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Enabling Spectrum Sharing in Secondary
Market Auctions
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Abstract—Wireless spectrum is a scare resource, but in practice much of it is under-used by current owners. To enable better
use of this spectrum, we propose an auction approach that leverages dynamic spectrum access techniques to allocate spectrum
in a secondary market. These are markets where spectrum owners can either sell or lease spectrum to other parties. Unlike
previous auction approaches, we seek to take advantage of the ability to share spectrum among some bidders while respecting
the needs of others for exclusive use. Thus, unlike unlicensed spectrum (e.g. Wi-Fi), which can be shared by any device, and
exclusive-use licensed spectrum, where sharing is precluded, we enable efficient allocation by supporting sharing alongside
quality-of-service protections. We present SATYA (Sanskrit for “truth”), a strategyproof and scalable spectrum auction algorithm
whose primary contribution is in the allocation of a right to contend for spectrum to both sharers and exclusive-use bidders.
Achieving strategyproofness in our setting requires appropriate handling of the externalities created by sharing. Using realistic
Longley-Rice based propagation modeling and data from the FCC’s CDBS database, we conduct extensive simulations that
demonstrate SATYA’s ability to handle heterogeneous agent types involving different transmit powers and spectrum needs.

Index Terms—Spectrum auctions, secondary markets, sharing, strategyproof.
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1 INTRODUCTION

S PECTRUM is a limited and expensive resource.
For example, the 2006 Federal Communications

Commission (FCC) auctions for 700 - 800 MHz are
estimated to have raised almost $19 billion. Hence,
the barrier to entry for potential spectrum buyers
is high. One can either buy a lease on spectrum
covering a large area at a high price or use the limited
frequency bands classified as unlicensed (e.g. Wi-Fi).
Such unlicensed bands are subject to a “tragedy of the
commons” where, since they are free to use, they are
over-used and performance suffers [9]. Efforts such as
the recent FCC ruling on white spaces are attempting
to free additional spectrum by permitting opportunis-
tic access [4]. However, such efforts are being met with
opposition by incumbents (such as TV broadcasters
and wireless microphones manufacturers) who have
no incentive to permit their spectrum to be shared.

Motivated by these observations, many researchers
and companies (e.g., [7], [19], [34]) have proposed
allowing spectrum owners and spectrum users to
participate in a secondary market for spectrum where
users are allocated the use of spectrum in a small
area on a dynamic basis (dynamic spectrum access).
This approach is beneficial for two reasons. First, it
allows flexible approaches to determining how best
to allocate spectrum, rather than relying on the de-
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cision making of regulators. Second, it provides an
incentive for spectrum that is currently owned but
under-used (such as the television spectrum) to be
made available. By a secondary market we simply mean
one in which the owner of leases it to many small
users, as opposed to the monolithic allocations in
current (primary) markets. The FCC also recognizes
the potential of a secondary spectrum market, and is
encouraging spectrum subleases in certain bands [18].

Prior work has proposed auction designs for such
a market. However, the possibility of sharing in such
markets has not been sufficiently explored. Most auc-
tions provide exclusive access: the allocation ensures
no interference between winners. However, this is not
the most efficient use of spectrum. Devices such as
wireless microphones are only used occasionally, and
other devices can use the same spectrum on a when
they are not in use. Further, many devices are capable
of using a medium access controller (MAC) to share
bandwidth when given the right to contend.

Designing an auction for a secondary market where
sharing is allowed requires accounting for the (nega-
tive) externalities users impose on each other when
they share a channel. Existing auction designs either
fail to allow bidders to express these externalities, or
fail to scale to realistic problem sizes.

We present SATYA, a scalable, strategyproof auction
algorithm that permits users able to sharing spec-
trum to co-exist in one market with those requiring
exclusive-use. SATYA considers the effect of interfer-
ence on the value of an allocation to all participants. In
order to make the system scalable, we impose struc-
ture on the expressible externalities through a bidding
language. The language allows bidders to express
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their value for different allocations, given probabilistic
activation patterns, interference, and requirements for
shared vs exclusive-access spectrum. In clearing the
auction, we quantify a bidder’s value for an allocation
in terms of the fraction of the bidder’s demand that is
satisfied in expectation. For this purpose, we consider
local interference via an interference graph and a
model for resolving device contention.

Strategyproofness is a property that makes sim-
ple, truthful bidding optimal for each user. A user
can report his true value regardless of the bids and
characteristics of other users. Strategyproofness is an
important property for distributed systems because it
promotes stability. In a non-strategyproof algorithm,
as bidders learn they may have an incentive to keep
changing their bids, which imposes costs on the
system infrastructure In addition, strategyproofness
removes the strategic problem facing bidders. For
evaluation, it becomes valid to consider true bids,
which in a non-strategyproof auction would lead to
an incorrect analysis.

Even without sharing, finding an optimal channel
assignment involves solving a graph coloring problem
and is NP-hard [20]. We therefore take the common
approach of using a greedy algorithm to find a chan-
nel assignment. However, a key technical difficulty is
that unlike in settings without externalities a straightfor-
ward greedy allocation approach fails to be monotonic.

The failure of monotonicity means that it is pos-
sible that a user can submit a larger bid but receive
less spectrum. Monotonicity is well known as suffi-
cient and essentially necessary for an algorithm to
be strategyproof (given suitable payments) [29]. In
achieving monotonicity, SATYA modifies the greedy
algorithm through a novel combination of bucketing
bids into intervals wherein they are treated equally
(an idea employed in Ghosh and Mahdian [16]) and
a computational ironing procedure used to perturb
the outcome as necessary to ensure monotonicity (an
idea introduced by Parkes and Duong [30]).

To evaluate SATYA we use real world data sources
to determine participants in the auction, along with
the sophisticated Longley-Rice propagation model [3],
and high resolution terrain information, to gener-
ate conflict graphs. We compare the performance of
SATYA against other auction algorithms and baseline
computations. Our results show that, when spectrum
is scarce, allowing sharing using SATYA increases
social welfare by 40% over previous approaches.

1.1 Related Work

There has been significant work on spectrum auctions
where a regulatory agency, such as the FCC, leases
the right to spectrum across large geographic areas
(see, e.g. [11], [12]). However, our focus on secondary-
market auctions, where an existing owner of spectrum
(which could still be the FCC) wishes to resell it to a

large number of smaller users subject to interference
constraints.

Most approaches to secondary-market auctions pre-
clude sharing among auction participants [8], [14],
[17], [32], [34], [35]. VERITAS [34] was the first spec-
trum auction algorithm based on a monotone alloca-
tion rule, and thus strategyproof. However, VERITAS
does not support sharing. The use of a spectrum
database in facilitating secondary market auctions has
been proposed [19].

