On Decentralized Incentive Compatible Mechanisms for Partially Informed Environments

by Ahuva Mu’alem
June 2005

presented by Ariel Kleiner and Neil Mehta
Contributions

• Brings the concept of *Nash Implementation* (NI) to the CS literature.
 – Not about learning
• Overcomes a number of limitations of VCG and other commonly-used mechanisms.
• Introduces concepts of *partial information* and *maliciousness* in NI.
• Provides instantiations of results from NI that are relevant to CS.
Overview

• Extension of Nash Implementation to decentralized and partial information settings
• Instantiations of elicitation and trade with partial information and malicious agents
• Applications to peer-to-peer (P2P) networking and shared web cache
Motivation

• Standard models of Algorithmic Mechanism Design (AMD) and Distributed AMD (DAMD) assume
 – rational agents
 – quasi-linear utility
 – private information
 – dominant strategy play

• This paper seeks to relax these last two assumptions in particular.
Motivation: Dominant Strategies

• Dominant Strategy Play: Each player has a best response strategy regardless of the strategy played by any other player
 – Corresponds to Private Information / Weak Information Assumption
 – Vickrey-Clarke-Groves (VCG) mechanisms are the only known general method for designing dominant-strategy mechanisms for general domains of preferences with at least 3 different outcomes. (Roberts’ classical impossibility result)
Motivation: Review of VCG

Def. [VCG mechanism] Implement efficient outcome,
\[k^+ = \max_k \sum_j v_j(k, \hat{\theta}_j), \]
and compute transfers
\[t_i(\hat{\theta}) = \sum_{j \neq i} v_j(k^{-i}, \hat{\theta}_j) - \sum_{j \neq i} v_j(k^+, \hat{\theta}_j) \]

where \(k^{-i} = \max_k \sum_{j \neq i} v_j(k, \hat{\theta}_j) \).

Thm. The VCG mechanism is strategyproof, efficient, and:
(1) individual-rational (IR), i.e. utility from participation \(\geq 0 \), for all reports, when \(V(N) \geq V(N \setminus i) \)

(2) no-deficit (ND), i.e. total payments \(> 0 \), for all instances, when no positive externalities and
\[\sum_{j \neq i} v_j(k^{-i}) \geq \sum_{j \neq i} v_j(k^+). \]
Motivation: Restrictions of VCG

- In distributed settings, without available subsidies from outside sources, VCG mechanisms are not budget-balanced.
- Computational hardness
Motivation: Additional Restrictions

• Social goal functions implemented in dominant strategies must be monotone.
 – Very restrictive - (e.g. Rawls’s Rule)
• Recent attempts at relaxing this assumption result in other VCG or “almost” VCG mechanisms.
Background:
Complete Information Setting

- set of agents $N = \{1, \ldots, n\}$ each of which has a set S_i of available strategies as well as a type θ_i

- set of outcomes $A = \{a, b, c, d, \ldots\}$

- social choice rule f maps a vector of agent types to a set of outcomes

- All agents know the types of all other agents, but this information is not available to the mechanism or its designer.
Background: Complete Information Setting

• A mechanism defines an outcome rule \(g \) which maps joint actions to outcomes.

• The mechanism implements the social choice rule \(f \) if, for any set of agent types, an equilibrium exists if and only if the resulting outcome is prescribed by the social choice rule.

• We will primarily consider subgame-perfect equilibrium (SPE) implementation with extensive-form games.
Background: SPE-implementation

• Advantages of SPE-implementation:
 – relevant in settings such as the Internet, for which there are standards-setting bodies
 – generally results in “non-artificial constructs” and “small” strategy spaces; this reduces agent computation
 – sequential play is advantageous in distributed settings
 – resulting mechanisms are frequently decentralized and budget-balanced
Theorem (Moore and Repullo): For the complete information setting with two agents in an economic environment, any social choice function can be implemented in the subgame-perfect Nash equilibria of a finite extensive-form game. [This result can be extended to settings with more than two agents.]
Background: SPE-implementation

Stage 1: elicitation of Bob’s type, θ_B^T

Stage 2: elicitation of Alice’s type, θ_A^T

Stage 3: Implement the outcome defined by the social choice function: $f(\theta_A^T, \theta_B^T)$.
Background: SPE-implementation

We require that $p, q, F > 0$ and choose (a, p) and (b, q) here such that

$$v_A(a, \theta_A') - v_A(b, \theta_A') > p - q > v_A(a, \theta_A) - v_A(b, \theta_A)$$

$\iff v_A(a, \theta_A') - p > v_A(b, \theta_A') - q$

$v_A(b, \theta_A) - q > v_A(a, \theta_A) - q$

Outcome

- $(a, p+F, -F)$: fine paid by Alice
- $(b, q+F, F)$: fine paid by Bob

- challenge valid
- challenge invalid
Example: Fair Assignment Problem

- Consider two agents, Alice and Bob, with existing computational loads L_A^T and L_B^T.
- A new task of load $t>0$ is to be assigned to one agent.
- We would like to design a mechanism to assign the new task to the least loaded agent without any monetary transfers.
- We assume that both Alice and Bob know both of their true loads as well as the load of the new task.
Example: Fair Assignment Problem

- By the Revelation Principle, the fair assignment social choice function cannot be implemented in dominant strategy equilibrium.

