Amorphous Computing

http://www.swiss.ai.mit.edu/projects/amorphous
Characteristics

• Large number of computing units.
• Limited computational power.
• Fail with non-negligible probability.
• No predetermined arrangement in space.
• No global synchronization.
• Limited distance communication.
• **Goal:** Coherent robust global behavior.
Topics Covered

• Wave Propagation / Gradients
• Pattern Formation
 – Growing Point / Rules and Markers
 – Cell Shape Change
• Information Conservation
• Cellular Computing
• Nanoscale Computing
Wave Propagation / Gradients

- Common in biological systems (e.g., Hydra)
- Gives sense of position / distance.
Pattern Formation

• Use generative programs / not blueprints.
• Same in nature (e.g., cells).
• This is not programming of global behavior!
Growing Point Language

• High-level actions:
 – Pheromone secretion
 – Propagation according to tropism
 – Termination

• Tropism to pheromone concentration
 – towards / away / keep constant

• Translated to a low-level particle language.
Growing Point Language

• Thesis: any planar graph can be constructed.
 – Is that important?
 – What is the quality of the end result?
 – What is the size of the program?
 – How is the graph described?
 – What share of the drawing is actually done by the computing particles and what by the GPL programmer?
Rules and Markers

• Event-driven computation with local state.

• Events:
 – “message” received & “#” more hops to go
 – “marker” is set & expires in “#” time units

• Conditions:
 – “marker” is set / cleared

• Actions:
 – Set / clear “marker”
 – Send “message” for “#” hops
Cell Shape Change

- Cells interact by pulling and pushing.

Figure 5: Simulation images from folding a cup
Figure 4. Control of shape changes in a ring of cells, based on the mechanical cell models of [10]. Each cell has a simple programmed behavior and react to stresses in its neighbors.
Biologically-Inspired Primitives

• We’ve seen gradients, but what else is there?
• For local behavior…
 – Chemotaxis (following a gradient)
 – Local inhibition/competition
 – Counting/Quorum sensing
 – Random exploration/stabilization
Chemotaxis

- Move in response to a gradient, rather than only using local concentration as an indicator
- Query neighbors if differential across cell is below detection threshold
Local inhibition/competition

• Fast-growing cells cause slow-growing cells to die (programmed cell death)
• Leader election
• Base morphogen level on fitness
Counting/Quorum Sensing

- Send signal, use signals from others as feedback based on threshold
- Can be used to implement checkpoints
Random Exploration/Stabilization

• Explore randomly and in parallel, stabilize “good” path
• Think ants!
How to Combine Local Primitives?

• Role assignment
• Asynchronous timing
• Spatial modularity (subroutines)
• Scale-independence
• Regeneration
Conservative Systems

• Physics also provides metaphors for amorphous computing
 – Heat diffusion/chemical diffusion
 – Wave equations
 – Springs
Why is Mimicking Conservative Systems a Challenge?

- Sensitive to bugs and/or failure
- Could implement using explicit tokens, but how to keep track of tokens?
Cellular Computing

• Cool idea! But:
 • Proteins are produced very slowly.
 – Computation takes a long time.
 • Unwanted interactions with other genes.
 – Need different proteins for each gate.
 – Limits the size of circuits.
 • Cells have limited capacity for proteins.
 – Only small circuits can fit into a cell.
slides from

Toward *in vivo* Digital Circuits

Ron Weiss, George Homsy, Tom Knight

MIT Artificial Intelligence Laboratory
Approach

high-level program → logic circuit → genome

microbial circuit compiler

in vivo chemical activity of genome implements computation specified by logic circuit
Key: Biological Inverters

- Propose to build inverters in individual cells
 - each cell has a (complex) digital circuit built from inverters
- In digital circuit:
 - signal = protein synthesis rate
 - computation = protein production + decay
Digital Circuits

- With these inverters, any (finite) digital circuit can be built!

- Proteins are the wires, genes are the gates
- NAND gate = "wire-OR" of two genes
Inverter’s Dynamic Behavior

- Dynamic behavior shows switching times
Memory: RS Latch

Not a modular construction
Applications to the nano scale

• Spray walls with smart particles that detect and fill in the cracks.

• Inject nanorobots in body to fix:
 – Clogged valve problems
 – Failing neurons.

• Have personal nanorobots barbers / dentists.