends in the system in
equilibrium, which is a natural measurc of system
performance, and, more generally, in the distribution of
the time a task spends in the quoue. Note that the average
arrival rate per queue is A < 1 and that the average service
rate is 1; hence, assuming the tasks choose servers according
to a reasonable stralegy, we expect the system to be sfable in
the sense that the expecled number of tasks per queue
remains finile in equilibrium. In particular, if ecach task
chooses a server independently and uniformly at random,
then each server acts as an M/M/1 queue (Poisson arrivals,
exponentially distributed service times) and is, hence,
clearly stable. We will examine the behavior of this system
under a varicty of methods that tasks may use to choose
their server.

7

We will allow the task’s choice of server to be
determined by load information from the servers. [t will
be convenient if we picture the load information as being
located at a bulletin board. We strongly emphasize that the
bulletin board is a purely theeretical construct used to help
us describe various possible load balancing strategies and
nead not exist in reality. The load information contained in
the bulletin board need #of correspond exactly to the actual
current loads; the information may be erroneous or
approximate. Here, we focus on the problem of what to
do whon the bulletin board contains old information (where
what we mean by old information will be specified in future
geclions).

We shall focus on distributed systems, by which we mean
that the tasks canmot directly communicate in order to
coordinate where they go for service. The decisions made
by the lasks are thus based only on whatever load
informalion they obtain and (possibly) their entry fime.
Note that, because of this lack of coordination among tasks,
natural policies such as round-robin are nol generally
feasible—such a policy would require tasks to pass though
a central coordinated server. Although our modeling
technique can be used for a large class of strategies, in this
paper, we shall concentrate on the fellowing natural,
intuitive strategies:

¢ Choose a server independently and uniformly at
random,

e Choose d servers independently and uniformly at
random, check their lead informalion from the
bulletin board, and go ta the one with the smallest
load. (Ties are broken randomly.)

e Check all load information from the bulletin beard
and go to the server with the smallest load.

The strategy of choosing a random scrver has scveral
advantages: It is easy to implement, it has low overhead, it
works naturally in a distributed setting, and it is known that
the expected lengths of the queues remain finite over time.
However, the strategy of choosing a small number of
servers and queuing at the least loaded has been shown to
petform significantly better in the case where the load
information is up to date [6], [18], [19], [29]. Tt has also
proven effective in other similar models [4], [11], [19].
Moreover, the strategy also appears to be practical and to
have a low overhead in distributed settings, where global
information may not be available, but polling a small
number of processors may be possible. Going ta the server
with the smallest load appears natural in more centralized
systems where global information is maintained. Indeed,
going (o the shortest quene has been shown to be optimal in
a variely of situations in a series of papers, starling, for
example, with [25], {27]. Hence, it makes an excellent point
of comparison in this setting. Other simple schemes that we
do not examine here but can easily study with this model
include thresheld-based schemes [6], [20], where a second
choice is made only if the first appears unsatisfactory.

We develop analytical results for the limiting case as
n — oo, for which the system can bo accuralely modeled by
a limiting systein, The limiting system consists of a sot of
differential equations, which wo shall describe below, that
describe, in some sense, the expected behavior of the

g ' IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, WOL. 11,

system, This corresponds to the exact behavior of the
gystem as 7 -+ oc. More information on this approach can
be found in {8, [14], [18], [19], [20], [22], [28], [29]; we
emphasize that here we will not detour into a theoretical
justification for this limiting approach and, instead, refer the
reader to these sources for more information. (We note,
however, that this approach works only because the
systems for finite n have an appropriate form as a
Markov chain; indeed, we initially require exponential
service times and Poisson arrivals to ensure this form.)
Previous expericnce suggests that using the limiting
system to estimate performance melrics such as the
expected time in the system proves accurate, even for
relatively small values of = [6], [18], 119], [20]. We shall
verify this for the models we consider by comparing our
analytical results with simulations.

3 Periopic UPDATES

The previous section.desecribed possible ways thal the

bulletin board can be used. We now turn our attention to
how a bulletin board can be updated, Perhaps the most
obvious model is one where the information is updated at
periodic intervals. In a client-server model, this could
cotrespond Lo an occasional broadeast of load information
from all the servers lo all the clients. Because such a
breadeast is likely to be expensive (for example, in terms of
communication resources), it may only be practical to do
such a broadcast at infrequent intervals. Alternatively, in a
systemn without such centralization, servers may cecasion-
ally store load informatioen in a readable location, in which
case, tasks may be able to obtain old load information frem
a simall set of servers quickly with low overhead.

We therefore suggesl the periodic update model, in which
the bulletin board is updated with accurate information
every T seconds. Without loss of generality, we shall lake
the update times to be 0,7,27,.... The time belween
updates shall be called a phase and phase ¢ will be the phasc
‘that ends at time #1". The lime that the last phase began will
be denoted by ¥}, where ¢ is the current time.

The limiting system we consider will utilize a two-
dimensional family of variables to represent the slate space.
We let P (2} be the fraction of queues at time t that have
true load 7 but have load ¢ posted on the bulletin board. We
let g,(t) be the rate of arrivals at a queue of size 4 at time i;
note that, for time-independent strategies, which we focus
on in this section, the rates (1) depend only on the load
information at the bulletin boards and the strategy used by
the tasks and, hence, is the same as g;(T}). In this case, the
rates ¢ change whenever the bulletin board is updated.

We first consider the behavior of the system during a
phase or at all limoes ¢ # &7 for integers k > 0. Consider a
~ sarver showing £ tasks on the bulletin board, but having j
tasks: We say such a server is Instate (4, j). Let £, § > I. What
is the rate at which a server leaves state (i,5)? A server
leaves this state when a task departs, which happens at rate
¢ =1, or when a task arrives, which happens at rate g;(1).
Similarly, we may ask at what rale tasks enter such a state.
This can happen if a task arrives at a server with load 4
posted on the bulletin board, but having 4 — 1 tasks, or a
task departs from a sorver with load ¢ posted on the bulletin

MO, 1, JANUARY 2000
board, but having j+1 tasks. This description naturally
leads us to model the behavior of the system by the
following set of differential equations:

dpz?t(ﬂ =Py - B’“(t)q-s(f?) ; (1)
‘ I%Eim' = (Pym (06 + Pt () — (Pl®a () + Py (),

izl
(2)

These equations simply measure the rate at which servers
enter and leave cach state. (Note that the case =0 is a
special case.) While the queuing process is random,
however, these differential cquations are deterministic,
yielding a fixed trajectory once the initial conditions are
given. In fact, these equations describe the limiting behavior
of the process as n — oo, as can be proven with standard
{albeit complex} methods [R], [14], [19], [20], [22], [28], [29].
Here, we lake these equations as the appropriate limiting
system and focus on using the differential equations to
study load balancing strategies.

