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Abstract— Recent work has suggested enhancing Bloom fil-
ters by using a pre-filter, based on applying machine learning to
model the data set the Bloom filter is meant to represent. Here
we model such learned Bloom filters, clarifying what guarantees
can and cannot be associated with such a structure.

I. INTRODUCTION

An interesting paper, “The Case for Learned Index Struc-
tures” [5], recently appeared, suggesting that standard index
structures and related structures, such as Bloom filters, could
be improved by using machine learning to develop what they
authors dub learned index structures. Here we aim to provide
a more formal model for their variation of a Bloom filter,
which they call a learned Bloom filter, and clarify what
features it does and does not have. A key issue is that,
unlike standard Bloom filters, the performance of learned
Bloom filters depends on both the data set the Bloom filter
represents and the set membership queries made. Because of
this, the types of guarantees offered by learned Bloom filters
differ significantly from those of standard Bloom filters. We
formalize this issue below.

The performance of learned Bloom filters will therefore
necessarily be application dependent. Indeed, there may be
applications where they offer significant advantages over
standard Bloom filters. We view this work as a beginning step
in laying out a theoretical framework to understand learned
Bloom filters and related structures, with a particular goal
of pointing out issues that may affect their suitability for
real-world applications.

In what follows, we start by reviewing standard Bloom
filters and variants, following the framework provided by
the reference [2]. We then describe learned Bloom filters,
and attempt to provide a model which highlights both their
potential benefits and their limitations. In particular, we find
learned Bloom filters appear most useful when the query
stream can be modelled as coming from a fixed distribution,
which can be sampled during the construction.

II. REVIEW: BLOOM FILTERS
A. Definition of the Data Structure

A Bloom filter for representing a set S = {1, z2,..., 2y}
of n elements corresponds to an array of m bits, and
uses k independent hash functions hy,...,h; with range
{0,...,m — 1}. Typically we assume that these hash func-
tions are perfect; that is, each hash function maps each item
in the universe to independently and uniformly to a number
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in {0,...,m — 1}. Initially all array bits are 0. For each
element x € S, the array bits h;(x) are setto 1 for 1 <7 < k;
it does not matter if some bit is set to 1 multiple times. To
check if an item y is in S, we check whether all h;(y) are
set to 1. If not, then clearly y is not a member of S. If all
h;(y) are set to 1, we conclude that y is in S, although this
may be a false positive. A Bloom filter does not produce
false negatives.

There are various theoretical guarantees one can associate
with a Bloom filter. The simplest is the following. Let y
be an element of the universe such that y ¢ S, where y is
chosen independently of the hash functions used to create the
filter. A useful way to think of this is that an adversary can
choose any element y before the Bloom filter is constructed;
the adversary has no knowledge of the hash functions used,
but may know the set S. Let p be the fraction of bits set to
1 after the elements are hashed. Then

Pr(y yields a false positive) = p*.

Further, probabilistic analysis shows both that
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in the typical regime where m/n and k are constant. That is,
p is, with high probability, very close to its easily calculable
expectation, and thus we know (up to very small random
deviations, and with high probability over instantiations of
the Bloom filter) what the probability is than an element
y will be a false positive. Because of this, it is usual to
talk about the false positive probability of a Bloom filter;
in particular, it is generally referred to as though it is a
constant depending on the filter parameters, although it is
a random variable, because it is tightly concentrated around
its expectation.

Moreover, given a set of distinct query elements @ =
{y1,92,.-.,yy} with QN S = (0 chosen a priori before the
Bloom filter is instantiated, the fraction of false positives over
these queries will similarly be concentrated near p*. Hence
we may talk about the false positive rate of a Bloom filter,
which (when the query elements are distinct) is essentially
the same as the false positive probability. (When the query
elements are not distinct, the false positive rate may vary
significantly, depending on on the distribution of the number
of appearances of elements and which ones yield false
positives; we focus on the distinct item setting here.) In
particular, the false positive rate is a priori the same for any



possible query set (). Hence one approach to finding the false
positive rate of a Bloom filter empirically is simply to test a
random set of query elements (that does not intersect .S) and
find the fraction of false positives. Indeed, it does not matter
what set () is chosen, as long as it is chosen independently
of the hash functions.