Turning to sharing, Jia et al. [23] envision spectrum
owners auctioning off spectrum rights to a secondary
user when it is not being used by the owner, and
investigate how revenue can be maximized. While
winners share with the spectrum owner, there is no
sharing among bidders in the auction.

Gandhi et al. [15] use an approach that allocates
many small channels, effectively enabling sharing.
However, their algorithm allows sharing only among
bidders who want only a portion of a channel. Thus,
it cannot take advantage of bidders who are only
intermittently active. In addition, the approach is not
strategyproof and there is no equilibrium analysis,
which makes its efficiency and revenue properties
hard to evaluate. Closest to our work is that of
Kasbekar and Sarkar [24], who use a strategyproof
auction and provide for sharing. But rather than pro-
vide a structured bidding language the design allows
bidders to express arbitrary externalities, and their
proposed approach is intractable.

The issue of externalities in auctions has been con-
sidered more generally. Jehiel et al. [22] consider situa-
tions, such as the sale of nuclear weapons, where bid-
ders care not just about winning but about who else
wins. But the settings do not include combinatorial
allocation problems. A number of papers have con-
sidered externalities in online advertising (e.g. [10],
[16]). However, this work (and similarly that of Krysta
et al. [26] on the problem of externalities in general
combinatorial auctions) is not directly relevant, as
the externalities in spectrum auctions have a special
structure, of which SATYA takes advantage.

2 CHALLENGES IN AUCTION DESIGN

In this section we describe the challenges that arise
when designing a spectrum auction that permits shar-
ing while being strategyproof and providing good
revenue properties to the seller. First, we discuss the
general form of an auction and introduce the notion
of strategyproofness. Second, we present a result due
to Myerson [29] that provides a general framework
for designing strategyproof auctions through the use
of a monotone allocation rule. Finally, we introduce
the notion of a reserve price, a standard approach to
increasing the revenue from an auction.

Auctions are a classic approach to allocating re-
sources amongst participants with competing needs
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and private values. In the simplest type of auction, a
single item is sold to one of a number of bidders. Each
bidder has private information about his value Vi > 0.
There are many ways such an auction can be run.
One approach, known as a first-price auction, is that
each bidder names a price and the bidder who bids
the most wins the item and pays their bid. Another
approach is a second-price auction, where each bidder
names a price and the bidder who bids the most wins
the item. However, instead of paying the bid price,
the payment is equal to the bid of the second highest
bidder.

Let Bi ≥ 0 denote the bid from bidder i. Each
bidder receives an allocation Ai ∈ {0, 1}, where Ai = 1
if the bidder gets the item and 0 otherwise. Feasibility
insists that

∑
iAi ≤ 1. Writing B = (B1, . . . , Bn) for

bids from n bidders, then we can write the allocation
selected as a function A(B) = (A1(B), . . . , An(B)).
Finally, each bidder makes some payment Pi ≥ 0,
that depends on the bids, so we write Pi(B). In a
standard model, a bidder’s utility, which captures his
preference for the outcome of an auction, is

Ui(B) = ViAi(B)− Pi(B), (1)

and represents the true value for the allocation minus
the payment.

Given these rules, how much should a bidder bid?
In a first-price auction, Pi(B) = Bi for the winner,
and so with perfect knowledge a bidder should bid
slightly more than the highest bid of other bidders
(to a maximum of Vi), in order to pay as little as
possible. Thus bidders try to anticipate how much
others will bid, and bid accordingly. This gives a first-
price auction high strategic complexity. In contrast, in
a second-price auction, a bidder has a simple strategy
that is (weakly) optimal no matter what: bid true
value Bi = Vi. Such auctions, where it is optimal
for a bidder to bid their true value, are known as
strategyproof. A key advantage of a strategyproof auction
in our setting is this strategic simplicity, coupled with the
observation that in a repeated setting we wouldn’t expect to
see bids continually adjusting, “chasing” for the minimal
price and placing churn on the system.

But how to design such an auction in our setting?
One thing to recognize is that the allocation will be
much more complicated: analogous to an item is a
channel × location (where the location depends on the
location of the bidder’s device.) In addition to there
being multiple items to allocate, there will be “inter-
ference” such that the value of an item depends on
the other bidders allocated similar items. In particular,
bidders that are geographically close to each other and
are allocated the same channel will interfere with each
other. Part of the challenge is to describe a concise
language to represent a bidder’s value for different
possible allocations. Another part of the challenge
is to ensure that the allocation can be computed in

polynomial time.1

In achieving strategyproofness, an important
property is that an allocation algorithm
be monotone, in that Ai(Bi, B−i), where
B−i = (B1, . . . , Bi−1, Bi+1, . . . , Bn), is weakly
increasing in the bid of bidder i, fixing the bids of
others, so that Ai(Bi, B−i) ≥ Ai(B′i, B−i) for Bi ≥ B′i.
THEOREM 1 (Myerson [29]). An auction is strate-
gyproof if and only if for all bidders i, and fixed bids
of other bidders B−i,

1) Ai(B) is a monotone function of Bi (increasing
Bi does not decrease Ai(B)), and

2) Pi(B) = BiAi(B)−
∫ Bi

z=0
Ai(z,B−i)dz.

Hence, to achieve strategyproofness, monotonicity
is of central importance in our approach. In the
case of an auction for a single good, the nature of
monotonicity is simple: a bidder must continue to
win the good when bidding a higher price. However,
this is not sufficient in our setting because of the
externalities, since a bidder’s value is affected by the
entire allocation. It is not as simple as being allocated
an item or not being allocated an item. Our allocation
rule must be monotone not only in whether a bidder
gets a channel, but also how much sharing occurs on
that channel.

In terms of the broader goals of auction design,
these can be broken down into:
• Allocative efficiency: rather than maximize

throughput or spectral efficiency, allocate
resources to maximize the total utility from
the allocation. Thus, in addition to traditional
metrics we also report social welfare in Section 5.
Efficiency is often held to be of primary
importance when designing a marketplace
because it provides a competitive advantage
over other markets, and encourages participation
by buyers.

• Revenue: good revenue properties are important
in order to provide an incentive for a spectrum
owner to participate in the market. Sometimes
revenue is at odds with efficiency because it can
be useful to create scarcity. One way to do this is
to adopt a reserve price. In Section 5.3, we add a
reserve price to SATYA to enable a good trade-off
between efficiency and revenue.

In summary, we would like SATYA to be strate-
gyproof, which we achieve using a monotone alloca-
tion rule. We seek good efficiency properties by allow-
ing for participants who both care about exclusive-use
and are willing to share, and making careful tradeoffs
in determining the allocation. We also introduce a
reserve price in order to allow spectrum owners to
generate higher revenue.