For intepers & > 0, at £ = kT, there is a state jump as the
bulletin board is updated. At such #, necessarily, I ;(£} =0
for all i # § as the load of all servers is correctly portrayed
by the bulletin board. If we let Dyt) = lin, o £35(2) so
that the D ;{1) represent the state just before an update,
then

Pty = me-(t').

3.1 Specific Strategies

We consider what the proper form of the rates ¢; are for the
strategies we examine, It will be convenient to define the
load variables #;{t) to be the fraction of servers with load {
posted on the bulletin board; that is, b;(£) = 3272, Fiy(t).

In the case where a task chooses 4 servers randomly, and
goes to the one with the smallest load on the bulletin board,
we have the arrival rate :

i d
(T 00) = (T 09)
bi (L) '

The numerator is just the probability that the shortest
posted queue length of the d choices on the bulletin board is
size i. To get the arrival rate per queue, we scale A the
arrival rate and with load 4, the total fraction of queues
showing i on the board 5{t). In the case where d = 1, the
above expression reduces to ¢;{¢) = A and all servers have
the same arrival rate, as one would expect.

To model when tasks choose the shortest queuc on the
bulletin board, we develop an interesting approximation,
We assume that there always exist servers posting load 0 en
the bulletin board and we use a model where tasks go to a
random server with posted load 0. As long as we start with
some servers showing 0 on the bulletin board in the limiting
systemn {for instance, if we start with an empty system), then
we will always have sérvers showing load 0 and, hence, this

afE) = A

MITZENMACHER: HOW USEFUL IS OLD INFORMATION?

stralegy is valid. In the case where the number of queues is
finite, of course, at seme time all servers will show load at
least onc on the billboard; however, for a large enough
number of servers, the time between such events is large
and, hence, this model will be a good approximation. So, for
the shortest quette policy, we set the rate

Wl =30

and all other rates ¢(!} are 0.

3.2 The Fixed Cycle

In a standard deterministic dynmmical system, a natural
hope is that the system converges to a fixed point, which is a
stale at which the system remains forever once it gets there;
that is, a fixed point would correspond to a point I* = (f} ;)
such that d—f;j“- —). The above system clearly cannot reach a
fixed point since the updating of the bulletin board at time
t = KT causes a jump in the state; specifically, all F;; with
i # j become (. Tt is, however, possible to find a fixed cicle
for the system. We find a point P such thatif P = (I ;{k7})
for some integer &y > 0, then PP = (P ;(k1) for all k 2 k. In
other words, we find a state such that if the limiting system
begins a phase in that state, then it ends the phase in the
same state and, hence, repeats the same cycle for cvery
subsequent phase. (Note that it also may be possible for the
process given by the differential equatiens to cycle only
after multiple phases, instead of just a single phase. We
have not seen this happen in practice and we conjecture that
it is not possible for this system.)

To find a fixed cycle, we note that this is equivalent to
finding a veclor 7 = (;) such that if m; is the fraction of
queues with load ¢ at the beginning of the phase, the same
distribution occurs at the end of-a phase. Given an initial 7,
the arrival rate at a queuc with { tasks from time 0 lo T can
be determined. By our assumptions of Poisson arrivals and
exponential service limes, during each phase, each server
acts as an indcpendent M/M/1 queue that rums for

1" seconds, with some initial number of tasks awailing

service, We use this fact to find the ;.

Formulac for the distribution of the number of tasks at
time 7 for an M/M/1 queue with arrival rate A and 4 tasks
initially have long been known (for example, sce [5, pp. 60-
64]); the probability of finishing with j tasks after T° seconds,
which we denote by myj, is

i (T) = MU UNT (R (0PVAY 4 A 8B40 (27VA)

(=N AL TV,
P

where, here, B.(x) is the modified Bessel function of the
{irst kind. If # gives the distribution at the beginning and
ond of a phase, then the m; must satisfy m = >, mym,.{T),
and this can be used to determine the ;.

It seems unlikely that we can use the above characteriza-
ton to determine a simple closed form for the state at the
beginning of the phase for the fixed cycle in terms of T'. In
practice, we find the fixed cycle easily by running a
truncated version of the system of differential equations

(bounding the maximum values of { and j} above until
reaching a point where the change in the state between two
consecutive updates is sufficiently small. This procedure
works under the assumption that the lrajectory always
converges to the fixed cycle rapidly. (We discuss this more
in the next section.) Allernativoly, from a starting state, we
can apply the above formulae for m;; to successively find
the states at the beginning of cach phase until we find two
consecutive states in which the difforence is sufficlently
small. Simulating the differential equations has the advan-
tage of allowing us to sce the behavior of the system over
time, as well as lo compute system measurements such as
the expected time a task spends in the system.

3.3 Convergence Issues

Given that we have found a fixed cycle for the relevant
limiling systemn, important questions remain regarding
convergence. One question stems from the approximation
of a finite system with the corresponding limiting system:
How good is this approximation? The second question is
whether the trajectory of the limiting system given by the
differential equations always converges to its fixed cycle
and, if s0, how quickly? For the first question, we note that
the standard methods referred to previously {based on
work by Kurtz [8], [14], [22]}) provide only very weak
bounds on the convergence rale between limiting and finite
systems. By focusing on a specific problem, proving tighter
bounds may be possible (see, for example, the discussion in
[?8]). In praclice, however, as we shall see in Section 3.4, the
limiting, system approach proves extremely accurate even
for small systems and, hence, it is a useful technique for
gauging system bchavior.

For the secocnd question, we have found in our
experiments that the system does always converge Lo its
tixed cycle, although we have no proof of this. The situation
is generally easier when the trajectory converges to a fixed
point, instead of a fixed eycle, as we shall see. (See alse [19].)
Proving this convergence hence rematins an interesting open
theoretical question.

3.4 Simulations

We present some simulation results, with two main
putposes in mind: First, we wish to show that the limiting
system approach does in fact yield a good approximation
for the finite case; second, we wish to gain insight into the
problem of load balancing using old information. We focus
on the expected time in the system, as this appears the most
interesting system measure. Because our limiting approach
provides a full description of the system state, however, it
can be used to predict other quantities of interest as well,
With regard to the fitst goal, we begin by noting that,
for systems of 100 queues, the difference between the

results from the simulations and the results obtained by

calculating the expected time using the fixed cycle
determined by the differential equations generally match
to within 2 pereent for the strategy of choosing from two
or three servers (for the arrival rates presented here). In
the case of choosing the shortest queue, the simulations
are within about 10-20 pereent of the limiting system.
More details are given subscquently, However, because
the results from aimulations and the limiting system are

10 IEEE TRANSAGTICONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11,

NG. 1, JANUARY 2000

Update every T seconds

A=0.5, p= 1.0
4 - n =100
3.5 1
3 o
™ B 1 Cholee
cE 2'5 T _,.--“-—-‘-
- T e _ | T 2 Cholcas
® 2 e ST ez
8 e 3 Cholees’
g 167 o
< A A Shortest
1 3
0.5 4
o | 3 ' : |
0 2 4 <] a 10 12

Update interval T

Fig. 1. Strategy comparison at A — 0.50, 100 quaues.

essentially indistinguishable, we choose to plot only the
results from simulations to avoid excessivé clutter {except
in the case where one server is chosen at random;
in this case, we simply apply standard formulac from
queuning theory),

This setup allows us to emphasize the second goal, that
of gaining insight into the behavior of these systems. Note
that the intuition we derive from the plots would not
change if we substituted the results from the cquations,
since they are essentially the same. This methodology may
raise the question of why the limiting system models are
useful at all, There are several reasons: Pirst, simulating the
differential equations is often faster than simulating the
corresponding queuing systorn (wo shall say more on this
later). Second, the limiting systems provide a theoretical
framework for examining these problems that can lead to
formal theorems. Third, the limiting systom provides good
insight into and accurate approximations of how the system
behaves, independent of the number of servers. This
information should prove extremely useful in practice.