We emphasize that, as we discuss further below, the term
false positive rate often has a different meaning in the
context of learning theory applications. This difference of
terminology is a possible point of confusion in [5], and care
must be taken in understanding how the term is being used.

B. Additional Bloom Filter Benefits and Limitations

For completeness, we relate some of the other benefits and
limitations of Bloom filters. More details can be found in [2].

We have assumed in the above analysis that the hash
functions are fully random. As fully random hash functions
are not practically implementable, there are often questions
relating to how well the idealization above matches the real
world for specific hash functions. In practice, however, the
model of fully random hash functions appears reasonable in
many cases; see [3] for further discussion on this point.

If an adversary has access to the hash functions used,
or to the final Bloom filter, it can find elements that lead
to false positives. One must therefore find other structures
for adversarial situations. A theoretical framework for such
settings is developed in [8]. Variations of Bloom filters,
which adapt to false positives and prevent them in the future,
are described in [1], [7]; while not meant for adversarial
situations, they prevent repeated false positives with the same
element.

One of the key advantages of a standard Bloom filter
is that it is easy to insert an element (possibly slightly
changing the false positive probability), although one cannot
delete an element without using a more complex structure,
such as a counting Bloom filter. However, there are more
recent alternatives to the standard Bloom filter, such as the
cuckoo filter [4], which can achieve the same or better
space performance as a standard Bloom filter while allowing
insertions and deletions. If the Bloom filter does not need
to insert or delete elements, a well-known alternative is to
develop a perfect hash function for the data set, and store
a fingerprint of each element in each corresponding hash
location (see, e.g., [2] for further explanation); this approach
reduces the space required by approximately 30%.

III. LEARNED BLOOM FILTERS

A. Definition of the Data Structure

We now consider the learned Bloom filter construction
offered in [5]. We are given a set of positive keys K that
correspond to set to be held in the Bloom filter — that is,
KC corresponds to the set S in the previous section. We are
also given a set of negative keys U/ for training. We then
train a neural network with D = {(x;,y; = 1) | =; €
K} U {(x;,y; = 0) | x; € U}; that is, they suggest using a

neural network on this binary classification task to produce
a probability, based on minimizing the log loss function

L= Z ylog f(x) + (1 —y)log(1 — f(x)),

(z,y)€D

where f is the learned model from the neural network. Then
f(x) can be interpreted as a probability that = is a key from
the set. Their suggested approach is to choose a threshold 7
so that if f(z) > 7 then the algorithm returns that x is in
the set, and no otherwise. Since such a process may provide
false negatives for some keys in K that have f(z) < 7, a
secondary structure — such as a smaller standard Bloom filter
for such keys — can be used to ensure there are no false
negatives, thereby matching this important characteristic of
the standard Bloom filter.

In essence, [5] suggests using a pre-filter ahead of the
Bloom filter, where the pre-filter comes from a neural
network and estimates the probability an element is in the
set, allowing the use of a smaller Bloom filter. Performance
improves if the size to represent the learned function f and
the size of the smaller backup filter for false negatives is
smaller than the size of a corresponding Bloom filter with the
same false positive rate. While the idea of layering multiple
filters has appeared in previous work, this approach appears
novel. Indeed, the more typical setting is for the Bloom filter
itself to be used as a pre-filter for some other, more expensive
filtering process. Of course the pre-filter here need not come
from a neural network; any approach that would estimate the
probability an input element is in the set could be used.

B. Defining the False Positive Probability: High Level Issues

The question remains how to determine or derive the
false positive probability for such a structure, and how to
choose an appropriate threshold 7. One approach would be
to empirically find the false positive rate over a test set, and
this appears to be what has been done in [5]. This approach
is, as we have stated, suitable for a standard Bloom filter,
where the false positive rate is guaranteed to be close to its
expected value for any test set, with high probability. But as
we explain in the next subsection, this methodology requires
significant additional assumptions in the learned Bloom filter
setting.

