
CS 120/CSCI E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen Nov. 16, 2006

Lecture Notes 15:

Public-Key Encryption in Practice

Recommended Reading.

• Katz�Lindell, Sections 9.4, 9.5.3

1 Public-Key Encryption in Practice

• All known public-key encryption schemes much slower than private-key ones and have much
larger keys.

� e.g. Plain RSA: 1000× slower than DES in hardware, and 100× slower in software (for
512-bit modulus).

� Mainly used to exchange a �session key� for a private-key encryption scheme hybrid

encryption (see Katz�Lindell �9.4)

• RSA overwhelmingly most popular (despite not having security equivalent to factoring like
Rabin):

� Plain RSA: insecure

� Padding a 1-bit message with random bits: provably secure

� Padding longer mesages with random bits (PKCS #1 v 1.5 RSA): unproven but conjec-
tured to be secure. Use a 88-bit random pad for 512-bit messages.

� More sophisticated padding using cryptographic hash functions (PKCS #1 v 2, OAEP):
G is a PRG and H is a hash function. The encryption of m using a random pad R is
(m⊕G(R)||R⊕H(m⊕G(R)))e mod N . This can be proven to be secure (even against
chosen-ciphertext attack) in Random Oracle Model, which models the hash function as
a �random function�, which it is not, so this is only a heuristic argument.

� Encryption exponent 3: (change RSA assumption accordingly)

• Discrete Log Based Schemes used in practice

� Di�e�Hellman Key Exchange

∗ Standardized in ANSI X9.42

∗ Widely used in protocols to establish temporary keys for network communication,
including SSH, HTTPS (SSL), and others.

� ElGamal

∗ No patent restrictions (RSA was patented)

∗ Used in free products, e.g. GNU Privacy Guard, PGP

1

∗ Used in threshold crypto applications requiring �distributed key generation� (we may
cover this later)

� Cramer�Shoup Encryption

∗ Standardized in ISO 18033-2

∗ Similar in spirit to ElGamal

∗ Requires a collision-resistant cryptographic hash function to be discussed later in the
course

∗ Uses extra math (ciphertext and keys are longer) to achieve security under CCA
(1998: �rst practical algorithm to do so based on a standard complexity assumption;
the earlier Dolev-Dwork-Naor work using trapdoor permutations requires random
oracles.)

2 Malleability

Informally, an encryption scheme is malleable if given a ciphertext c that is an encryption of a
plaintext m (and the public key), one can e�ciently generate a ciphertext c′ that is an encryption
of a transformation of m, that is, c′ ∈ E(f(m)). (We recall that in a probabilistic encryption scheme
a message may have many valid encryptions.) In particular this can be done without any knowledge
of m or the secret key. Thus, it does not contradict the encryption scheme being secure in the sense
of having indistinguishable encryptions.

Nevertheless, in some applications, malleability is a weakness. For example, in the context of a
sealed-bid auction, an adversary observing another bid encrypted with a malleable algorithm could
construct a more competitive bid without breaking the scheme or learning anything about the other
bid.

Many of the public-key encryption schemes we have seen are trivially malleable:

ElGamal: Encryption of m is (c1, c2) = (gy,m · hy), with G, g ∈ G, h public and y random. To
transform a ciphertext encrypting m into an encryption of f(m) = 2m, calculate (c′1, c

′
2) =

(c1, 2 · c2).

RSA, Rabin: Semantically secure encryption uses the hardcore bits of the a randomly selected
trapdoor permutation fk with trapdoor t; pk = k, sk = t. Encryption chooses x

R← Dk and
outputs c = (fk(x), bk(x)⊕m) using the hardcore bits bk(x). How is this malleable?

�Plain� RSA, Rabin: These are sometimes used directly in practice but they are not semantically
secure. Encryption is c = me mod n, with n = p · q; n is public and p, q secret. (Rabin
encryption is not equivalent to RSA with public exponent 2, but this attack applies to Rabin
encryption: set e = 2.) To transform a ciphertext encrypting m into an encryption of f(m) =
3m, calculate c′ = 3e · c mod n ≡ (3 ·m)e mod n.

It is no coincidence that ElGamal, RSA and Rabin encryption are all insecure under chosen
ciphertext attack: any malleable encryption scheme allows an adversary to succeed in a chosen
ciphertext attack by applying the transformation to the challenge c = E(m). In one informal
setting, the adversary computes c′ = f ′(c) = E(f(m)), queries the decryption oracle on c′ to
recover f(m), then �nally inverts f(m) to recover m.

2

3 Homomorphic Encryption

It turns out that the properties that make encryption schemes malleable have an interesting bene�t:
parties may want to compute valid encryptions of values that are a function of other encrypted
values.