In Figs. 1 and 2, the results for various strategies arc
given for arrival rates A=10.5 and A =09 for n=100
servers. Simulations were performed for 50,000 time steps,
with the first 5,000 steps ignored to allow the dependence
on the initial state to not affect the results; the results
presented arve the average of three separate simulations. In
all cases, the average time a task spends in the system for
the simulations with n == 100 is higher than the expected
time in the corresponding limiting systom., When A = 0.5,
the deviation between the two results is smaller than
1 percent for all strategies. When A = 0.9, for the strategy of
choosing from two or three servers, the simulations arc

1. In the simulations, queue choices woere made without replacement.
There is no difforence in the limiting system, although, in practice, making
choicos without replacement vields small improvements. Also, the simula-
tions were performed for specific values of T; specifically, they include
T 0,000,058, 1.0, 20,80, 4.0,5.0,10.0, 15.0,20.0, 25.0, 50.0.

within 1-2 percent of the results obtained from the limiting
system. In the case of choosing the shortest queue, the
simulations are within 8-17 percent of the limiting system,
again with the average time from simulations being larger.
We oxpect that this larger discrepancy is due to the
inaccuracy of our model for the shortest queuc system, as
described in Section 3.1; however, this is suitably accurate to
gauge system behavior. Again, we emphasize the accuracy
of the limiting system approach.

Several surprising behaviors manifest in the figures.
First, although choosing the shortest queue is bost when
informalion is current (T = 0), for even very small values of
T the sirategy performs worse than randomly sclecting a
queue, cspecially under high loads (that is, large A).
Although choosing the shortest queue is known to be
suboptimal in certain systems with current information [26],
its failure in the presence of old information is dramatic,
Also, choosing from just two servers is the best of our
proposed strategies over a wide range of 1, although, for
sufficdently large T, making a single randem choice per-
forms better.

We suggest some helpful intuition for these behaviors. Tf
the update interval T is sufficiently small se that only a few
new tasks arrive every 1' seconds, then choosing a shortest
queue performs very well, as tasks tend to wait at servers
with short quenes. As 1" grows larger, however, a preblem
arises; all the tasks that arrive over those T seconds will go
only to the small sot of servers that appear lightly loaded on
the board, overloading them while other servers empty. The
system demonstrates what we call herd behavior: Herds of
tasks all move together to the same locations. As a real-life
example of this phenomenon, consider what happens at a
supermarket when it is announced that “Aisle 7 is now
open.” Very often, Aisle 7 quickly becomes the longest
queue. This herd behavior has been noticed in real systems
that use old information in load balancing; for example, in a
discussion of the TranSend system, Fox et al. note that,

MITZENMACHER: HOW USEFUL IS OLD INFCRMATION?

Update every T seconds
2=0.9, p=1.0
25 n =100
/]
20 ¢ /
- / ——— 1 Choice
/
= 1587 ! ————e 2 Choices
1] I -t .
g ! - 2= T e 3 Chol
B 10 II - —= - olcos
2 / , P Shortest
P f .-;:_"'-'
b ff'/_,,-
0 1 : t -1 {
0 10 20 30 40 50

Update interval T

Fig. 2. Strategy comparison at A — 0.20, 100 queues.

initially, they found “rapid oscillations in queune lengths”
because their system updated load information periodically
[10, Section 4.5].

Interestingly, as the updale interval T — og, the utility of
the bulletin board becomes negligible (and, in fact, it can
actually be misleading!). The limit as T' — oc corresponds to
a setting with no information; in this case, in the distributed
setting, the best strategy is to choose a server at random.
Although this intuition is helpful, it remains surprising that
making just two choices performs substantially better than
even three choices over a large interval of values of T that
seem likely to arise in practice. Note that this holds even as
the number of queues grows arbitrarily large; these plots
accurately reflect the trends of the limiting system as the
number of queues grows to infinity!

The same behavior is also apparont even with a much
smaller number of servers. In Fig. 3, we examine simula-
tions of the same strategles with only eight servers, which is
a realistic number for a current multiprocessor machine.
In this case, the approximations given by the limiting
system are less accurate, although, for 7' > 1, they are still
within 20 percont of the simulations. Other simulations
of small systems demonstrate similar behavior and, as
the number of servers » grows, the limiting system grows
more accurate, Hence, even for small systems, the limiting
system approach provides reasonable estimates of system
behavior and demonstrates the trénds as the update
interval 7' grows. '

Finally, we note again that, in all of our simulations of
the differential equations, the limiting systerm rapidly
reaches the fixed cycle suggested in Section 3.2,

3.5 On Simulating the Limiting System

Although the limiting system approach provides a useful
technique for studying load balancing madels, it becomes
difficult to use in the periodic update model {and other
maodels for old information) at high arrival rates or for large

values of T because the number of variables to track grows
large. For example, suppose we simulate the differential
equations, ftruncating the system at sufficiently large
values of ¢ and j that we denote by I and J. Then, we
must keep track of [- J variables P, ;. At high arrival rates
(say, A =10.99) and/or high values of ¥', we will need to
make [and J both extremely large to obtain accurate
calculations and, hence, simulating the differential equa-
tions over a period of time becomes very slow, comparable
to or worse than the time required to simulated the
underlying queuing system.

In practice, however, we expect such high arrival rates
and extremely large values of T arc unlikely to be of
interest. In the normal case, then, we expect I and J to be
relatively small, in which case simulating the differential
equations is generally quicker than simulating the under-
lying quening model.

An actual time comnparison deperds on such factors as
the time granularity used for simulating steps of the
differential equations, the length of time (or number of
times) one simulates the actual queuing process, as well as
the quality of the code. As an example, we have found that
simulating the differential equations for values A =09,
I=.J=50,T=05.0, and the granularity of successive Hme
steps dié =001 for 500 seconds takes approximately the
same time as a single simulation for the queuing nelwork
with 100 quenes over 5,000 seconds.