- However, assuming that load exchanges require zero time and cost, the desired outcome can be easily implemented in SPE.
Example: Fair Assignment Problem

Alice

Agree

DONE

Refuse

Bob

Perform

DONE

Exchange then Perfrom

DONE
Example: Fair Assignment Problem

• However, the assumption of no cost for load exchanges is unrealistic.

• We now replace this assumption with the following assumptions:
 – The cost of assuming a given load is equal to its duration.
 – The duration of the new task is bounded: t<T.
 – The agents have quasilinear utilities.

• Thus, we can now adapt the general mechanism of Moore and Repullo.
Example:
Fair Assignment Problem

Stage 1: elicitation of Bob’s load
Stage 2: elicitation of Alice’s load
Stage 3: Assign the task to the agent with the lower elicited load.
Example: Fair Assignment Problem

from stage 1

Alice

Bob

LA’ = LA

LA’ ≤ LA

LA’ ≠ LA

ASSIGN TASK (STAGE 3)

Alice

Bob

LA’ = LA

LA’ ≤ LA

LA’ ≠ LA

challenge valid

challenge invalid

• Alice is assigned new task.
• No load transfer occurs.
• Alice pays ϵ to Bob.
• DONE

• Alice is assigned new task.
• Alice transfers original load to Bob.
• Alice pays Bob $L_A - 0.5 \cdot \min\{\epsilon, L_A - L_A'\}$
• Alice pays ϵ to mechanism.
• Bob pays fine of $T + \epsilon$ to mechanism.
• DONE
Definition: An agent B is p-informed about agent A if B knows the type of A with probability p.

- This relaxation of the complete information requirement renders the concept of SPE-implementation more amenable to application in distributed network settings.
- The value of p indicates the amount of agent type information that is stored in the system.
Elicitation: Partial Information Setting

• Modifications to complete-information elicitation mechanism:
 – use iterative elimination of weakly dominated strategies as solution concept
 – assume \(L_A^T, L_B^T \leq L \)
 – replace the fixed fine of \(\varepsilon \) with the fine
 \[
 \beta_p = \max\{L, T \cdot (1-p)/(2p-1)\} + \varepsilon
 \]
Example:
Fair Assignment Problem

from stage 1

Alic

\(e_{LA} \)

Bob

\(L_A' \leq L_A \)

\(L_A' = L_A \)

\(L_A' \neq L_A \)

ASSIGN TASK (STAGE 3)

\(\text{challenge valid} \)

\(\text{challenge invalid} \)

- Alice is assigned new task.
- No load transfer occurs.
- Alice pays \(\beta_p \) to Bob.
- DONE

- Alice is assigned new task.
- Alice transfers original load to Bob.
- Alice pays Bob \(L_A - 0.5 \cdot \min\{\beta_p, L_A - L_A'\} \)
- Alice pays \(\beta_p \) to mechanism.
- Bob pays fine of \(T + \beta_p \) to mechanism.
Elicitation: Partial Information Setting

Claim: If all agents are p-informed, with $p > 0.5$, then this elicitation mechanism implements the fair assignment goal with the concept of iterative elimination of weakly dominated strategies.
Elicitation: Extensions

• This elicitation mechanism can be used in settings with more than 2 agents by allowing the first player to “point” to the least loaded agent. Other agents can then challenge this assertion in the second stage.

