Mutable Multilevel CSR Representation for Graph Databases

Peter Macko
Harvard University
& Oracle Corporation
The Two Sides

Whole-Graph Analysis
- Grace [ATC ‘12]
- GraphChi [OSDI ‘12]
- GraphLab [OSDI ‘10]
- Green-Graph [OSDI ‘10]
- Pregel [SIGMOD ‘10]
- Trinity [SIGMOD ‘13]
...

OLTP
- DEX [IDEAS ‘12]
- Neo4j

Can we do well at both?
Compressed Sparse Row (CSR)

Node ID → Adj. list start

Adjacency Lists

- Used by most analysis approaches
- All adjacency lists are stored in a single array, which is great for cache locality
- There are tricks to make this writable – usually at the cost of having to rebuild the data structure in order to get good read performance
What we are thinking...

Writable CSR Representation
What we are thinking...

OLTP

Writable Graph Representation

Clustering

Read-Only CSR Representation
What we are thinking...

OLTP

Writable Graph Representation

Level 1 CSR

Clustering

Read-Only CSR Representation
What we are thinking...

OLTP

Writable Graph Representation

PageRank

Level 2 CSR

Clustering

Level 1 CSR

Level 0 CSR
Challenges

How do you represent the vertex map?

- (0, 2) means Level 0, array index 2
- How do you make it memory efficient?
 - Segment trees? COW? Continuations?
Challenges

How do you determine the end of an adjacency list?

- Store its length in the vertex map: 1.5% overhead
- Set a bit on the last entry: 12.8% overhead
- Store its length at the beginning of each adj. list: 10.1% overhead

- Triangle counting on a graph with 10 mil. nodes, 50 mil. edges
- Quad-core Intel Core i5 3.30GHz, 16 GB RAM (1333 MHz)
- Overheads relative to a standard read-only CSR implementation
Challenges

What is a good representation for the intermediate CSR levels?

- Memory-efficient representation?
- Ends of adjacency lists?
- Deletions?
 - Deletion vectors? Normal LSM-like approach?
- Properties?

What is a good representation for the writable representation?
Questions? Feedback?

pmacko@eecs.harvard.edu
Preliminary Results

- Benchmarked triangle counting (by itself), measured overhead relative to a standard, read-only CSR
- 10 mil. nodes, 50 mil. edges, quad-core Intel Core i5 3.30GHz, 16 GB RAM

~20.9% overhead

Triangle Counting → Level 1 CSR

1459 ms

~1.5% overhead

Triangle Counting → Level 0 CSR

1225 ms