Examining this comparison more closely, we see that
simulating the differential equations as described above
requires updating 2,500 entries I, ; each 50,000 times, where
each update requires a small constant number of floating
point operations. Simulating a system of 100 servers as
described above requires handling approximately 450,000
arrival events and departure events. Ignoring cache issucs
and assuming one cycle per instruction, we find that,
for the times to be equal, the cost for handling a task
would be approximately in the small thousands of

12

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, WOL. 11,

Update every T seconds

A=0.9,p=10

16 T n=28

14 +

12 ¢ ! e
o ff 1 Choice
E 10 7 et
k- / P PEL U R ik 2 Cholces
® 8§ / Lot L
o a‘. .f'--
g / e 3 Choloes
g 6 T ! _,-‘ '_-__.--" .
< s E N ke Shortesl

4 --4{,.. o

o 4

Q + } } {

0 5] 10 15 20 25

Update Interval T

NO. 1,

JANUARY 2000

Fig. 3. Strategy comparison at A = 0.00, eight queues.

instructions. Since cach entering task requires generating
a random arrival and service time, placing a new entry in
a priority quoue, choosing and comparing a random
selection of scrvers, updating the recorded stalistics, etc.,
this appears reasonable.

Repeated simulations, however, appear necessary if one
is concerned with the variance introduced by the simula-
tion. Moreover, using the differential cquations, one can
stop as soan as the appropriate fixed cycle is reached; with
simulations, one must rely on repeated simulations to
determine when the variance appears sufficiently small.

3.6 More Complex Centralized Strategies

In this section, we briefly consider centralized strategies
under this delay modcl. Although we focus on dishiibuted
strategies throughoul the rest of the paper, we detour
slightly here in order to demonstrate the use of limiting
systems for centralized strategies and to gain insight into
the potential gains from centralization.

One would expect that a more sophisticated strategy for
dealing with the old load information might yield better
performance. For instance, if the system uscs the lead
information on the bulletin board to develop an estimate for

the current load, this estimate may be more accurate than .

the information on the board itself. Thereforc, in this
section, we consider more complex strategies that attempt
to estimate the current queue length and gauge their
performance. These strategies require significant centraliza-
tion in that all incoming tasks muost have access to the
complete bulletin board and more detailed information
about the entire system. We believe these strategies are
practical for systems of reasonable size (lhundreds of
processors) and, hence, are worth examining,

Our model is still that the bulletin board is updated
every T seconds. Our first proposed strategy requires that
the arrival rate to the system and the entire composition of
the bulletin board be known to the incoming tasks; also,

tasks need to know the time since the last update. This
situation could arise if the bulletin board is periodically
broadcast to the servers generating the tasks. This strategy
still assumaes that tasks do not coordinate actions and, thus,

‘the ceniralization required for this strategy is minimal. The

idea of the strategy is to usc our knowledge of the arrival
rate to calculate the expected number of tasks at the servers
and, then, choose a server with the smallest expected load
uniformly at random, We describo a strategy that approx-
imates this one closcly and has the advantage that the
underlying calculations arc quite simple, .

In this proposed shategy, which we call the fime-based
strategy, we split each phase of 4" seconds into smaller
subintervals; in a subinterval [t £y}, a task will choose a
sorver randomly from all servers with load al most & The
division of the phasc is inductively determined by the loads
at the beginning of the phase, which is information
available on the bulletin board. At tlime 0, tasks choose
from all servers with load 0 posted on the board (if any
exist). Hence, £ = 0. Tasks begin also choosing from servers
with load 1, when the expected number of arrivals to
servers of load 0 has been 1, so that

i1 =1 +bg//\

Similarly, tasks begin choosing from servers with load at
maost k when the expected number of arrivals te scrvers of
load k—11is 1, or at
> en i
to= o _Z_‘f_d_»_.l.
Intuitively, this stratepy attempts to equalize the load at the
servers in the natural way.
A limiting system, given by a series of differential
equations, can be used to model this system. The cquations
are entirely similar to (1} and (2), except that the expression

MITZENMACHER: HOW USEFUL I8 OLD INFORMATION?

13

Update every T seconds

12 1
A=09,u=10
10 n=100
E 8 1 e — 1 Choice
= Pt ~ - =2 Choices
o
g 61 .f‘-/ ——— — — Time-Based
@ ,--:_: L - = = « Racord-Insert
@ 4l _sFTT e Round-Robin
Pt emem " .
1 e
2 e
Q T T r . .
¢ 5 10 15 20 25

Update interval T

Fig. 4. Comparing centralized strategies vs. distrbuted stralegies: Ceniralized strategies can perform better.

for 4;(t) changes depending on the subinterval ;. (We leave
the remaining work of the derivation lo the reader.)

Qur secomd proposed strategy, which we call the record-
fnsert stinfegy, requires more centralization in that we allow
the tasks to update the global bulletin board when they
choose a server, That is, evory time a new task cnters, the
system load for the server on the bulletin board is
incremented, but deletions are not recorded until the board
is updated (every 1' seconds). Tasks choose a queuc
uniformly at random from those with the smallest load
on the board.® This strategy may be feasible when the
tasks use a cenlralized system for placement, bul there is
a large delay for sorvers to update load information. This
strategy is essentially the one used to solve the problem
of herding behavior in the TranSend system mentioned
previously [9], [10].

Again, a limiting system given by a family of differential
equations can maodel this system. We still use F; to
represent the fraction of queues with load 7 on the bulletin
and j at the queue; however, the load at the board is now
ineremented on arrival. The resulting equations are again
gimilar to (1) and (2) with this difference:

% = PJRI(O — PolDafty . i =1y (3)
%— I ‘it_\ (#)— Fyll), 7= 1 (1)
a0 (P g a(Buimi(t) 4 Pig (4)

it

(5)

- (‘”Lj(';:)@i(” ‘ er(t)) 4+ JJ' 2 1.

2. We note that performance improves slightly if the lasks break fics in
some fixed order, such as by machine index; in this case, for sufficiently
long updates 7, the strategy bocomes a round-robin scheme. However, Lhis
maodel cannot be easily described by a limiling system,

Unforlunately, this system proves more complicated be-
cause the expression for ¢ () becomes more complicated.
Now, (1) is zero unless ¢ is the smallest load apparent in
the system. Because the smallest load changes over time, the
systerm will have discontinuous bebhavior; this makes the
differential equations stightly harder to simulate.

Simulations of systems of 100 queues demonstrate that
these strategios can perform substantially better than
choosing two when » is reascnably large and ' grows
large, as shown in Tlig. 4. Again, we emphasize that the
results from the limiting systems provide results very close
to that of the simulations of 100 queues; for the expected
time in the system, our simulation vesults are within
4 percent for the time-based stralegy and within 2 percent
for the record-insert strategy. We present simulation results
only for convenience; the same inluilions can be derived
from the differential cqualions alone.