Before formalizing appropriate definitions, to frame the
issue it is helpful to think of an adversarial situation, although
as we discuss below an adversary is not strictly necessary.
An adversary might naturally be able to find items for which
Pr(f(y) > 7) is surprisingly large based on their own
analysis of the data, even without access to the structure
f that is finally determined. That is, consider the following
intuition. The function f is designed to to take advantage
of structure in the set /C, as well as the information in the
collection of non-set elements /. An adversary, knowing K
and/or U themselves, might be able to design elements that
are similar to the elements of K. An element similar to the
elements of K should have a large f(y) value, and hence be
more likely to yield a false positive.



More formally, let us assume the adversary knows K
and/or U, and chooses an element y ¢ K to test. In the
standard Bloom filter setting, the array of bits that constitutes
the filter is generated from random hash values, and so
knowing the set S tells the adversary nothing about what
y value might be most likely to yield a false positive.
All y values are equivalent (as long as y ¢ S). In the
learned Bloom filter setting, knowing K and ¢/ may give the
adversary information about the resulting index function f,
even if this knowledge is just that f is designed to give higher
values to elements similar to K and lower values to elements
in U. The adversary need not even know the specific method
used to determine f; the knowledge of the data alone may
allow the adversary to choose a y value with a large expected
f(y) value, so that Pr(f(y) > 7) > ¢; that is the probability
of a false positive is larger than expected.

While we have stated this problem in terms of an adver-
sary, one does not need to posit an adversary to see that this
situation might arise naturally in standard data scenarios. All
we need to suppose is that the query set Q of elements that
one uses to query the Bloom filter are similar to the set K
in some manner that might be captured by f, so that the
expected value of f(y) for y € Q skews large. (Here we
assume Q is disjoint from /C, as we are interested in the rate
of false positives, not true positives.)

An example based on ranges may be helpful. Suppose the
universe of elements is the range [0, 1000000), and the set K
of elements to store in our Bloom filter consists of a random
subset of elements from the range [1000,2000], say half
of them, and 500 other random elements from outside this
range. Our learning algorithm might determine that a suitable
function f is f(y) is large (say f(y) ~ 1/2) for elements in
the range [1000, 2000] and close to zero elsewhere, and then
a suitable threshold might be 7 = 0.4. The resulting false
positive rate will depend substantially on what elements are
queried. If Q consists of elements primarily in the range
[1000, 2000], the false positive rate will be quite high, while
if @ is chosen uniformly at random over the whole range,
the false positive rate will be quite low. The main point is
that the false positive rate, unlike in the setting of a standard
Bloom filter, is highly dependent on the query set, and as
such is not well-defined independently of the queries, as it
is for a standard Bloom filter.

Indeed, it seems plausible that in many situations, the
query set Q might indeed be similar to the set of elements
KC, so that f(y) for y € Q might often be above naturally
chosen thresholds. For example, in security settings, one
might expect that queries for objects under consideration
(URLs, network flow features) would be similar to the set of
elements stored in the filter. The key here is that, unlike in the
Bloom filter setting, the false positive probability for a query
y can depend on y, even before the “data structure”, which
in this case corresponds to the function f, is instantiated.

It is worth noting, however, that the problem we point
out here can possibly be a positive feature in other settings;
it might be that the false positive rate is remarkably low if
the query set is suitable. Again, one can consider the range

example above where queries are uniform over the entire
space; the query set is very unlikely to hit the range where
the learned function f yields an above threshold value in
that setting for an element outside of IC. More generally, one
may have query sets Q where the values f(y) for y € Q are
smaller than one might expect. The key point again remains
that the false positive probability is dependent on the data
and the query in what may not be predictable ways, in sharp
contrast to standard Bloom filters.