1. This precludes a general auction design due to Vickrey, Clarke,
and Groves that is strategyproof and efficient because the optimi-
zation problem is NP-hard [20]. The VCG mechanism also can also
have bad economic properties in combinatorial settings [5].
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3 THE MODEL OF SHARED SPECTRUM AND
EXTERNALITIES

3.1 User Model

In order to find opportunities to share among het-
erogeneous users (e.g., a user with a wireless device,
or a TV station), we need a language to describe the
requirements of each possible type of user.

Our model uses discrete intervals of time (called
epochs), with auctions clearing periodically and grant-
ing the right to users to contend for access to particu-
lar channels over multiple epochs2. The ultimate allo-
cation of spectrum arises through random activation
patterns of users and interference effects, and depends
on specifics of the medium-access controller (MAC)
contention protocol. The effect of this MAC protocol is
modeled within SATYA in determining the allocation.

The interference between users and their associated
devices is modeled through a conflict graph, G =
(V,E), such that each user i is associated with a vertex
(i ∈ V ) and an edge, e = (i, j) ∈ E exists whenever
users i and j would interfere with each other if they
are both active in the same epoch and on the same
channel.

We allow for both exclusive-use and “willing to
share” users, where the former must receive access to
a channel without contention from interfering devices
whenever they are active, while the latter can still
obtain value through contending for a fraction of the
channel with other interfering devices.

We say that a channel is free, from the perspective
of user i in a particular epoch, if no exclusive-use user
j, who interferes with i and is assigned the right to
the same channel as i, is active in the epoch.

Formally, we denote the set of user types T . Each
type ti ∈ T is a tuple ti = (xi, ai, di, pi, Ci, vi),
where:
• xi ∈ {0, 1} denotes whether the user requires

exclusive-use of a channel in order to make use of
it (xi = 1) or willing to share with another user
while both are active on the channel (xi = 0).

• ai ∈ (0, 1] denotes the activation probability of the
user: the probability that the user will want to
use the channel, and be active, in an epoch. For
simplicity, we assume that activation is determined
independently in each epoch with this probability
and that users are active for the entire epoch. This
implicitly rules out behavior such as waiting to
transmit in the next epoch. It also rules out corre-
lated periods of high demand, but see Section 5.5
where we relax this assumption.

• di ∈ (0, 1] is the fractional demand of the channel
that a user who is willing to share access requires

2. We are intentionally vague about the duration of an epoch.
Depending on the setting an epoch could be several minutes or
several hours. The key feature is that user demands should be stable
for the duration of an epoch.

in order to achieve full value when active. Intu-
itively this is the fraction of the channel’s capacity
that the user would like to use continuously for
the duration of the epoch.
• pi ≥ 0 denotes the per-epoch penalty incurred by

the user when active and the assigned channel is
not free. Both exclusive-use and non exclusive-use
users can have a penalty.
• Ci ⊆ C = {1, 2, . . .}, where C is the set of channels

to allocate, each corresponding to a particular
spectrum frequency, denotes the channels that user
i is able to use (the user is indifferent across any
such channel.)
• vi ≥ 0 denotes the per-epoch value received by the

user in an epoch in which it is active, the channel
is free, and in the case of non exclusive-use types,
the user receives at least a share di of the available
spectrum.

In this model, each user demands a single channel.
We discuss an extension to multiple channels in

Section 4.4.

Examples

• A user who wishes to run a low-power (local) TV
station on a channel would be unable to share
it with others when active (xi = 1), would be
constantly broadcasting (ai = 1), and would have
a very large penalty pi since it is unacceptable
for the broadcast to be interrupted by someone
turning on another (exclusive-use) device.

• A user with a wireless microphone cannot share
a channel when active (xi = 1), but is used
only occasionally (ai = 0.05) and has a smaller
value of pi since it may be acceptable if the user
is occasionally unable to be used when there
is another exclusive user also trying to use the
channel.3

• A bidder may want to run a wireless network.
Such a user would have constant traffic (ai = 1),
consume a large portion of the channel (di = 0.9),
and might have a large penalty similar to a TV
station for being completely disconnected. How-
ever, such a user is willing to share the channel
with other non-exclusive types (xi = 0), and will
pay proportionately less for a smaller fraction of
the bandwidth.

• A bidder representing a delay tolerant net-
work [21], who occasionally (ai = 0.2) would like
to send a small amount of information (di = 0.4)
if the channel is available. Such bidders might
have a low or even no penalty as their use is
opportunistic.

3. Indeed, it might make sense from an efficiency perspective to
have several such devices share a channel if they interfere with
each other sufficiently rarely.
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3.2 Allocation Model

Let Ai ∈ Ci ∪ {⊥} denote the channel allocated to
each user i, where ⊥ indicates the user has not been
assigned a channel. Let A = (A1, . . . , An) denote
the joint allocation to n users. To allocate a channel
means that the user has the right to contend for
the channel when active, along with other users that
interfere with the user and are allocated the same
channel. Exclusive-use users take priority over non
exclusive-use users, and only experience interference
when multiple exclusive-use users are simultaneously
active. Non exclusive-use users share the channel
when active simultaneously, and when the channel
is free of exclusive-use users.

Let Vi(A, t) denote the expected value to user i for
allocation A given type profile t = (t1, . . . , tn). The
value also depends on the conflict graph G, since this
affects the interference between users. But we omit
this term for notational simplicity.

An efficient allocation of spectrum maximizes the
expected total value across the user population, that
is

A∗ ∈ argmax
A

∑
i

Vi(A, t) (2)

All allocations are feasible in our setting, since the
expected value captures the negative externality due
to interference. For this, we define the expected value
Vi(A, t) as,

=

{
0 if Ai = ⊥, otherwise
vi · aiPri(F |A, t)EA[Si|F,t]

di
− pi · ai(1− Pri(F |A, t)).

(3)

This is a fairly complicated expression, so in the rest
of this section we examine its constituent parts with
the aid of a running example. There are 4 users that
all interfere with each other (i.e. the conflict graph
is a clique). Users 1-3 can share and have activation
probabilities a1 = a2 = a3 = 0.5 and demands d1 =
d2 = 0.5 and d3 = 0.2. User 4 is an exclusive user with
a4 = 0.01.

Before examining the details, consider what could
go wrong from user 1’s perspective. First, he could
be assigned to the same channel as user 4 leading
to periods of time when he has no access to the
channel at all. Second, even if he does has access to
the channel, he could be sharing it with users 2 and
3, in which case there is not enough capacity for all
of them to send everything they want. Equation (3)
takes these possibilities into account and reduces user
1’s expected value accordingly.