As one might expect, record-insert does better than time-
based, demonstrating the power of the tasks being able to
updale an actual centralized bulletin board directly.
Howevet, choosing the shortest of two random servers still
performs reasonably well in compariscn, demonstrating,
that, in.distributed settings where global information may
be difficult ko maintain or the arrival vate is not-known in
advance, it remains a strong choice. We also compare these
strategies with a simple round-robin strategy, which is the
natural choice for load balancing in a centralized system
where no load information is available. Indeed, as pre-
viously mentioned, the record-insert strategy becemes a
round-robin stralegy in the limit. The expected time a job
spends ina round-robin system with nservers in equilibrium
can be calculated vsing standard queuning theory, as cach
queue behaves likea G/M/1 queue (sec, e, |12, chapter 6]).
Again, as one might expect, for suitably small delays, making
use of the available load information even in limited ways
yields better performance,

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL, 11,

4 ConTiNuous UPDATE

The periodic update system is just one possible model for
old information; wo now consider another natural modet
for distributed envivonments. In a continuous update system,
the bulletin board is updated continuously, but the board
remains 4" seconds behind the true state at all times. Hence,
every incoming task may use load information from
T seconds ago in making its deslinalion decision. This
model corresponds to a situation where there is a transfer
delay between the lime incoming jobs determine which
processor to join and the time they join.

We will begin by modeling a similar scenario, Suppose
that cach task, upen entry, sees a billboard with information
with some time X ago, where X is an exponentially
distributed random variable with mean T, and these
random variables are independent for each task. We
examine this model and later consider what changes ave
necessary to replace the random variable X by a constant 7.

Modeling this system appears difficult because it seems
that we have to keep track of the past. Instead, we shail
think of the system as working as follows: Tasks first enter a
waiting room, whero they obtain eurrent load informalion
about queue lengths and immediately decide upon their
destination according to the appropriate strategy, They then
wait for a time X that is exponentially distributed with
mean 7' and independent ameng tasks. Nole that tasks have
no informalion about other tasks in the waiting room,
including how many there are and their destinaticns, After
their wait period is finished, they proceed to their chosen
destination; their time in the waiting room is not counted as

time in the system. We claim that this system is equivalent

to a system whete tasks arrive at the servers and choose a
server based on information from a time X ago, as
described. The key to this obsorvation is to note that if the
arvival process to the waiting room is Poisson, then the exit
process from the waiting room is also Poisson, as is easily
shown by standard arguments. Interestingly, another
interpretation of the waiting room is as a communication
delay, corresponding to the time it takes a task from a client
to move to a server, This model is thus related to similar
models in [15].

The state of the systemn will again be represented by a
collection of numbers for a set of ordered pairs. In this case,
P, ; will be the fraction of scrvers with f current tasks and
i tasks siliing in the waiting toom; similarly, wo shall say
that a server is in state (¢, j) if it has 4 tasks enqueued and ¢
tasks in the waiting room. Tn this model, we lot ¢;(t) be the
arrival rate of tasks into the waiting room that choose
servers with current load j as their destination. The
expression for ¢; will depend on the strategy for choosing
a queuce and can casity be determined, as in Section 3.1.

To formulate the differential equations, consider first a
server in state (4, 7), where 4, § > 1. The queue can leave this
state in one of three ways: A task can complele service,
which oceurs at rate g = 1; a new task can enter the waiting
room, which occurs at raie g;(t); or a message can move
from the waiting room to the server, which (because of our
assumption of exponentially distributed waiting times)
occurs at rate fi Similarly, one can determine three ways

NO. 1, JANUARY 2000

in which a server can enter (i, 7). The following equations
include the boundary cases:

% = Py {t) — () Papft);
AP P (E)
) _ s+ DO gm0
—Ry{ty, iz 1
diglt .
dtt'_(')' = gn(B)P_10(t) -+ Dt} — () p(E)
_ IP_*;(?) Jiz L
AP, () (i + 1) P
d; =P - -_TM + i) -1t}
i) .
—)P0~ Py - B iy

4.1 The Fixed Point

Just as, in the periodic update model, the system converges
to a fixed cycle, simulations demonstrate that the contin-
uous update model quickly converges to a fixed point,
%(U = () for all ¢, 7. We therefore expect that, in a

suilably large finite system, in equilibrium, the distribution

where

of server states is concentrated near the distribution given

by the fixed point. Hence, by solving ter the fixed point, one

can then estimate system metrics such as the expected time

in the queue (using, for example, Little’s Law). The fixed

point carx be approximated numerically by simulating the

differential equations or it can be solved for using the
dPuy(0)

family of equations =~ = 0. In fact, this approach leads to

predictions of system behavior that match simulations quite

accurately, as described in Section 4.3,

Using techniques discussed in [19], [20], onc can prove
that, for all the strategies we consider here, the fixed point is
stable, which informally means that the trajectory remains
close to its fixed point (once it gets close). We omit the
straightforward proof here. Our simulations suggest that, in
fact, the limiling system converges exporentially to its fixed
point; that is, that the distance belween the fixed point and
the trajectory decreases geometrically quickly over time.
(See [19], [20].) Although we can prove this for some special
cases, proving exponential convergence for these systoms in
general remains an open queslion.

4.2 Continuous Update, Constant Time

In theory, it is possible to extend the continuous update
model to approximate the behavior of a systern where the
bulletin board shows load information from 1" seconds ago;
that is, where X is a constant random variable of value 7.
The task’s time in the waiting room must be made
(approximately) constant; this can be done effectively using
Brlang's method of stages. The essenlial idea is that we
replace our single waiting room with a series of r
consecutive waiting rooms such that the Hme a task
spends in each waiting room is exponentially distribuied
with mean 7'/r. The expected time waiting is then ', and
the variance decreases with #; in the limit as r — oo, it is as

MITZENMACHER: HOW USEFUL 15 CLD INFORMATION?

15

Board T seconds behind

A=0.9,u=10
251 : h = 100
{
20 1 / I
I T
) i e — 7 1 Choice
E 15 ! __,.-"
v ," Lo i 2 Choicas
o 7 et -
g 10)," —pr 2 — CerulUE Beehbbe el 3 Cholces
> et Sty
< / e T T Shortest
R T *_ -
A
1] — —
0 5 10 15 20 25

Update Interval
Fig. 5. Each task sess the loads from T' seconds ago.

though the waiting time is constant. Taking a reasconably
sized r can lead to a good approximation for constant
- time. Other distributions can be handled similarly. (Sce,
e.g. [20])

In practice, this model is difficult to use, as the state of a
server must now be represented by an r+ 1-dimensional
vector that keeps track of the quene length and number of
tasks at each of the » waiting rooms. Hence, the number of
states to keep track of grows exponentially in v. [t may still
be paossible to use this approach in some cases by truncating
the state space appropriately; howover, for the remainder,
we will consider this model only in simulations.

43 Simulations
As in Section 3.4, we present results from simulating the
actual queuning systems. We emphasize that, for the
continuous update case, we only develop a useful limiting
system for the case where X is distributed exponentially; in
other cases, we rely solely on simulations of the achual
queuing system. We have chosen the case of » = 100 queues
and A =09 as a representative case for illustrative
purposes. As one might expect, the limiting system proves
mare accurate as . increases and the differences among the
strategies grow more pronounced with the arrival rate.