C. Defining the False Positive Probability, and Analysis from
Empirical Data

We can formalize (at least partially) settings where we can
obtain good performance from a learned Bloom filter, given
enough data. The framework below follows standard lines,
but provides definitions to capture the high level ideas given
above. We first formalize the construction of [5].

Definition 1: A learned Bloom filter on a set of positive keys
K and negative keys U is a function f : U — [0,1] and
threshold T, where U is the universe possible query keys,
and an associated standard Bloom filter B, referred to as a
backup filter. The backup filter is set to hold the set of keys
{#z : z € K, f(#) < 7}. For a query y, the learned Bloom
filter returns that y € K if f(y) > 7, orif f(y) < 7 and
the backup filter returns that y € K. The learned Bloom filter
returns y ¢ K otherwise.

Note that the size of a learned Bloom filter corresponds
to size used to represent the function f and the size of the
backup filter B, which we denote by |f|+]|B|. In cases where
the learned Bloom filter is effective, one expects f to have a
small representation, and the number of false negatives from
KC in the backup filter to be a reasonably small fraction of
K.

The learned Bloom filter as defined has no false negatives,
due to the backup filter. We can define the false positive
rate of a learned Bloom filter with respect to a given query
distribution.

Definition 2: A false positive rate on a query distribution D
over U — K for a learned Bloom filter (f, T, B) is given by

Prfe)27)+ (1= Pr(fy) > 7)F(B)

where F(B) is the false positive rate of the backup filter B.
While technically F'(B) is itself a random variable, as dis-
cussed previously, the false positive rate is well concentrated
around its expectations, which depends only on the size of
the filter | B| and the number of false negatives from K that
must be stored in the filter, which depends on f. Hence we
may naturally refer to the false positive rate of the learned
Bloom filter as being determined by f, 7, and |B| rather
than on B itself. That is, where the meaning is clear, we
may consider the false positive rate on a query distribution
for a learned Bloom filter with associated (f,7) to be

Pr(7y) = 1)+ (1= Pr(f() = 7)E[F(B)]

where the expectation E[F(B)] is meant to over instantia-
tions of the Bloom filter with given size |B).



Given sufficient data, we can determine an empirical false
positive rate on a test set, and use that to predict future
behavior. Under the assumption that the test set has the
same distribution as future queries, standard Chernoff bounds
provide that the empirical false positive rate will be close
to the false positive rate on future queries, as both will
be concentrated around the expectation. In many learning
theory settings, this empirical false positive rate appears to
be referred to as simply the false positive rate; we emphasize
that false positive rate, as we have explained above, typically
means something different in the Bloom filter literature.

Definition 3: The empirical false positive rate on a set 7,
where T N K = (), for a learned Bloom filter (f, T, B) is the
number of false positives from T divided by |T|.

Theorem 4: Consider a learned Bloom filter (f, T, B), a test
set T, and a query set Q, where T and Q are both determined
from samples according to a distribution D. Let X be the
empirical false positive rate on |T|, and Y be the empirical
false positive rate on Q. Then

Pr(|X — V| > ¢) < e min(TLIQD)

Proof: Let @ = Pry.p(f(y) > 7), and § be false
positive rate for the backup filter. We first show that for 7
and X that

Pr(|X — (a+ (1 —a)B)| > e) < 2e 1T,

This follows from a direct Chernoff bound (e.g., [6][Exercise
4.13]), since each sample chosen according to D is a false
positive with probability a4 (1—«)3. A similar bound holds
for @ and Y.

We can therefore conclude

Pr(|X —(a+ (1 -a)f)| = ¢/2)

+Pr(|Y = (a+ (1 —a)f)[ > ¢/2)
< 26~ ITI/4 4 ge=<*IQI/A,

Pr(X —Y|>¢) <

giving the desired result. ]

Theorem 4 also informs us that it is reasonable to find
a suitable parameter 7, given f, by trying a suitable finite
discrete set of values for 7, and choosing the best size-
accuracy tradeoff for the application. By a union bound, all
choices of T will perform close to their expectation with high
probability.