A user’s value depends first on the expected frac-
tion of the user’s request that can be satisfied. The
user can only use the channel when it is not in use
by another exclusive-use user, so we let Pri(F |A, t) ∈
[0, 1] denote the probability that the channel is free
(F ), with no exclusive-use user interfering with the

allocated channel. For users 1-3, their channel is free
with probability 1, unless they are assigned to the
same channel as user 4, in which case this probability
is 0.99. With no other exclusive users, user 4 always
has a free channel. Given that the channel is free,
the user may still have to share with other users. For
this, EA[Si|F, t] ∈ [0, 1] denotes the maximum of the
expected fraction of a channel that is available to user
i given an epoch in which the channel is unobstructed
by an exclusive-use user, the user is active, and user
i’s demand. For an exclusive-use user like user 4, this
amount is always EA[Si|F, t] = 1, because such a user
receives complete access to the channel when active
and the channel is otherwise free.

At a high level, we can now understand Equa-
tion (3). The first term takes how happy a user would
be if he had a channel to himself (viai) and reduces
it to take into account both that some portion of the
time the channel may be totally unusable (multiplying
by Pri(F |A, t)) and that even when it is free he
may get less of it than he desired (multiplying by
EA[Si|F, t] ∈ [0, 1], which is necessarily at most di,
over di). This assumes that a user’s value is linear in
the available bandwidth (up to max-demand di.) The
second term calculates the expected per-epoch penalty
due to the channel not being free when a user is active
along with some exclusive user (the probability of
which is ai · (1− Pri(F |A, t)), or 0.005 in our example
for users 1-3).

To complete our model, we need to formally define
the remaining two expressions. The probability that
the channel allocated to user i is free, given allocation
A and type profile t is simply

Pri(F |A, t) =
∏

j∈Ni s.t. Ai=Aj∧xj=1

(1− aj), (4)

where Ni is the set of neighbors of i in G. This is
the joint probability that no exclusive-use neighbor in
the conflict graph, allocated the same channel as i, is
active in an epoch. For our example, this gives us the
(1− 0.01) = 0.99 we previously discussed.

Finally, EA[Si|F, t] ≤ di, is the expected fraction of
a channel available to a user in an epoch when it
is active and the channel is free. For this, we first
consider the effect of a fixed number of active (non
exclusive-use) neighbors in such an epoch.

For this, we assume a Time Division Multiple Access
(TDMA) style MAC, in which bandwidth is shared as
equally as possible among active (non-exclusive-use)
users, subject to the constraint that no user i receives
more than its demand di. We assume the auctioneer
co-ordinates the demands across users willing to share
and devises a schedule for such nodes to share the
medium. The mechanisms for implementing such a
schedule are out of the scope of this paper and we
rely on a host of prior work which have addressed
this problem comprehensively [31], [33].
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Formally, if Na is a set containing i and the active
neighbors of i with whom i shares a channel in the
allocation, and Nf = {j ∈ Na | dj < f}, then user
i receives a share of the available bandwidth on the
channel equal to,

sharei(Na, t) = min

(
di, max

f∈[0,1]

1−
∑
j∈Nf

dj

|Na −Nf |

)
(5)

The user either gets the full demand di or, failing
that, the fair share (which the max in the equation
determines). If all users have the same demand di,
this reduces to each either the full demand being
satisfied if di ≤ 1/|Na| or receiving a 1/|Na| share of
the channel capacity otherwise. If some users demand
less than their fair share, the remainder is split evenly
among the others.

In our example, suppose users 1-3 are all active. If
they share the channel’s capacity equally, each gets a
one third share. However, this is more of the channel
than user 3 actually wants (d3 = 0.2). This leaves 0.4
available for users 1 and 2. In general this fair share
can be calculated by a waterfilling style algorithm,
which is essentially the role played by the maximum
in (5), while the minimum ensures that no user takes
more than he desires.

This formula is an approximation in several ways.
It assumes that TDMA does not result in any loss of
capacity and the implementation is perfectly fair (at
least in expectation), which may not be true in prac-
tice. Further, the fraction my neighbor actually uses
may depend on his neighbors, and their neighbors,
and ultimately on the entire graph, so our computa-
tion actually gives a lower bound (if desired TDMA
could enforce this lower bound allocation by leaving
gaps in the schedule). We choose this formula because
it is relatively simple, but our results are not tied to
any particular model of a MAC as long as we can
calculate the value of share for the model of interest.
We discuss this further in Section 4.5.

In completing an expression for EA[Si|F, t], we
adopt νi(A, c) to denote the set of neighbors of i on
conflict graph G that, in allocation A, are allocated
channel c. In particular, νi(A) denotes the set of neigh-
bors allocated the same channel as i. The probability
that a particular set, N ′ ⊆ νi(A) is active in any epoch
is,

activei(N
′, t) =

∏
j∈N ′

aj

 ∏
`∈νi(A)−N ′

(1− a`)

 (6)

In our example, the probability that any particular
subset of users 1-3 is active is 0.125.

From this, a user’s expected share of the channel,
given that the user is active and the channel is free
(where the expectation is computed with respect to
random activation patterns of interfering neighbors)

is given by,

EA[Si|F, t] =


0 if Pri(F |A, t) = 0

1 if xi = 1, and o.w.∑
N ′⊆νi(A) activei(N

′, t)sharei(N
′, t)

(7)

The two special cases cover exclusive-use users
(who always receive their full demand when active,
conditioned on the channel being otherwise free), and
users for whom the channel is never free (for whom
we arbitrarily define it to be 0, because the value in
this case turns out to be irrelevant).

In general, computing EA[Si|F, t] requires time ex-
ponential in the number of neighbors νi(A) with
which i shares a channel. In making this practical,
sharing can be limited to some value r � n neighbors,
and the calculation can be completed in time that
scales as O(2r). Alternatively, it may turn out that r is
already small due to the nature of the conflict graph.
Indeed, in our experiments using practical models of
signal propagation we did not need to impose such a
limitation even with hundreds of users participating
in the auction.

We conclude this section with a few remarks about
how the ai and di affect a user’s expected value.
The valuation vi is interpreted as the value per active
epoch, so ai is effectively just a multiplier on the entire
valuation to convert it to a per epoch valuation. Thus,
in some sense we are really asking the user to report a
per epoch valuation in a factored form, where one half
of the factor can be verified, similar to the way online
advertising auctions can be framed in terms of per-
click or per-impression bids. For any fixed allocation,
increasing di makes a user (weakly) less happy about
sharing a channel. In particular, there always exists
some d∗i below which the user is perfectly happy
to share since he will get as much of the channel
as he desires regardless. Above this, he will become
progressively (strictly) less happy, although his effect
is non-linear because in our model users care about
the fraction of their demand satisfied rather than the
absolute amount. Again however, we could instead
use a factored representation and solicit bids that are
per unit bandwidth per epoch, which would make di just
an upper limit on the amount of bandwidth obtained.