• Note that the mechanism is almost budget-balanced: no transfers occur on the equilibrium path.
Application: Web Cache

• Single cache shared by several agents.
• The cost of loading a given item when it is not in the cache is C.
• Agent i receives value v_i^T if the item is present in the shared cache.
• The efficient goal requires that we load the item iff $\sum v_i^T \geq C$.
Application: Web Cache

• Assumptions:
 – agents’ future demand depends on their past demand
 – messages are private and unforgeable
 – an acknowledgement protocol is available
 – negligible costs
 – Let $q_i(t)$ be the number of loading requests initiated for the item by agent i at time t. We assume that $v_i^T(t) = \max\{V_i(q_i(t-1)), C\}$. $V_i(\cdot)$ is assumed to be common knowledge.
 – Network is homogeneous in that if agent j handles k requests initiated by agent i at time t, then $q_i(t) = k\alpha$.
Application: Web Cache

• For simplicity, we will also assume
 – two players
 – $v_i^T(t) =$ number of requests initiated by i and observed by any informed j (i.e., $\alpha = 1$ and $V_i(q_i(t-1)) = q_i(t-1)$).
Application: Web Cache

Stage 1: elicitation of Bob’s value, \(v_B^T(t) \)

Stage 2: elicitation of Alice’s value, \(v_A^T(t) \)

Stage 3: If \(v_A + v_B < C \), then do nothing.

Otherwise, load the item into the cache, with Alice paying
\[
p_A = C \cdot \frac{v_A}{v_A + v_B}
\]
and Bob paying
\[
p_B = C \cdot \frac{v_B}{v_A + v_B}.
\]
Application: Web Cache

from stage 1

Alice

Bob

v_A = v_A

$v_A' \geq v_A$

$v_A' \neq v_A$

COMPLETE STAGE 3

Bob

• Alice pays C to finance loading of item into cache.
• Alice pays $\beta_p = \max\{0, C \cdot (1-2p)/p\} + \epsilon$ to Bob.
• DONE

provides v_A' valid records (i.e., validates challenge)
otherwise

• Bob pays C to finance loading of item into cache.
• DONE
Application: Web Cache

Claim: It is a dominated strategy to overreport one’s true value.

Theorem: A strategy that survives iterative elimination of weakly dominated strategies is to report the truth and challenge only when one is informed. The mechanism is efficient and budget-balanced and exhibits consumer sovereignty, positive transfer, and individual rationality.
Seller and Buyer: Overview

• One good
• Two states: High and Low
• Buyers and sellers have value s.t. \(l_S < h_S < l_b < h_b \)
 – Values are observable to agents, but not to mechanism
• Price equals the average of the buyer’s and seller’s value in each state
 – State H: \(b_v = \frac{h_b + l_b}{2} \)
 – State L: \(b_l = \frac{h_s + l_s}{2} \)
• Prices are set s.t. trade is feasible regardless of state
 – i.e., \(p_l, p_h \in (h_S, l_b) \)
• Payoffs are \(u_b = x v_b - t, u_s = t - x v_s \)
Seller and Buyer: Payoffs

Payoffs are written as:
\((U_{Buyer}, U_{Seller})\)

\[\text{Buyer} \quad \text{Offer } p_I \quad (l_b-p_I, p_I-l_s) \quad \text{Trade} \quad (l_b-p_h, p_h-l_s) \quad \Delta, -\Delta \]

\[\text{Buyer} \quad \text{Offer } p_H \quad (h_b-p_I, p_I-h_s) \quad \text{No Trade} \quad (h_b-p_h, p_h-h_s) \quad \Delta, -\Delta \]

\[\text{Seller} \quad \text{Offer } p_I \quad (l_b-p_I, p_I-l_s) \quad \text{Trade} \quad (l_b-p_h, p_h-l_s) \quad \Delta, -\Delta \]

\[\text{Seller} \quad \text{Offer } p_H \quad (h_b-p_I, p_I-h_s) \quad \text{No Trade} \quad (h_b-p_h, p_h-h_s) \quad \Delta, -\Delta \]

\[\text{Nature} \quad L \quad \text{Offer } p_I \quad (l_b-p_I, p_I-l_s) \quad \text{Trade} \quad (l_b-p_h, p_h-l_s) \quad \Delta, -\Delta \]

\[\text{Nature} \quad H \quad \text{Offer } p_H \quad (h_b-p_I, p_I-h_s) \quad \text{No Trade} \quad (h_b-p_h, p_h-h_s) \quad \Delta, -\Delta \]
Seller and Buyer: Mechanism

- The mechanism defines a transfer, Δ, from the seller to the buyer, that occurs when no trade occurs
- $\Delta = l_b - p_h + \varepsilon$
- Without this Δ, (i.e., with only p_l and p_h), no mechanism exists that Nash-implements the market
Claim 4: Given the state, there exists a unique subgame perfect equilibrium.
Seller and Buyer: Maliciousness

• What would happen if the buyer chose to not trade, even if the true state were H?
 – This is a form of punishment, as the buyer forgoes utility of $h_b - l_b - \varepsilon$
 – Why might the buyer do this?