We first examine the behavior of the system whoen X, the
waiting room time, is a fixed constant T. In this case, the
system demonsirates behavior remarkably similarly to the
periodic update model, as shown in Fig. 5. For example,
choosing the shortest server performs poarly cven for small
values of 7', while two choices performs well over a broad
range for T

When we consider the case when X is an exponentially
distributed random wvariable with mean T, however, the
system behaves radically differently (Fig. 6). All three of the
strategies we consider do extremely well, much better than
when X is the fixed constant 7. One might think from these

T

results that there is some error in our simulation of this case.
The limiting system, however, verifies the simulation
results; we found that the resulis from the simulations
and the limiting system match within 1-2 percent when two
or three choices are used and 5-20 percent when tasks
choose the shortest queue, just as in the case of periodic
updates (Section 3.4),

We suggesl an interpretation of this surprising behavior,
beginning by considering when tasks choose the shortest
queue. In the periodic update model, we saw that this
strategy led to “herd behavior,” with all tasks geing to the
same small set of servers. The same behavior is evident in
this model, when X is a fixed constant; it takes some time
before entering tasks become aware that the system loads
have changed. In the case where X is randomly distributed,
however, lasks that enter ab almost the same time may have
different views of the system and, thus, make different
choices. Hence, the “herd behavior” is mitigated, improving
the load balancing. Similarly, performance improves with
the other stralegics as well.

We justify this interpretation by considering other
distributions for X; results from simulations in the cases
where X is uniformly distributed on [7/2,37/2] and on
[0, 247] are giventin Fig. 7 and Fig. 8. Both perform noticcably
better than the case where X is fixed at 7' That the larger
interval performs dramatically betler suggests that it is
useful to have some tasks that get very accurate load
information (i.e., where X is close to 0); this also explains
the behavior when X is exponentially distributed.

This selting demonsirates how randomness can be used
for symmetry breaking. In the periodic updale case, by
having each task choose from just twe servers, one
introduces asymmelry. In the continuous update case, one
can also introduce asymmetry by randomizing the age of
the load information.

IEEE TRANSACTIONS OM PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11,

NO. 1, JANUARY 2000

Board X seconds hehind, X exponential with mean T

§ =09, y=1.0
10 n = 100
9
8 4
E 77 R 1 Chaice
k8 _,,--"""'_ﬂ-‘lﬂ_:—. TR - 2 Cholces
% 51 /"'—"..---:'.:"-‘-'-"*"":"'-:::"“ o
§ 4+ 5,;,...-* schoicas
< 3 ’X ------ Shortest
2 4? B
1 1
0 : ot : _
0 5 10 15 20 25

Update interval T

Fig. 6. Each task soes the loads from X seconds ago, whera the X are independent exponential random variables with mean T

Board X seconds behind, X uniform on [T/2,37/2}

A=0.9, u=1.0
16 t n = 100
| !
14)
12t/
H e 1 Choive
; -
é 10 ! I 2 Cholces
8t a7
/ et T 3 Choloes
6 ! ,"" a"'.’ -
] ’ ’, A - e Shorteat
4 1) ~*
L
o N
0 ; 4 -+ + 4
0 5 10 15 20 25

Update interval T

Fig. 7. Each task sees the loads from X saconds ago, whera the X are indepsndent uniform random variables from [7'/2,47/2].

This setting also demonstrates the danger of assuming
that a model’'s behavior does not vary strongly if one
changes underlying distributions. For oxample, in many
cases in queuing thecry, results are proven for models
where service limes arc expenentially distributed (as these
results are often easier to obtain) and it is assumed that
the behavior when service times are constant (with the
same mean) is similar. In some cases, there are even
provable relationships between the two medels (see, for
example, [17], [23]). In this case, however, changing the
distribution of the random variable X causes a dramatic

change in behavior,

5 INDIVIDUAL UPDATES

In the models we have considered thus far, the bulletin
board contains load information from the same time ¢ for all
the servers. It is natural to ask what happens when servers
update their load information at different times, as may be
the case in systems where servers individuaily broadeast
load information to clients. In an individual update system,
the servers update the load information at the bulletin
board individually. For convenience, we shall assume the
time between each update for every server is independent
and exponentially distribuled, with mean 7. Note that, in
this mode!, the bulletin board contains only the load

MITZENMACHER: HOW USEFUL IS OLD INFORMATION?

17

Board X seconds behind, X uniform on {0,2T]

A=08, p=1.0
14 na 100
12
10 o 1 Gholoe
é 8 e e 2 Chioloas
8 e PP et PETEERS
ff” .,..-1-“":::::::""'. ______
L 4 4 T ‘:‘.ﬁgf“"“-’#
e TR .
24
.
0 : : 4 , !
0 5 10 16 20 a5
Update Interval T

Fig. B. Fach task sees the loads from X seconds ago, where the X are indepandent uniform random variables from [1}, 277.

Individual updates every X seconds, X

exponentially distributed with mean T
=09 u=10
na 100

187 1

I

!

i

|

L L

H .
i
!
i

=
v

I
F‘,,

Q 5 10 15

20 2b

Update interval T

Fig. 9. Fach server updates the board every X seconds, where X is exponentially distributed with mean 1,

information and does not keep track of when the updates

have occurrad.
The state of the system will again be represented by a

collection of ordered pairs. Tn this case, I; will be the
fraction of servers with true load j but load i posted on the
bulletin board. We let (i) be the arrival rate of tasks to
servers with load 4 posted on the bulletin board; the
expression for ¢; will depend on the strategy for choosing a
queue. We let S;(+) be the total fraction of servers with true
loact ¢ at time i, regardless of the load displayed on the

bulletin board; note S;(¢} = 37, P(t).
The true load of a server and its displayed load on the

bulletin beard match when an update occurs. Hence, when
considering how P; changes, there will a term correspond-
ing to when one of the fraction §; of servers with load ¢
generates an update. The following equations are readily

derived in a similar fashion as in previous sections.

B0 _) - Polt) ~ Prala)/1'
szli_[t) = Py 1 (Dq: () 4 D (t) — Bg(ee)

R BT 021 A

it F
000 _ 1y (1)~ Bole)st) ~ Poalt)/ 24 S0/ T
APt
dt

=P (0 (t) + P (@) — Py (B (t)
— Pya(t) = P/ T + Si(t)/T i = 1.

As with the continuous update model, in simulations
this model converges to a fixed peint and one can prove
that this fixed point is stable. Qualitatively, the behavior
appears similar to the periodic update model, as can be seen
in Fig. 9. We note again that the simulations and the results
from the differential cquations are very close. For lwo or
three choices, the results are within 1 percent for small 7
and within 5 percent for larger 7. Yor tho strategy of going
to the shortest queue, the deviation is slightly larger.

