
CS 120/ E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen Dec. 12, 2006

Lecture Notes 19 (expanded):

Secure Two-Party Computation

Recommended Reading.

• Goldreich Volume II 7.2.2, 7.3.2, 7.3.3.

1 A Tale of Two Lovers

Alice and Bob would like to determine whether they love each other. However, Alice is afraid to
reveal her love to Bob only to �nd out that he actually doesn't love her. Bob is afraid of the very
same thing. They decide to run a cryptographic protocol.

Alice holds an input bit a ∈ {0, 1} representing whether she loves Bob (a = 1) or not (a = 0).
Bob holds an input bit b representing whether he loves Alice or not. Their goal is to somehow
determine whether both a = 1 and b = 1. In other words, they wish to jointly compute the function

f(a, b) = a ∧ b.

The ideal thing for them would be a protocol that reveals the value of f(a, b) to both of them,
but does not reveal any more information on their respective inputs than what is �necessary."
Clearly, having Alice and Bob send each other their inputs on the clear is not a good idea (what if
f(a, b) = a⊕ b?). However, it is not at all clear how to do this in a di�erent way.

In this lecture, we will see that, somewhat surprisingly, cryptography enables a solution to Alice
and Bob's problem. In fact, it will yield a solution to a more general (and challenging!) prob-
lem. Under appropriate complexity assumptions, it is possible to securely compute any e�ciently
computable two-party function f(a, b) (where a, b are not necessarily bits).

2 De�ning Security

Before they even attempt to design a solution, Alice and Bob have to de�ne what it means for a
protocol to be �secure." So they decide to start by listing security properties that they would like
the protocol to satisfy:

Correctness. If both Alice and Bob follow the protocol's instructions, then their "local" outputs
should equal f(a, b).

Privacy. The protocol reveals no information to Alice beyond what is revealed by f(a, b) (same
for Bob), For example if f(a, b) = a ∧ b and a = 0 then f(a, b) = 0 regardless of the value of
b, and the protocol's execution should not enable Alice to tell whether b = 0 or b = 1.

Input independence. Alice's input to the protocol should not depend on Bob's input (same for
Bob). This is closely related to Privacy. For example, Alice should not be able to set her
input a to be equal to b. This is because in such a case Alice will be able to look at the output
of the protocol (e.g. f(a, b) = a ∧ b) and learn the value of Bob's input (why?).

1



These properties are very desirable in many protocol settings and make sense also if more than two
parties are participating. For example, in an "electronic voting" protocol privacy should guarantee
that, modulo the outcome of the election, my vote is not revealed.

Another example would be a protocol for contract bidding where the inputs to the protocol
correspond to, say the bids of the individual bidders. In this case, not only privacy might be
important but also input independence seems to be a crucial property.

2.1 Semi-Honest Adversaries

In this lecture we will focus on semi-honest adversaries. These are adversaries that faithfully follow
the protocol's prescribed instructions, but nevertheless try to learn something from the protocol's
execution (by keeping a record of all their intermediate computations).

Even though it sounds rather weak, the semi-honest model is of great interest by itself and
designing protocols that withstand attacks of a semi-honest adversary is already a non-trivial task.
(Notice that having the parties send their inputs on the clear would not yield a secure protocol even
against semi-honest adversaries.)

The treatment of the semi-honest case will be justi�ed in the next lecture, where we will see
how to transform any protocol that is secure against semi-honest adversaries into a protocol that
withstands arbitrary malicious deviations from the protocol's instructions.

2.2 Security Against Semi-Honest Adversaries

We consider a two party protocol (A,B). The protocol consists of two parties that exchange
messages in alternating turns. The messages are determined by the parties' (private) inputs and
coin-tosses, as well as on the previous messages that they have received. We will say that a protocol
(A,B) computes a function f(a, b) if whenever both A and B follow the protocol's instructions, on
inputs a and b respectively, then their local outputs equal f(a, b)

A party's view of a protocol's execution consists of its input, coin-tosses, and received messages.

We let VIEW
(A,B)
A (a, b, 1n) denote a random variable that is distributed according to A's view when

the parties' inputs are a, b respectively, the security parameter is n, and the coin tosses of both
parties are chosen uniformly at random. B's view is symmetrically de�ned.