We note that while Theorem 4 requires the test set and
query set to come from the same distribution D, the negative
examples U do not have to come from that distribution. Of
course, if negative examples ¢/ are drawn from D, it may
yield a better learning outcome f.

If the test set and query set distribution do not match,
because for example the types of queries change after the
original gathering of test data 7, Theorem 4 offers lim-
ited guidance. Suppose 7T is derived from samples from
distribution D and Q from another distribution D’. If the
two distributions are close (say in L; distance), or, more
specifically, if the changes do not significantly change the
probability that a query y has f(y) > 7, then the empirical

false positive rate on the test set may still be useful. However,
in practice it may be hard to provide such guarantees on the
nature of future queries. This explains our previous statement
that learned Bloom filters appear most useful when the query
stream can be modelled as coming from a fixed distribution,
which can be sampled during the construction.

We can return to our previous example to understand these
effects. Recall our set of elements is a random subset of
half the elements from the range [1000, 2000] and 500 other
random elements from the range [0, 1000000). Our learned
Bloom filter has f(y) > 7 for all y in [1000,2000] and
f(y) < 7. Our back filter will therefore store 500 elements. If
our test set is uniform over [0, 1000000) (excluding elements
stored in the Bloom filter), our false positive rate from
elements with too large an f value would be approximately
0.0002; one could choose a back filter with roughly the same
false positive probability for a total empirical false positive
probability of 0.0004. The size of the backup filter would
need to be slightly larger than half the size of a standard
Bloom filter achieving a false positive probability of 0.0004;
although it holds half the elements, it must achieve half the
positive rate, adding almost 1.5 extra bits per element stored.
If, however, our queries are uniform over a restricted range
[0,100000), then the false positive probability would jump
to 0.0022 for the learned Bloom filter.

D. Additional Learned Bloom Filter Benefits and Limitations

Learned Bloom filters can easily handle insertions into /C
by adding the element, if is does not already yield a (false)
positive, to the backup filter. Such changes have a larger
effect on the false positive probability than for a standard
Bloom filter, since the backup filter is smaller. Elements
cannot be deleted naturally from a learned Bloom filter.
A deleted element would simply become a false positive,
which (if needed) could possibly be handled by an additional
structure.

As noted in [5], it may be possible to re-learn a new
function f if the data set changes substantially via insertions
and deletion of elements from K. Of course, besides the time
needed to re-learn a new function f, this requires storing
the original set somewhere, which may not be necessary for
alternative schemes. Similarly, if the false positive probability
proves higher than desired, one can re-learn a new function
f; again, doing so will require access to K, and maintaining
a (larger) set U of negative examples.

IV. CONCLUSION

The recent work on learned index structures [5], including
the learned Bloom filter, appears to be generating interest,
and is well worthy of further attention. However, in order
to properly compare the learned index approach against
other approaches, it will prove useful to develop a suitable
theoretical foundation for understanding their performance,
in order to better recognize where the approach can provide
gains and to avoid possible pitfalls. Here we have attempted
to clarify a particular issue in the Bloom filter setting, namely
the dependence of what is referred to as the false positive



rate in [5] on the query set, and how it might affect the
applications this approach is suited for. This discussion is
meant to encourage users to take care to make sure they
realize all of the implications of the new approach before
adopting it. In particular, we point out that one should
also consider variations on Bloom filters for comparison;
the cuckoo filter, in particular, already uses less space than
standard Bloom filters (for reasonable false positive rates),
has similar theoretical guarantees, and allows for insertions
and deletions.

We hope richer theoretical foundations may follow. Future
work may consider relaxing requirements on the relationship
between the test set and the query set while achieving
some form of guarantee, or, for specific settings, trying
to formally prove the behavior of the learned function f.
Known approaches, based on for example VC dimension
or Rademacher complexity, may apply, although the setting
is slightly different than many learning applications in that
there is a “fixed” set of positive instances that are initially
given in the Bloom filter setting.
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