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Lecture Notes 10:

Hardcore Bits

Recommended Reading.

e Katz-Lindell 6.1.3, 6.3

1 Hardcore Bits

Motivation: If f is a OWF, it is hard to determine x from f(z), but is it also hard to compute a
particular bit of = from f(z), say the first bit of 7 Random guessing gives a probability of success
of % but some bits might be even easier to guess. A few examples:

A one-way function can reveal a large part of its input: is there a fraction of the bits of the
input which is always “well-hidden”? (i.e. any polynomial-time algorithm cannot have a nonnegligible
advantage over random guessing when computing those bits from the output of the function) The
answer is no, because we can construct one-way functions such that each bit of x can be obtained
from f(x) with high probability. Thus, we instead look for some “bit of information” which is hard
to compute.

Definition 1 b: {0,1}* — {0, 1} is a hardcore bit (or hardcore predicate) for one-way function f
if

e b is polynomial-time computable.

e For every PPT A, there is a negligible function € such that

PriA(f(X)) =b(X)] < % +e(n) Vn,

where the probability is over X & {0,1}™ and the coin tosses of A.

Definition 2 {biey : Dkey — {0, 1} }keyeic is a collection of hardcore bits for the collection of one-
way functions F = { frey : Dkey — Riey} if

o Given key € K and & € Dyey, brey() can be computed in polynomial time.



o For every PPT A, there is a negligible function € such that

PrIA" K, fic(X) = bi(X)] < 3 +eln) Y,

where the probability is taken over K & G(1"), X & Dy, and the coin tosses of A.

2 Examples
RSA functions e The least significant bit is a hardcore bit for RSA:
Isbye : Zy — {0,1}

Given N, e, z° mod N, we cannot compute Isby .(x) with a nonnegligible advantage over
random guessing.

e Define half y(z) by halfy(z) = 0if 0 < 2 < N/2 and 1 otherwise (halfy(z) is like the
most significant bit of ). half 5 (x) is a hardcore bit for RSA.

Rabin’s functions e The least significant bit is a hardcore bit for Rabin’s functions:
Isby : Zx — {0,1}

Given N,z? mod N, we cannot compute Isby(z) with a nonnegligible advantage over
random guessing.
e halfx(z) is a hardcore bit for Rabin’s functions.

Modular Exponentiation/Discrete Log half, ;(x) is a hardcore bit for Modular Exponentia-
tion.

3 Goldreich—Levin hardcore bit

Does every one-way function have a hardcore bit? The following theorem proves that from any
arbitrary OWF, we can construct a OWF with a hardcore bit by taking the XOR of a random
subset of bits. For z,r € {0,1}", define (x,r) = >, xir; mod 2 = @}, ;.

Theorem 3 (Goldreich—Levin hardcore bit) Let f be any one-way function, and define f'(x,r)
(f(x),r) for ||z|| = |Ir||- Then {(x,r) is a hardcore bit for f’.

This theorem is most interesting when f is one-to-one. Note that if f is one-to-one, then so is f’.

Proof ideas:

Reducibility argument: Suppose that there exists a PPT A that predicts (z,r) from (f(x),r)
with nonnegligible advantage over random guessing. We construct a PPT B that uses A to
invert f with nonnegligible probability.

“Easy” case: Assume that A(f(z),r) computes the hardcore bit (z,r) with probability 1.

Observation 1: Let e = (0---010---0) (1 in the 7’th position and 0 elsewhere). We observe
that (z,e®) = z;. We define B(y) as follows:



o Let w; = A(y, e(i)) for1<:<n
e Output wy ---w,
“Medium” case We assume that A(f(z),r) computes the hardcore bit (z,r) with probability
> % + &(n), where ¢ is a nonnegligible function and the probability is taken over the random
input x and the coin tosses of A. We have a problem generalizing the argument used in the

easy case because A is only guaranteed to succeed on random (z,r): we do not know how A
behaves if 7 is not random (such as for r = e(?)).

Observation 2: (z,7) @ (x,7 ® ) = (z,e(®) = z; because

If 7 is chosen at random then so is r @ e(®,

Attempt #1 to define B(y)

e Choose r at random.
e For 1 <i<mn, compute w; = A(y,r) ® Ay, ® e®).
e Qutput wy---w

PrA((X), R® ) £ (f(X), R& ) < | ¢

These two probabilities are not independent so we cannot multiply them together to obtain
the probability that w; # ;. Using the Union bound, we get that Pr[W; # X;] < % — 2e.
With this algorithm B, we only expect to recover slightly more than 1/2 of the bits of z. To
avoid this problem, we will repeat the algorithm ¢ times with ¢ random choices of r for each
bit of z.

Final algorithm B(y)

e Choose rM), 7@ ... r® at random (t = ( 2)

e For 1 <i <n, define w; = maj{A4 (y,r ) (y de Z)) :j=1,...,t}. “maj” means
that we take a majority vote over the ¢ trials.

e Output wy ---w

Analysis We cannot immediately apply the Chernoff bound in this case as the probabilities
are not independent because we are always using the same input y.

A computes (X, R) from (f(X),R) (X, R are random variables) with probability of success
greater than 2 +e. This imples that for at least ¢/2 fraction of z, Pr[A(f(z), R) = (z, R)] >



3/4+¢/2 (probability just over R and the coin tosses of A). Call these good z. For each good x
and each i € {1,...,n}, Pr[A(f(z),R) ® A(f(z),R®e;) # x;] < 2-(1—(3/4+¢/2)) =1/2—e¢.
Thus, the above algorithm inverts f with high probability on f(x) for each good z (for a total
success probability of ~ £/2).

General case (A computes hardcore bit with probability 1/2 + ¢) requires additional ideas.
Theorem 4 (Goldreich-Levin hardcore bit for collections) Let F = {f; : Dom; — Rng;} be

any collection of one-way function, and define g; ,(x) = fi(x), bir(x) = (z,r). Then {b;, : Dom; —
Rng;} is a collection of hardcore bits for the collection of one-way functions {g;, : Dom; — Rng;}.