De�nition 1 A homomorphic encryption scheme is de�ned by three polynomial-time algorithms

(G, E,D), together with at least one pair of polynomial-time computable binary operations 〈⊕,⊗〉
on the plaintext space P and the ciphertext space C, respectively.

• The key generation algorithm G is a randomized algorithm that takes a security parameter 1n

as input and returns a pair (pk , sk), where pk is the public key and sk is the secret key; we

write (pk , sk) R←G(1n).

• The encryption algorithm E is a stateless randomized algorithm that takes the public key pk
and a plaintext (aka message) m and outputs a ciphertext c = Epk (m). When a random help
value r is used in the encryption, we write c = Epk (m, r).

• The decryption algorithm D is a deterministic algorithm (or pair of algorithms) that takes a

ciphertext c = E(m, r) and either the secret key sk or the random help value r (if applicable)

and returns a plaintext m. We write m = Dsk (c) or m = Dr(c), respectively, depending on its

input.

• The encryption algorithm E is a �homomorphism� between the plaintext space P and the

ciphertext space C in the sense that if c1 = E(m1) and c2 = E(m2), then c1⊗c2 ∈ E(m1⊕m2).

• The scheme must also satisfy the property that a veri�er who knows a ciphertext c can verify

that c is a valid encryption of m, given m and any random help value r in the encryption

c = E(m, r).

We observe that our de�nition is slightly di�erent from ordinary public-key encryption schemes
by the explicit introduction of the random help value used in the probabilistic encryption and its
function as a means for decryption.

Exercise (think about this after the end of the lecture): Why don't we consider homomorphic
private-key encryption schemes?

3.1 Homomorphic Schemes We Know

Of the public key encryption schemes we have already seen, their homomorphic properties corre-
spond to the malleability weaknesses we described above:

ElGamal: Encryption of m is (c1, c2) = (gy,m · hy), with G, g ∈ G, h public and y random. Then
given ciphertexts (gy1 ,m1·hy1), (gy2 ,m2·hy2), their pairwise product is (gy1+y2 ,m1·m2·hy1+y2),
an encryption of m1 ·m2.

�Plain� RSA, Rabin: Encryption is c = me mod n, with n = p · q; n is public and p, q secret.
Given ciphertexts c1 = me

1, c2 = me
2, their product is (m1 · m2)e mod n, an encryption of

m1 ·m2.

We observe that these schemes are multiplicatively homomorphic: E(a) · E(b) ∈ E(a · b). Cer-
tainly this is useful, but it would be nice to have an additively homomorphic scheme � such that ⊕
is standard addition and E(a)⊗ E(b) ∈ E(a + b) for some operation ⊗.

3

4 Paillier Encryption

Paillier's trapdoor function is an isomorphism f : ZN × Z∗
N → Z∗

N2 given by f(a, b) = (1 + N)a ·
bN mod N2, where N = pq for distinct odd primes p, q of equal length. This function f can be
e�ciently computed but inverting it is believed to be di�cult without the factorization of N under
the Composite Residuosity Assumption.

One can encrypt directly using this trapdoor function by letting a be the message m and b the
random help value r. Our scheme is thus de�ned by three polynomial-time algorithms (G, E,D):

G: Pick two n-bit primes p, q. Set pk = N = p · q, sk = ϕ(N) = (p− 1) · (q − 1).

E: Let m ∈ ZN be the message to encrypt and obtain random help value r
R← Z∗

N . Set c =
EN (m, r) = (1 + N)m · rN ≡ (1 + m ·N)rN mod N2.

D: To decrypt c using ϕ(N), compute ĉ = cϕ(N) ≡ (1 + N)m·ϕ(N) ≡ (1 + m · ϕ(N) · N) mod N2

(by Fermat's Little Theorem). Then compute m′ = ĉ−1
ϕ(N) mod N2 and recover m = m′/N .

(We cannot divide by N modulo N2 because N , which divides N2, has no inverse.)
To decrypt c using r, compute ĉ = c · r−N mod N2, then recover m = (ĉ− 1)/N .
Anyone who knows the secret key sk can recover r from c; r = cN−1 mod ϕ(N) mod N .

4.1 The Decisional Composite Residuosity Assumption; Security of Paillier's

Scheme

• The DCRA assumption says a random Nth residue is computationally indistinguishable from

a random element of Z∗
N2 . That is, (N,RN)

c≡ (N,S), where N is a random Paillier modulus,
R,R′ are random elements of Z∗

N , and S, S′ are random elements of ZN2 .