4 AUCTION ALGORITHM

Turning to the design of SATYA, we assume that
the only component of a user’s type that can be
misreported is vi, the per-epoch value when active,
and when achieving the required share of the channel
(and with exclusive-use if the user cannot share).4 It is
reasonable that most of the other characteristics, such

4. This makes the auction an attribute auction, where, in addition
to the bid, the auctioneer knows some additional characteristics
about each bidder [6].
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as the conflict graph, how often the user makes use
of the channel (which requires correcting for periods
when the channel was desired but occupied using
our model of independent activation), how much of
the channel is used when active, whether the user’s
devices can use a MAC, and on what channels the
devices can legally broadcast, can be observed by the
auctioneer, with the user punished if this information
is mischaracterized by the user. This does leave open
the possibility of deviations where the user manipu-
lates rather than misreports these quantities. The user
could send junk data to increase ai or di, although in
many cases this would simply make the user worse
off because, as previously discussed, it would lead to
SATYA thinking the user has a lower value than he ac-
tually does and making his allocation less of a priority.
Decreasing di can be beneficial if doing so allows the
user to be allocated when otherwise he would not due
to interference with other, higher valued users. Since
such a manipulation can be viewed as the user taking
into account what he can actually afford, it isn’t clear
that this is necessarily a bad thing (although it does
detract from the goal of strategic simplicity).

On the other hand, a user’s value for using the spec-
trum is typically private (hence the use of auctions
for the primary allocation of spectrum.) Knowledge
of the a user’s penalty incurred when a channel is
encumbered by an exclusive-use device, is also of
this flavor, but there are a number of interpretations
of it under which it seems reasonable to treat it as
known. For example, it could represent the cost to
gain access to a fallback network when this network
is unavailable or a contractual payment the spectrum
owner is obligated to make. The exact value may also
not be important, as long as it is “large.” In practical
terms, it controls what level of sharing is permissible
with exclusive users who are occasionally active, so
getting this to the correct order of magnitude may be
sufficient. In the extreme, SATYA works fine taking
pi =∞ for all i, which forbids such sharing.

Even if no users are permitted to share channels,
finding an optimal allocation is NP-Hard [20]. Assign-
ing bidders to channels such that no two neighbors
have the same channel is a graph coloring problem.
Therefore we adopt a greedy algorithm for allocation,
modified to achieve monotonicity.

4.1 Externalities and Monotonicity

Let us first define monotonicity in our setting. For this,
it is convenient to drop the complete type profile t
from notation and write Pri(F |A) and EA[Si|F ] in
place of Pri(F |A, t) and EA[Si|F, t] respectively. In
addition, let b = (b1, . . . , bn) denote the joint bid vector
received from users, with bj ≥ 0 for all j.

Fixing the bids b−i = (b1, . . . , bi−1, bi+1, . . . , bn) of
other users, an allocation algorithm A(b) (defining an

A B

Channels 

free: 1, 2

Channels 

free: 1

Fig. 1. A potential violation of monotonicity. Users A
and B are in contention range. At user A’s location
channels 1 and 2 are free; at B’s only channel 1 is free.

allocation for every bid profile) is monotone if,

Pri(F |A(b′i, b−i))EA(b′i,b−i)[Si|F ]
≥Pri(F |A(b))EA(b)[Si|F ], (8)

for all bids b′i ≥ bi. This insists that the expected share
of a channel available to a user, conditioned on being
active, weakly increases as the user’s bid increases.

Figure 1 shows how monotonicity can fail for sim-
ple greedy algorithms. The greedy algorithm con-
siders each user in (decreasing) order of bids and
allocates the user to the best available channel in
terms of maximizing value (or no channel if that is
better). If there is a tie, the algorithm uses some tie-
breaking rule, such as the lowest channel number. If
user A has a lower bid than user B, the algorithm
assigns user B to channel 1, then user A to channel
2, and both are fully satisfied. If user A raises its
bid above that of user B, user A will be assigned
to channel 1. Then, assuming sharing is better than
leaving B unassigned, the algorithm assigns user B
to channel 1, and user A receives less value due to
interference.

4.2 The SATYA Algorithm

SATYA achieves monotonicity by modifying a greedy
allocation algorithm to combine the ideas of

(a) forbidding some allocations to shared channels
using a bucketing approach, and

(b) canceling some allocations to shared channels in
a post-processing step using an ironing approach.

Through bucketing, fine distinctions in bid value
are ignored by SATYA and small changes in bid value
have no effect on the allocation, and thus do not
violate monotonicity. Furthermore, users in different
buckets are allowed to share spectrum in only a
limited way, which prevents the greedy assignment
from introducing externalities, and thus monotonicity
violations.
SATYA begins by assigning each user i to a bucket

based on the user’s bid value bi. There many ways this
can be done as long as it is monotone in the user’s bid.
For example, user i with an activity-normalized bid
aibi could be assigned to value bucket k with bounds
[2k, 2k+1). To be general, we assume that bucketing of
values is done according to some function β(k), such
that bucket k contains all users with (normalized) bids
aibi in the range [β(k), β(k + 1)).
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Once users are assigned to buckets they are as-
signed channels greedily, in descending order of buck-
ets. The order of assignment across users within the
same bucket is determined randomly. Let Ki denote
the bucket associated with user i. A channel c is
considered to be available to allocate user i at some
step in the algorithm, and given the intermediate
allocation A, if,
• the channel c is in Ci;
• assigning i would not cause an externality to a

neighbor from a higher bucket: for all j ∈ Ni, with
Kj > Ki, ∑

`∈{νj(A,c)∪{i}}

d` ≤ 1 (9)

• and, the combined demands of i and the neighbors
if i from higher buckets assigned to c are less than
1:

di +
∑

j∈νi(A,c),Kj>Ki

dj ≤ 1 (10)

We refer to the second condition as requiring that
the demands of each neighbor of user i from a higher
bucket be satisfied. The third condition requires that
the demand of user i is satisfied. This does not pre-
clude allocations where some user has E[Si|F, t] < di.
It simply requires that, in such cases, the user is
sharing with others in the user’s own bucket.

Suppose i is the next user to be considered for
allocation. SATYA will identify the channel for which
assigning i to the channel has the maximum marginal
effect on the total value of all currently allocated users
along with user i itself. To do so, for every channel
c that is available to the user, and including ⊥ (and
thus not allocating any spectrum to the user), SATYA
estimates the expected value to some user j after
assigning i to c as

ej(A, b) =β(Kj)Prj(F |A, b)
EA[Sj |F, b]

dj

− aj · pj(1− Prj(F |A, b)) (11)

This estimate differs from the user’s actual bid by
assuming that each user in a given bucket shares the
same value. This is important for achieving mono-
tonicity, because we need to ensure the decision for a
user depends on the bucket associated with a user’s
bid value and not in more detail on a user’s value.