• Definition: A player is q-malicious if his payoff equals:

 $$(1-q) \text{(his private surplus)} - q \text{(the sum of other players’ surpluses)}, \quad \forall \ q \text{ in } [0,1].$$

• (That is, higher q’s are associated with more malicious players)
Seller and Buyer: Maliciousness

• **Claim:** For \(q < 0.5 \), the unique subgame perfect equilibrium for \(q \)-malicious players is unchanged.

• Do we like this definition?
• When do we observe \(q \)-maliciousness?
• Could we have arrived at a more principled definition by considering maliciousness as a rational strategy in repeated games?
Application: P2P Networking

- Suppose there are three agents: Bob, Alice and Ann
- Bob wants file f but doesn’t know if Alice has the file, or if Ann has the file (or if both do).
- A Problem of imperfect information
Application: P2P Networking

• If Bob copies a file \(f \) from Alice, Alice then knows that Bob holds a copy of the file, and stores this information as a certificate \((Bob, f)\)
 – Certificates are distributable
 – An agent holding the certificate is “informed”

• Assume:
 – System, file size homogeneous
 – Agent gains \(V \) for downloading a file
 – Only cost is \(C \) for uploading a file
 – \(up_i \) and \(down_i \) are the number of up- and down-loads by agent \(i \)
 – Agent \(i \) enters the system only if \(up_i \cdot C < down_i \cdot V \)
Application: P2P Networking Mechanism

- 3 p-informed agents: B, A₁, A₂
- B is directly connected to A₁ and A₂

Case 1: B knows that an agent A₁ has the file
 - i.e., B has the certificate (A₁,f)
 B can apply directly to agent A₁ and request the file.
 If A₁ refuses, then B can seek court enforcement of his request
Application: P2P Networking Mechanism

• Case 2: B doesn’t know which agent has the file

Stage 1: Agent B requests the file f from A₁
- If A₁ reports “yes,” B downloads f from A₁
- Otherwise
 - If A₂ agrees, goto next stage
 - Else (challenge) A₂ sends a certificate (A₁, f) to B
 - If the certificate is correct, then \(t(A₁, A₂) = \beta p \)
 » \(t(A₁, A₂) \) is the transfer from A₁ to A₂
 - If the certificate is incorrect, \(t(A₂, A₁) = |C| + \varepsilon \)

Stage 2: Agent B requests the file f from A₂. Switch the roles of A₂ and A₁.
Seller and Buyer: Payoffs

Payoffs are written as: (U_{Buyer}, U_{Seller})

A1
- "Yes" $(V, C, 0)$
- "No" $A2$
 - Agree $(V, 0, C)$
 - "Yes" $(V, -\beta_p + C, \beta_p)$
 - "No" $A2$
 - Challenge $(V, -\beta_p + C, \beta_p)$
 - True $(0, |C| + \varepsilon, -|C| - \varepsilon)$
 - False $(0, -|C| - \varepsilon, |C| + \varepsilon)$
 - Challenge $(V, -\beta_p + C, \beta_p)$
 - True $(0, |C| + \varepsilon, -|C| - \varepsilon)$
 - False $(0, -|C| - \varepsilon, |C| + \varepsilon)$
Application: P2P Networking Mechanism

- **Claim:** *The basic mechanism is budget-balanced (transfers always sum to 0) and decentralized*

- **Theorem:** For $\beta_p = |C|/p + \varepsilon$, $p \in (0,1]$, one strategy that survives weak domination is to say “yes” if A_i holds the file, and to only challenge with a valid certificate. In equilibrium, B downloads the file if some agent holds it, and there are no transfers.
Application: P2P Networking Chain Networks

• $i+1$ p-informed agents: B, A_i
• B is directly connected to A_1, and each A_i to A_{i+1}
• Assume an acknowledgment procedure to confirm receipt of a message
• Fine $\beta p + 2\varepsilon$ is paid by an agent for not properly forwarding a message
• **Stage i**
 – Agent B forwards a request for file f to A_i (through $\{A_k\}_{k \leq i}$)
 – If A_i reports “yes,” B downloads f from A_i
 – If A_i reports “no”
 • If A_j sends a correct certificate (A_k, f) to B, then $t(A_k, A_j) = \beta p$
 • Otherwise, $t(A_k, A_j) = C + \varepsilon$
 If A_j reports he has no copy of the file, then any agent in between can challenge
Discussion

• What is the enforcement story in a decentralized setting? Who implements the mechanism and outcome?
• Motivation was in part budget-balancing. We still rely on transfers, but off the equilibrium path. How are transfers implemented?
• Subgame perfection assumes agent rationality.
• We presently have mechanisms only for \(p > 0.5 \) and \(q < 0.5 \), and we do not consider information maintenance costs or incentives for information propagation (e.g., in the P2P setting).
• Settings with more than 2 agents: what if multiple malicious agents collude?