• Then, we observe the following three facts:

(N, (1 + N)m0 ∗ S)
c≡ (N, (1 + N)m1 ∗ S′)

(pk , Epk (m0)) ≡ (N, (1 + N)m0 ∗RN)
c≡ (N, (1 + N)m0 ∗ S)

(pk , Epk (m1)) ≡ (N, (1 + N)m1 ∗R′N)
c≡ (N, (1 + N)m1 ∗ S′).

These imply that (pk , Epk (m0)) ≡ (N, (1+N)m0∗RN)
c≡(N, (1+N)m1∗R′N) ≡ (pk , Epk (m1)),

that is, the Paillier scheme is semantically secure under the DCRA.

This argument uses the general fact that multiplying a �xed element of a group by a uniformly
random element gives you a uniformly random element of the group.

• Paillier made a related argument that a successful CPA attacker can break the DCRA. Specif-
ically, assume m0 and m1 are two known messages and c is a ciphertext of either m0 or m1.
c ∈ E(m0) if and only if c · (1 + N)−m0 mod N2 (which the adversary can compute) is an
Nth residue. Thus if an adversary has algorithm A(c,m0) that can identify whether c is an
encryption of m0 with nonnegligible probability, he can use A to decide composite residuosity.

4

4.2 Homomorphic Properties of Paillier Encryption

One of the most attractive properties of the Paillier system is that it is additively homomorphic over
plaintexts and also allows for multiplication of plaintexts by a constant. All of these primitives can
be performed by anyone.

• Addition:

• Multiplication by a constant:

With these primitives, one can divide the plaintext by any constant k ∈ Z∗
N (equivalent to mul-

tiplying by k−1 mod N). One can subtract two plaintexts via their ciphertexts c1 = E(m1, r1), c2 =
E(m2, r2). c1 · c−1

2 ≡ E(m1 −m2, r1/r2) (mod N2).
Even more complex primitives are possible. Given c1 = E(m1, r1), c2 = E(m2, r2), anyone who

has the random help values r1, r2 or the secret key sk can prove the following facts to a veri�er who
has only c1 and c2, revealing minimal information about m1 or m2. (In your homework, you will be
asked to show that the Equality proof reveals nothing about m1 and m2 by proving that any two
pairs of ciphertexts are indistinguishable given only the quotient of their random help values.)

• Equality: Since m1 − m2 = 0, the prover reveals the single integer r̄ = r1/r2 mod N . The
veri�er veri�es that Dr̄(c1/c2) = m by checking that (c1/c2) ≡ (1 + N)0r̄N ≡ r̄N (mod N2).

• Range: m1 < 2t < N for constant t (see next subsection)

• Product of Two Plaintexts: c3 = E(m1 ·m2, r3) (see papers cited below)

• Inequality: m1 ≥ m2

First prove m1,m2 < 2t where t is chosen so 2t < N/2. Then compute c3 = c1/c2 =
E(m1−m2, r1/r2), and prove, using c3 and the Range primitive, that (m1−m2) < 2t < N/2.
This implies m1 ≥ m2, because if not (m1 −m2) would wrap around mod N and we could
not prove (m1 −m2) < 2t. (This necessarily reveals that m1,m2 < 2t but nothing else.)

Some of these primitives and others are explored in detail in a paper �A Generalisation, a Simpli�-
cation and some Applications of Paillier's Probabilistic Public-Key System� by Dåmgard and Jurik
(2001); other formulations are presented in �Practical Secrecy-Preserving, Veri�ably Correct and
Trustworthy Auctions� by Parkes, Rabin, Shieber and Thorpe (2006).

4.2.1 Proof of Range

(This section is derived from the Parkes et al. paper cited above.) Given ciphertext c = E(m, r) we
need to prove that m < 2t for some constant t.

De�nition 2 A valid test set S for the assertion �c = E(m, r) is an encryption of a number x < 2t�

is a set of 2t randomly ordered encryptions, S = {G1 = E(u1, s1), . . . , G2t = E(u2t, s2t)}, where
each of the powers of 2 � {1, 2, . . . , 2t−1} � appears among the ui exactly once and the remaining t
values uj are all 0.

5

By use of such a test set S, the prover can prove that x < 2t as follows:
Let m = 2t1 + . . . + 2t` be the representation of m, a sum of distinct powers of 2. The prover

selects ` randomly ordered encryptions Gj1 , . . . , Gj`
of 2t1 , . . . , 2t` , and further t − ` encryptions

Gj`+1
, . . . , Gjt of 0.

The prover hands over these t encrypted �bits�, {Gj1 , . . . , Gjt}, to the veri�er. The prover also
hands over the random help value that proves that the sum of the bits is equal to m, i.e., the original
random help value r divided (mod N2) by the product of all the random help values in these t bits'
encryptions: r̄ = r/(

∏t
i=1 sji).