Given this, user i is assigned to the channel that
maximizes the sum of the expected bid values of
each user already allocated and including its own
value, and without leaving any user with a negative
expected value. The optimal greedy decision might
allocate ⊥ to user i, and thus no spectrum. In the event
of a tie, the user is assigned to the lowest numbered
among the tied channels (including preferring ⊥, all
else equal).

After all users in a bucket are assigned channels,
there is an ironing step in which monotonicity of the
allocation is verified, and the allocation perturbed if
this fails. Recall that monotonicity violations occur
when the greedy allocation makes a “bad” decision
for the user and would make a better one had the user
been considered later. Bucketing prevents users from
being able to move themselves later while staying
in the same bucket, but they could still lower their
bid enough to drop into the next bucket. To rule out
this possibility, the ironing procedure re-runs the al-
location procedure for each user with the user placed
instead in the next lower bucket. If this counterfactual
shows that the final allocation would be better for the
user, then there is a potential monotonicity violation,
and the provisional allocation is modified by changing
the assignments of the neighbors with whom the user
shared a channel to ⊥. Checking only the next bucket
is sufficient because if the user can be assigned in any
lower bucket he can be assigned in the next bucket.

Algorithm 1 High-level SATYA Algorithm
Generate a random permutation π of bidders
//Bucketed Allocation
for all Buckets k from highest to lowest do

for all Users i in bucket k ordered by π do
Assign user i to available channel that maxi-
mizes (bucket estimated) social welfare.

//Ironing
for all Buckets k from lowest to highest do

for all Bidders i in bucket k ordered by π that are
assigned a channel where receive less than they
demand do

Rerun allocation procedure for bucket k with-
out allocating to i.
if there is still a channel available for i after
allocating others in bucket k then

Cancel allocations of i’s neighbors in bucket
k assigned to the same channel in reverse
order of π until i receives his full demand.

Charge all bidders assigned channels their Myerson
price.

This algorithm is outlined as Algorithm 1, with a
more detailed presentation available in the technical
report [25]. As an illustration, of the effects of buck-
eting and ironing, consider the problematic example
from Figure 1. If user A is originally in a lower bucket
than user B, B will be assigned first to channel 1,
leaving A to be assigned to channel 2. If A raises his
bid to be in a higher bucket than B, he will be assigned
to channel 1. When B is considered channel 1 will
not be available (B would be causing an externality
to a neighbor in a higher bucket), so B will not be
assigned a channel. Thus bucketing has avoided a
potential violation of monotonicity. Now suppose that
A raises his bid to be in the same bucket as B and the
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permutation causes A to be considered first. Both will
be assigned to channel 1, which would be a violation
of monotonicity for A. However, ironing now comes
in to play. Since channel 2 would be available for A
if he were in the lower bucket, B’s assignment will be
canceled, again avoiding a violation of monotonicity.

THEOREM 2. Algorithm 1 is monotone. Thus, because
it charges Myerson prices, it is strategyproof with
respect to value.

Proof: First, we observe that a user’s bid is only
used to determine his bucket and is afterward ignored
by the algorithm (estimates of utility use the user’s
bucket rather than his bid). Thus is it sufficient to
consider deviations that cause i to change buckets.If i
was not assigned a channel, the claim is trivially true.
Otherwise, i moves up to some bucket k2 > k1. Note
that, in the bucketed allocation, the set of neighbors
with whom i shares a channel increases monotonically
over time. Thus, since i had an available channel in
bucket k1 he has at least one channel available in
bucket k2. Furthermore, by (9) and (10), there is such
a channel where both i and his neighbors assigned
to that channel would all have their demand fully
satisfied at the time i was assigned

It is possible that later allocations will cause ad-
ditional assignments such that i becomes worse off
due to sharing. However, since the counterfactual
allocations used during the ironing phase are identical
to those generated when i was in bucket k1, i any
such assignments will be canceled during the ironing
phase. Since i′s neighbors assigned to the same chan-
nel were all satisfied when i was assigned in bucket k2
and neighbors are ironed in the opposite order from
that in which they were added, i will not be ironed
by any of its neighbors. Thus any change in bid that
causes an allocated user to move to a higher bucket
will result in an allocation where its demand is fully
satisfied, which guarantees monotonicity.

Given a monotonic allocation algorithm, then the
payment to collect from each user is defined as is
standard from Myerson [29]. In our case, these prices
have a particularly simple form. As was observed in
the proof of Theorem 2, there is exactly one bucket in
which a user can receive an allocation in which the
user shares a channel with other users in a way that
he is less than fully satisfied. In any lower bucket, the
user does not get allocated a channel; in any higher
bucket the user is guaranteed by ironing to have the
user’s demand fully satisfied in the allocation. Thus
there are only three possible allocations the user might
obtain as the bid value of the user changes. This
makes calculating the Myerson payment particularly
simple. Strictly speaking, Myerson’s results needs to
be slightly modified because in our model a user’s
utility depends on the penalty pi in a way that makes
it not quite fit the definition of a single-parameter
domain. For this reason, we provide a direct proof

of strategyproofness in the technical report [25].

4.3 Running time
Recall that n is the number of users, and let χ = |C|
denote the number of channels. The running time of
SATYA is determined largely by the implementation
of the AssignChannel procedure that performs the
greedy channel assignment as part of the assignment
procedure as well as the counterfactual assignments
used for ironing and pricing. As discussed in Sec-
tion 3.2, this require computation that scales expo-
nentially in the number of neighbors with which i
shares each channel considered. Thus, by in domains
where this is limited to at most r neighbors then the
call to AssignChannel requires time O(χn2r). Indeed,
we did not need to impose any limit on the number
of neighbors in generating our simulation results,
because users’ utilities were such that it did not make
sense for users to share with a large number of other
users.
THEOREM 3. SATYA’s running time is determined by
the time needed for O(n3) calls to AssignChannel, so
the total running time is at most O(χn42r).

Proof: The bucketed allocation procedure assigns
each user a channel once. The ironing procedure
reruns the allocation for each user’s bucket, which
results in at most n allocations, for a total of O(n2)
calls to AssignChannel. To calculate prices, it suffices
to run the allocation procedure twice more for each
user: once to determine in which bucket the user may
share and be less than fully satisfied and once to
determine what the user would actually receive in
that bucket. Thus SATYA requires 2n + 1 runs for a
total of O(n3) calls to AssignChannel.