18 IEEE TRANSACTIONS ON FARALLEL AND DISTRIBUTED SYSTEMS, VOL. i1, NO.1, JANUARY 2000
TABLE 1
Comparing Simulation Results for Antisocial Tasks {(which Choose the Shortest) against those that Choose Two,
for A =0.9 and n = 100
T p | Avg, Time | Avg. Time | Avg. Time | Variance | Variance | Variance
All Tagks | 2 Choices Shortest | All Tasks | 2 Choices | Shorteat
1{0.00 3.23286
1]0.01 3.21072 3.22003 219877 | 573117 | 5.74186 | 3.63718
1085 3.17061 3.21389 2,34814 | 5.82948) b5.67621 | 4.02956
1{0.10 3.14132 3.20978 2.52474 | 5.58554 | 5.65450 | 4.54205
1{0.25 3.20008 [325693 | 3.03311 | 6.05840 594553 | 6.35980
5 | 0.00 4,94051 ; :
5100 4,95386 4.95677 4.665675 | 13.8029 13.8821 | 11.8131
5| 0.06 5.05692 5.06668 | 5.66164 | 14.4591 14,5106 | 13.4837
510.10 5.21456 5.17958 5.52974 | 15.6083 15.6597 [15.7552
- 5] 0.25 6.06968 | - 570758 7.15609 | 23.6380 ; 22,0182 (26.9240
10 | 0.00 6.74313 .
10 [0.01 6.80669 680588 [. 688703 | 26.4046 | 26,5391 | 22.0827
10 [0.05 . 7.00344 6.97692 7.60776 | 28.4836 28.6189 | 25.6448
10] 0.10 7.36857 7.26152 8.34185 | 32.73260 327395 | 31.6201
10] 0.25 891193 | B8.23577 10,9422 | 54.8097 | 52.6266 | 57.6721

6 COMPETITIVE SCENARIOS

We have assumed thus far in our models that all tasks
adopt the same underlying strategy and the goal has been to
reduce the expected time for ail tasks. In a more competitive
environment, tasks may instead independenily act in their
own best interests and it is necessary to consider the effects
of antisocial, competitive tasks which may not follow the

praposed universal strategy.
We consider briefly a specific example. Suppose we have

a syslem where cach task is supposed to choose from the
shortest of two randomly chosen servers. In this case, an
antisocial task may attempt to improve its own situation by
obtaining the entire bulletin board and proceeding to a
server with the smallest posted load. Do such tasks do
better than other tasks? If so, in a competitive environment,

tasks have little motivation to follow the suggested strategy.
We study the problem by examining the situation where

each task adopts the antisccial strategy with probability p.
With such a model, it is possible to set-up a corresponding
limiting system since each task’s stralegy can be expressed
as a probabilistic mixture of two strategies; for example, in
this case,
2 2
p/\ (1 o p))‘(z:po bi(tj) _(Zpu bi(t))

Th T W

Al 0001~ (S0m0))
- bo(?) o

io(t)

Lor 4 >0,

(Tl = (b))
) |

Glt) = (1--p)A

We consider the case where all tasks see load informa-
tion from exactly I’ seconds ago. In this case, as discussed in
Scction 4.3, we do not vse a limiting system, as the state
space grows rather complex; instead, we use simulations.?
The results demonstrate some interesting behaviors. Table 1
provides numerical results based on simulations for A = 0.9
and n = 100 sorvers. When T is small or the fraction p of
competitive lasks is sufficiently small, competitive tasks
reduce their average time by acting against the standard
strategy. In cases where choosing two servers performs
poorly, introducing competitive tasks can aclually reduce
the average time for everyone, although, more often,
antisocial tasks do better at the expense of other tasks. For
larger values of I or p, systoin performance degrades for all
tasks and the average time anlisocial tasks spend in the
system can grow much larger than that of other tasks. In
this sense, tasks arc motivated not to choose the shorlest for,
if too many do so, their average time in the system will be
larger than those that do not.

The situation becomes even more interesting, however, if
the measure of performance is not the average time in the
system, but a more complicated measure, For example, it
may be important for some tasks to finish by a certain
deadline and, in this case, the goal is to maximize the-
probability that it finishes by its deadline. Our simulations
have also shown that, in the model described above, even
when p and 7 are such that cheosing the server with the
shortest posted queuc increases the average time for a task,

3. We could instead have presented rvesulis for the periodic update
selling, where the board is updated every T seconcls. [n this case, the
limiting system again matches simulalions of 100 servers quite well. One
finds similar behaviors in such systems.

MITZENMACHER: HOW USEFUL IS OLD INFORMATION?

the wariance in the tme in the syslem of tasks which adopt
this strategy can be lower than other tasks (Table 1)
Intuitively, this is probably because somc tasks that make
only two choices will be quite unlucky and choose two very
long queues. Hence, tasks with deadlines may be motivated
to try anothor shrategy, even though it appears worse in
terms of the average time in the system.

Woe believe there are many open questions to consider in
this arca, and we discuss them further in the conclusion.

7 OPEN QUESTIONS AND CONCLUSIONS

We have considered the question of how useful old
information is in the context of load balancing. In examin-
ing various models, we have found a surprising rule of
thumb: Choosing the least loaded of two random choices
according to the old load information performs well aver a
large range of system parameters and is gencrally beiler
than similar strategies, in terms of the expected time a task
spends in the system. We have also seen the importance of
using some randomness in order ko prevent tasks from
adopting the same behavior, as demonstrated by the poor
performance of the strategy of choosing the least loaded
server in this sclling.

We believe that there is a great deal more to be dene in
this arca. Generally, we would like to see these models
extended and applicd te more realisfic situations. For
example, it would be inferesting to consider this question
with regard to other load balancing scenarios, such as in
virtual circuit routing, or with regard to metrics other than
the expected time in the system, such as in a system where
tasks have deadlines. A different theoretical framework for
these problems, other than the limiting system approach,
might be of use as well. In particular, it would be
convenient to have a method that yields tighter bounds in
the case where 1, the number of servers, is small. Tinally,
the problem of handling more realislic arrival and service
patterns appears quite difficult. Tn particular, it is well-
known that, when service distributions are heavy-lailed, the
behavior of a load balancing system can be quite different
than when service distributions are exponential; however,
we expect our rule of thumb to perform well in this scenario
as well,

An enlirely different flavor of problems arises from
considering the problem of old information in the context of
game theory. We have generally assumed in our models
that all tasks adopt the same underlying strategy and the
goal has been to reduce the expected lime for all tasks. In a
more competitive environment, tasks may instead indepen-
dently act in their own best interests and, hence, in Section &,
wo cansidered the effects of antisocial tasks which may not
follew the proposed strategy. More generally, we may think
of these systems as multiplayer games, which leads to
several inleresting questions: [f each lask is an individual
player, what is the optimal strategy for a scli-interested
player {i.e, a task whose only goal is to minimize ils
own expected time in the system, say)? lHow casily can
this strategy be computed on-line? Is this strategy different
than the optimal strategy to minimize the average expected
time and, if so, how? Are there simple stable strategics in

19

which ne task is motivated to deviate from the strategy for

its own gain?