The veri�er can now calculate the sum of the �bits� m′ by computing the product of the en-
cryptions: c′ = E(m′, s) =

∏t
i=1 Gji and verifying that m′ = m by calculating and checking

c/c′ ≡ E(m−m′, r/s) ≡ r̄N (mod N2).
This reveals nothing to the veri�er because she cannot tell whether particular bits represent 0

or 1, and the order given to her is random. However, there is a slight problem in that the veri�er
cannot be sure that the test set containing the 2t encryptions of 0 and 1 is well-formed.

To get around this, we employ what is called a �cut and choose� protocol. The prover creates a
large number 2k of sample test sets; the veri�er then asks the prover to �unlock� half (k) of them
by revealing the random help values used to encrypt each element in each test set. The veri�er
checks that each test set contains exactly t encryptions of 0 and t encryptions of the powers of 2
from 20 . . . 2t−1.

The only way that the prover can cheat is if the k test sets that the veri�er chose to be revealed
were valid and the k remaining ones were invalid. The probability of such an unfortuitous choice is(
2k
k

)−1
. For k = 20, that probability is about

√
20π
240 < 8

1012 by Sterling's Theorem.

5 Applications of Homomorphic Cryptography

5.1 Auctions

Given the primitives we have above, we can construct a simple veri�able sealed-bid auction protocol
among n bidders P1, . . . , Pn for a single item as follows:

1. An auctioneer is chosen with a Paillier key pair pk , sk as above

2. Each bidder Pi secretly encrypts the price vi she wishes to pay v̂i = Epk (vi, ri) and publishes
v̂i to everyone. Only the auctioneer can see what her bid is.

3. When the auction closes, the auctioneer secretly decrypts all the bids and identi�es the winner
(without loss of generality) P1.

4. The auctioneer uses our Inequality primitive above to prove, using only v̂1 and v̂j , that v1 > vj

for 2 ≤ j ≤ N .

5. The auctioneer, if he wishes, may reveal the winning bid by revealing the value r1.

6. The auctioneer can even reveal a Vickrey price by revealing the second price value r2. In more
complex auctions, the auctioneer can even prove correct optimal prices that are arbitrary
linear functions of the encrypted bid values!

6

5.2 Voting

Paillier is an attractive protocol for voting because it is additively homomorphic, and makes it
possible to count votes without decrypting any voter's particular vote.

1. The election board creates a distributed Paillier key pair (pk , sk) so that no one entity knows
the secret decryption key but the public encryption key can be published.

2. A constant k is chosen large enough so no more than 2k votes will be cast. Each candidate is
associated with a value Ci = 2ik. For example, k = 32 (about 4 billion votes), and Adams =
232, Buchanan = 264, Coolidge = 296.

3. When a voter votes, their vote is an encryption of 1 + Ci. For example, a vote for Buchanan
would be Vj = (1 + 264), encrypted: V̂j ∈ Epk (1 + 264, rj). The voting machine computes
these values.

4. The voting machine proves that a vote is correct without revealing any information about the
vote, using a protocol similar to the primitive that proves a value m < 2t. Amazingly, the
machine can do this without knowing the decryption key � provided it knows the random help
value used to encrypt.

5. The votes are tallied by computing the product of the encrypted votes:
∏

j V̂j ∈ Epk (
∑

j Vj).

6. The raw votes are destroyed. The election o�cials then reconstruct the secret decryption key
and decrypt the total. By taking the total modulo each successive Ci, the election board can
extract the number of votes for each candidate.

5.3 What other applications can we think of?

• Multi-Party Computation, e.g. the Professors' Salary Problem

•

•

5.4 Some Security Considerations

Clearly, �plain� Paillier is not appropriate as the only mechanism in an auction protocol. (Why?)

We have not yet studied digital signatures and message authentication codes; later we will
see how they complement �plain� homomorphic encryption schemes to prevent a participant in a
protocol from creating an encryption based on someone else's published encrypted values.

5.5 Other Facts About Homomorphic Encryption

It remains an important open question whether one can construct a homomorphic encryption scheme
that is doubly homomorphic in the ciphertexts, that is, there exist two pairs of operations 〈+,⊕〉,
〈×,⊗〉 such that E(a+b) = E(a)⊕E(b) and E(a×b) = E(a)⊗E(b). Paillier's scheme is sometimes
said to be doubly homomorphic, but its multiplicative homomorphism is limited to creating new
encryptions of products of plaintexts with constant factors. If someone were to construct a truly
doubly homomorphic scheme allowing both addition and multiplication over plaintexts by operations
on the ciphertexts, what would the implications be?

7