4.4 Extensions
An earlier auction proposal, VERITAS [34], suggests
a number of ways to handle assignments of a user
to multiple channels. In particular, users can either
require a specific number of channels or be willing
to accept a smaller number than they request. Users
may also wish to insist that an allocation of multiple
channels be contiguous. SATYA can be extended to al-
low all of these. Essentially, this requires appropriately
adapting the notion of when a group of channels is
“available” to a user. Due to space considerations, we
omit further discussion of the changes required to the
model (discussed extensively in [34]) and algorithm,
but we present simulation results in Section 5.4.
SATYA has a number of parameters. One obvious

choice is the function β, which is used to assign users
to buckets. Any function that is monotone in a user’s
bid can be used. This includes functions that take into
account other facts about the user, for example the
user’s type or the number of neighbors the user has
in the conflict graph.
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Another area of flexibility in defining SATYA is in
the role of the permutation π. Rather than a random
perturbation, any method that does not depend on
user bids can be used. Some natural possibilities
include ordering users by their degree in the conflict
graph (so that users who interfere less are allocated
first), ordering by a combination of activation proba-
bility and demand (so that users who use less spec-
trum are allocated first), considering exclusive-use
users last since they impose much larger externalities
on those with whom they share, or even adaptively
ordering each bucket based on the state after process-
ing prior buckets. We leave further exploration of this
direction for future work.

4.5 SATYA’s use of a MAC
As mentioned in Section 3.2, we use a simple model to
calculate what happens when users share a channel.
Our simple model can be replaced by a more sophis-
ticated model from prior work on TDMA [31], [33].
It can also be extended to include prior work that
has explored the capacity of CSMA based wireless
networks (e.g., [27], [28], [36], [37]) as long as, in
expectation, having more neighbors decreases a user’s
share of the channel. This model can also be extended
in other interesting ways. For example, we could add
for each user i a parameter `i, such that if he receives
less than an `i fraction of the channel it is useless. This
simply requires defining the share to be 0 if it would
be less than `i. We could also model applications that
require a reliable channel when they are active by
using a minimum rather than an expectation in (7).

For implementation perspective, the primary re-
quirement for SATYA is for a user to stop transmitting
when it is another user’s turn (in the case of exclusive-
use users). This is not unique to SATYA and is, for
example, required of devices that use white spaces.
However, a small change is required to a user’s
network stack to seek to transmit only when the user
wins the auction (and therefore is allowed to contend
for a channel). This can be implemented anywhere in
the software stack.

5 EVALUATION

In this section we compare the performance of SATYA
to VERITAS. Since VERITAS does not permit shar-
ing, we modify it slightly and implement VERITAS-
S, which permits sharing as long as there are no
externalities imposed (i.e. sharing is permitted only
when the combined demands of users that wish to
share do not exceed the capacity of the channel). We
also implement GREEDY, a version of SATYA without
bucketing and ironing that provides higher overall ef-
ficiency. GREEDY is neither strategyproof nor monotone.
Thus, bids need not match their true values. However,
to set as high a bar as possible, we assume they do
so. Since it gets to act on the same information but

User Type Act. Prob. Value Penalty Demand
Exclusive-Continuous 1 [0, 1000] 10000 1

Exclusive-Periodic [0.05, 0.15] [0, 1000] 5000 1
Sharing-High 1 [0, 1000] 10000 [0.3, 1]
Sharing-Low [0, 1] [0, 1000] 5000 [0.3, 1]

TABLE 1
Mix of user types used in the evaluation

has fewer constraints than SATYA, GREEDY serves as
an upper bound for our experiments.
Parameters: As shown in Table 1, all our experiments
use four classes of user types bidding for spectrum,
each of which is of the form described in Section 3.1.
Note that, in the table, we we have normalized the
values so the table reflects the range of aivi rather
than the range of vi. Each class represents different
applications. For example, a TV station serving a local
community is a user who wants exclusive access for
a long period of time. A wireless microphone is an
example of a user who wants exclusive access but for
short periods of time. A low-cost rural ISP is an ex-
ample of a Sharing-High user who expects to actively
use the spectrum but can potentially tolerate sharing,
and a regular home user is an example of a Sharing-
Low user whose spectrum access pattern varies. Note,
each class of users may have different transmit powers
and coverage areas than the others. Since our goal is
to evaluate the efficacy of SATYA in exploiting oppor-
tunities for sharing, we assign 5% of the total users
as exclusive-continuous, 15% exclusive-shared, 30%
Sharing-High, and the remaining 50% Sharing-Low.
With larger percentages of exclusive users, there is
little opportunity for sharing and SATYA is effectively
just VERITAS-S made less efficient since reports are
coarsened via bucketing.
Methodology: Each auction algorithm takes as input
a conflict graph for the users. To generate this conflict
graph in a realistic manner, we implement and use the
popular Longley-Rice [2] propagation model in con-
junction with high resolution terrain information from
NASA [1]. This sophisticated model estimates signal
propagation between any two points on the earth’s
surface factoring in terrain information, curvature of
the earth, and climactic conditions. We use this model
to predict the signal attenuation between users, and
consequently the conflict graph.

We use the FCC’s publicly available CDBS [13]
database to model the transmit power, location, and
coverage area of Exclusive-Continuous users. Note,
that this information as well as the signal propagation
predictions are sensitive to geographic areas.

We model the presence of all other types of users
using population density information. Users are scat-
tered across a 25 mile x 25 mile urban area in a
random fashion by factoring in population density
information. Since each class of user has a different
coverage area, we determine that a pair of nodes
conflicts if the propagation model predicts signal re-
ception higher than a specified threshold.
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Fig. 2. Number of users allocated spectrum, as a
function of the number of users participating in the
auction.

We repeat each run of the experiment 10 times
and present averaged numbers across runs. Unless
otherwise specified, the number of channels is 5. In
tuning SATYA, we experimented with a variety of
methods for determining to which bucket to assign
a user. We do not present these results for space
reasons, but based on them use buckets of size 500
(β(k) = 500k).

In our experiments, we use the following metrics:
• Allocated Users: The total number of users allocated

at least one channel by the auction algorithm.
• Social Welfare: The sum of the valuations for the

allocation by allocated users including the effect
of any interference and preemption.

• Satisfaction: The sum of the fraction of a user’s total
demand that is satisfied over all users.

• Spectrum Utilization: The sum of satisfaction
weighted by activation probability and demand.
From a networking perspective, spectrum utiliza-
tion is a measure of how much the spectrum is
being used (similar to the total network capacity).

• Revenue: The sum of payments received from
users.

5.1 Varying the Number of Users
Figure 2 and Figure 3 show the performance of vari-
ous algorithms as a function of the number of users
participating in the auction. As we vary the number
of users, we keep the mix of user types to be the same
as Table 1.

As seen in Figure 2, as the number of users in-
creases, SATYA produces up to 72% more allocated
users when compared to VERITAS and VERITAS-
S. This gain comes from being permitted to allocate
users despite the presence externalities. With fewer
users, all three algorithms demonstrate similar perfor-
mance because almost all users can either be allocated
a channel of their own or are impossible to satisfy.