ACKNOWLEDGMENTS

Much of this work was undertaken while the author was at
Digital Systems Research Center, Palo Alto, California, and
the author thanks the many people there who offered input
on this work while il was in progress. Special thanks go to
Andrei Broder, E4 Lee, and Chandu Thekkath for their
many belpful suggestions.

REFERENCES

111 M. Alanyali and B. Hajck, “Analysis of Simple Algorithms for
Dynamie Load Balancing,” Math. Operations Resenrch, vol. 22, no. 4,
PP, 840871, 1997,

21 K. Altman and P. Nain, “Closed Loop Centrol with Delayed
Information,” Proe. ACM Sigmetries Conf. Measurement and Moidel-
ing of Conputer Sysfems, pp. 193-204, Newport, R.L, June 1992,

[3] L. Allman and 8. Stidham, “Optimality of Monotonic Policies for
Twao-Action Markovian Decision Processes, with Applicntinns 5]
Control of Queucs with Delayed Information,” Queneing Systems:
Theary aud Applications, vol. 21, nos. 1LY, pp. 267-291, 1995,

[4] Y. Azar, A. Broder, &A. Karlin, and 1. Upfal, “Balanced Alloea-
tions,” Mfroc, 2688 ACM Symp. Theory of Computing, pp. 593-602,
1994,

[5] DMR Cox and W.I. Smith, Queves, Wiley, 1961,

[6] T.L. Hager, KD, Lazowska, and J. Zahorjan, “Adaplive Load
Sharing in Homogeneous Distributed Systems,” IEEE Trous,
Software Enyg., vol. 12, pp. 662-675, 1986,

{71 L. Rager, B.D. Larzowska, and). Zahotfan, *A Comparison of
Receiver-initiated and Sender-Initiated Adaptive [oad Sharing,”
Performpnce Evalnation Review, vol. 10, pp. 53-68, 1986, .

[8] S.N. Clhier and T.G. Kurte, Markov Pracesses: Characlerization aid
Convergeiree, Jolm Wiley & Sons, 1986,

[9] AL Fox, Private communicalion.

[10] A. Tox, S.D. Gribble, Y. Chawathe, E.A, Brower, and ' Gauthier,
“Cluster-Basod Scalable Network Services,” Proc. 16th ACM Symip.
Operating Systems Principles (SOSP-16), vol. 31, pp. 7891, Oct.
1997,

[11]] RM. Karp, M. Luby, and F. Meyer auf der Heide, “Ffficient
PRAM Simulation on a Distributed Memory Maching,” Proc. 24th
ACM Sipmp. Theory of Computing, pp. 318-326, 1992,

[12] L. Kleinrock, Queneing Systenr: Volume 1: Theory. New York: John
Wiley & Sonas, 1975 :

[13] J. Kwi and A. Kumar, “Optimal Control of Arrivals to Queues
with Delayed Queue Length Information,” IEEE Trans, Aulematic
Control, vol. 40, pp. 1,444-1,450, 1995,

114] 1.G. Kurtz, Approximation of Popriation Processes, SIAM, 1981,

[15] R.Mirchandaney, 2. Towsiey, and JLA. Stankovie, ” Analysis of the

Effects of Delays on Load Sharing,” IEEE Trans. Computers, vol. 38,

pp. 1,513-1,525, 1989.

R. Mirchandaney, D. Towsley, and].A. Stankovie, “Adaptive

Load Sharing in Heterogenoous Disteibuted Systems,” [Paraltel

and Distributed Computing, vol. 9, pp. 3531-346, 1990,

[17] M. Mitzenmacher, “Conslant Time per Hdge Is Optimal on Rooted
Tree Networks,” Proc. Fightly ACM Sywmp, Paraliel Algorithims and
Architecnires, pp. 162-169, 1996

[18] M. Mitzenmacher, “Load Balancing and Density Dependent Jump
Markov Processes,” Proc. 37Kt IEEE Symp. Fonndntions of Computer
Science, pp. 213-222, 199,

[19] M. Mitzenmacher, “The Power of Two Choices in Randomized
Load Balancing,” PRI thesis, Univ. of Calilornia, Berkeley, Sepl.
19985,

[20f M, Mitzenmacher, “On the Analysis of Randomized Load
Balancing Schemes,” Theory of Compuling Systems, vol. 32,
PP 361-386, 1999,

21} M. Mitzenmacher, “Tight Thresholds for the Pure Lileral Rule,”
Technical Reporl 1997-011, DEC/SRC, 1997

[22] A. Shwarlz and A. Weiss, farge {Jeviations for Performnnce Analysis.
Chapman & IHall, 1995.

{16]

20

[23]

[24]

[23]

[26]

[27]

28]

(29

|IEEE TRANSACTIONS OM PARALLEL AND DISTRIBUTER SYSTEMS, VOL. 11, NO. 1, JANUARY 2000

G.D. Stamoulis and)N, Tsitsiklis, “The Efficiency of Groedy
Routing in Flypercubes and Butterflios,” [EEE Tran. Connn., vol. 42,
na. 11, pp. 3,051-3,061, 1994,

D. Towsley and R, erchaudancy, “The Effect of Conununication
1Jelays on the Performance of load Balancing Volicles in
Diistributed Syslems,” Proc. Secend it MCPR Werkshop, pp. 213-
226, 1988.

R. Weber, “On the Optimal Assigment of Customers ko Parallet
Servers,” [Applied Probabilify, vol 15, pp. 406-413, 1978.

w. Whitt, “Deciding Which Queue to Join: Some Counter-
examples,” Operafions Research, vol 34, pp. 55-62, 1986.

W. Winsten, “Optimality of the Shortest Line Discipline,” [
Applicd Prolubility, vol 14, pp. 181-189, 1977

N.C. Wormald, “Differential Fquations for Random Processes and
Random Graphs,” Annals Applied Probability, vol 5, pp. 1,217-1,235,
1995,

N.I2. Wvedenskaya, RL. Dobrushin, and BL Karpelovich, “Queue-
ing System with Selection of the Shortest of Twe Queues: An
Asymptotic Approach,” Problems of Information Pransutission,
vol. 32, pp. 15-27, 1996,

Michael Mitzenmacher received his BA from
Harvard Univarsity in 1991, studied mathematics
in England on a Churchill Fellowship, and then
completed his PhD in computer science at the
Unlversity of California Berkelsy in 1996, Ha is
an asslstant professor in computer science at
Harvard University. He worked for Digital Sys-
tems Research Center in Palo Alto, Califarnia,
before moving to Harvard in 1989, He currently
warks on error-correcting codss, stochastic bin-
packmg, and algorlthms for the World Wide Web. His general interests
include dynamic processes and randomized algorithms.