Overall, VERITAS-S and VERITAS do not make the
best use of users that can share. This is demonstrated
in Figure 3, which is the distribution of different
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Fig. 3. Distribution of user types across winning users,
as the number of bidding users are varied.

classes of users assigned channels by each algorithm.
As the number of users increases, VERITAS-S and
VERITAS significantly reduce the fraction of users
capable of sharing who are assigned channels (rela-
tive to SATYA). However, all algorithms demonstrate
a similar performance in the fraction of exclusive
bidders who are assigned channels. Hence, SATYA is
capable of taking advantage of sharing by allocating
channels to more of such users. As expected GREEDY
outperforms all strategyproof auctions and is able to
assign more sharing users. Although we omit the
data for space, the difference in performance between
SATYA and GREEDY is primarily due to bucketing.
Ironing does occur but has only a minor effect.

In addition to the number of users allocated spec-
trum, the results for other metrics are shown in
Figure 4, which plots the results in terms of per-
centage improvement over the baseline of VERITAS.
As seen in Figure 4(a), the relative social welfare
attained by SATYA increases with an increase in the
number of users. This is a direct consequence of
assigning channels to more users capable of sharing
the spectrum. This shows that, despite externalities
from sharing, the additional users allocated consider
it valuable. At 600 bidders, SATYA realizes a gain
of 25% over VERITAS-S and 40% over VERITAS in
the total social welfare of the network. Similarly, as
seen in Figure 4(b), we find a 50% increase in the
spectrum utilization of the network using SATYA. As
social welfare, spectrum utilization, and satisfaction
all take into account externalities, Figures 4(a), 4(b),
and 4(c) show significant correlation. As with the
users allocated metric, at fewer nodes the algorithms
are indistinguishable as there are few opportunities to
share.

Hence, the main takeaway is that, SATYA increases
the number of allocated users as well as social welfare.

5.2 Varying the Number of Channels
We also measure the effect of varying the number of
channels auctioned on the overall outcome of the auc-
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Fig. 4. Effect of varying the number of users in the auction (compared to VERITAS-S, VERITAS, and GREEDY).
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tion. The results shown in Figure 5 demonstrate the
following trend: as the number of auctioned channels
increases the gap in performance among the algo-
rithms reduces. This is similar to having fewer bidders
participate in the auction; with more channels, there is
a reduced need for sharing and all algorithms perform
similarly. As Figure 5(a) shows, SATYA is still able to
assign more bidders than other algorithms until about
20 auctioned channels. Similarly, in Figure 5(b), we see
that SATYA outperforms VERITAS by 20-60% in social
welfare up until about 10 channels.5

We also vary the number of users and the number
of channels simultaneously and the results for SATYA
are shown in Figure 5(c). We see that as the number
of users increases, SATYA takes advantage of the
increased opportunity for sharing and allocate more
users.

Hence, the main takeaway is SATYA provides sub-
stantial benefits when the number of channels makes spec-
trum scarce.

5.3 Measuring Revenue
We consider social welfare the most important mea-
sure of performance: a market that finds success in
the long run will allocate resources to those that find
the most value. However, in our setting revenue may
also be important to provide an incentive for current
spectrum owners to participate in the secondary mar-
ket. First, we measure the total revenue obtained as a

5. We omit graphs for spectrum utilization and satisfaction for
this and later experiments for lack of space; they demonstrate a
similar trend.
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function of the number of users bidding for spectrum
without reserve prices. We do not include GREEDY in
this analysis because it is not strategyproof and it is
not clear what users will bid and thus what the actual
revenue would be. As seen in Figure 6, the revenue
obtained by SATYA and is much lower than VERITAS
for smaller numbers of users. We omit VERITAS-S
from the figure for readability, but its performance
also suffers. Paradoxically, this is a direct consequence
of sharing increasing efficiency by making it easier to
accommodate users: if they would be allocated with
a bid of zero they do not have to pay anything in a
strategyproof auction.

To improve revenue, we institute reserve prices.
While Myerson’s approach in principle allows us to
compute the optimal reserve price [29], our situation
is sufficiently complicated that we simply empiri-
cally determine a reasonable uniform reserve price.
VERITAS explored a similar opportunity to increase
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Fig. 7. Effect of reserve prices with 300 users on revenue, users allocated spectrum, and social welfare.

revenue by limiting the number of channels available.
The results from a simulation that varies the reserve

prices is shown in Figure 7 for 300 bidding users.
Figure 7(a) shows that with a reserve price of 0 (i.e. no
reserve price) VERITAS performs better than SATYA
and VERITAS-S in terms of revenue. As the reserve
price begins to increase, the revenue derived from all
three auctions increases. However, at around a price
around 700 (depending on the algorithm), revenue
begins to decrease. As seen in Figure 7(b), this is
because significantly fewer users are allocated by the
auction and social welfare decreases (Figure 7(c)).

Based on these results, we use a reserve price of
400 and repeat the experiment to measure revenue
by varying the number of bidders. We used a fixed
reserve price for consistency; in practice it could de-
pend on the number of users and be individualized
for each user. As Figure 6 shows, this increases rev-
enue for the auctioneer significantly for all algorithms.
The increase is most pronounced with 50 users (not
shown because the improvement is so large) where
revenue goes from essentially zero to approximately
ten thousand. SATYA, which without a reserve price
lost revenue by being too efficient in allocating users,
benefits slightly more than VERITAS. With a large
number of users, the reserve price is essentially ir-
relevant because of the amount of competition; with
550 users the gain is below 12%.

5.4 SATYA’s Performance with Multiple Channels

SATYA is also capable of allowing users to bid for
multiple channels in the auction. To illustrate this, we
ran an experiment where we varied the number of
channels that each user bids for as well as the number
of users in the auction. To do so, we interpreted
users with di = 1 as requiring some fixed number
of channels (as opposed to 1 full channel in previous
experiments). Users with lower values of di required
proportionally fewer channels. Figure 8(a) compares
two different modes of channel allocation proposed
in [34], strict: when a user either gets the number
of channels it requests for or nothing, and partial:
a user can get fewer than requested channels. The
total number of channels auctioned was fixed to 26,
while users with di = 1 required 5 channels. Partial

allocations result in slightly more allocated users than
strict, which is what we would expect since strict
allocations are constraints that are harder to satisfy.
Figure 8(b) shows that increasing the the number
of channels demanded by users (the labels on lines
reflect the demand with di = 1) reduces the number
of winners as would be expected.
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Fig. 8. Experiments with multiple channels

5.5 SATYA’s Performance with Correlated de-
mands
SATYA is also capable of adaptation to settings with
more complex activation patterns. To illustrate this,
we ran an experiment that models high demand peri-
ods by having all users active in an epoch (regardless
of their activation probability) with probability 0.1.
This requires adapting the calculations in (4) and (7),
but SATYA is otherwise unchanged. Figure 9 shows
that SATYA continues to perform well even under
such a change to the underlying access model.
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