One could think of the view of a party as the �information" that this party is obtaining from the
protocol's execution. A semi-honest adversary may apply an arbitrary polynomial time program to
the view (this corresponds to the distinguisher).

Our de�nition of security will require that whatever can be (e�ciently) obtained from a party's
view could be essentially obtained from the input and output available to that party. This is
formalized by exhibiting the existence of a probabilistic polynomial time machine (simulator) that,
given only the input and output available to the party, is able to produce views that are essentially
identical to that party's views in actual protocol executions.

De�nition 1 Let f(a, b) be a (deterministic) two-input function. A two-party protocol (A,B) for

computing f is said to be secure if there exists PPT algorithms ("simulators") SA and SB such that

for any a, b {
SA(a, f(a, b), 1n)

}
n∈N

c≡
{

VIEW
(A,B)
A (a, b, 1n)

}
n∈N{

SB(b, f(a, b), 1n)
}

n∈N

c≡
{

VIEW
(A,B)
B (a, b, 1n)

}
n∈N

where
c≡ denotes computational indistinguishability.

2



Notice the similarity to semantically secure encryption. There, we required that whatever is
computable about the plaintext with the ciphertext is actually computable without the ciphertext.

2.3 Comments

In the semi honest case input independence is trivially guaranteed. However, in the case of malicious
adversaries this is indeed a concern. The reason for this is that a malicious adversary may modify
its own input as a function of the messages it sees. There are many issues/variants that are not
covered here:

• Randomized functions,

• parties could have di�erent outputs (i.e. f1(a, b) and f2(a, b)).

• malicious adversaries,

• static/dynamic/adaptive/non-adaptive corruption,

• fairness.

3 Computing the AND of Two Bits

Back to Alice's and Bob's problem. We would like to design a protocol that computes the function
f(a, b) = a∧b where a, b ∈ {0, 1}. The central tool that we will use will be 1-out-2 oblivious transfer.

3.1 Oblivious Transfer

Roughly speaking, 1-out-2 Oblivious Transfer (OT2
1) is a protocol between Alice (the sender) that

holds two values (say bits) s0, s1 and Bob (the receiver) that holds a "choice" bit c ∈ {0, 1}. At the
end of the protocol, Bob outputs the value of sc and should learn nothing else. Alice learns nothing.
In the language of our de�nition of security this corresponds to a protocol for securely computing
the two-input function f(a, b) = (f1(a, b), f2(a, b)) de�ned as

f((s0, s1), c) = (λ, sc)

where λ denotes the empty string and corresponds to Alice's empty output. We next present a
construction that is secure for semi-honest adversaries. Let F : {fk : Dk → Dk}k∈K be a family of
trapdoor permutations and let {bk : Di → {0, 1}}k∈K be a collection of trapdoor predicates for F .
Consider the following protocol for OT2

1:

Common input: Security parameter n ∈ N .

Input to Alice: s0, s1 ∈ {0, 1}.

Input to Bob: Choice bit c ∈ {0, 1}

A→ B: Pick (k, t) R← G(1n) for the trapdoor permutation and send k to Bob.

B → A: Pick x, y
R← Dk. Set yc = fk(x) and y1−c = y. Send y0, y1 to Alice.

A → B: Use t to invert y0, y1 under fi. Let x0, x1 be the corresponding preimages. Use x0 to
�encrypt" s0 and x1 to �encrypt" s1. This is done by setting z0 = b(x0)⊕s0 and z1 = b(x1)⊕s1.
Send z0, z1 to Bob.

3



B: Use x = xc = f−1
k (yc) to compute sc = bk(xc)⊕ zc.

The above protocol can be also generalized to work for OT`
1 for any small (e.g. constant) ` ∈ N

(i.e., where Alice holds k values s1, . . . , s` and Bob's choice is an index i ∈ [`]).

Proposition 2 Suppose that F is a family of trapdoor permutations. Then, (A,B) is a OT2
1 protocol

against semi-honest adversaries.

Proof Sketch: Consider a machine SA((s0, s1), λ, 1n) that operates as follows:

1. Pick (k, t) R← G(1n) for the trapdoor permutation using coin tosses r.

2. Pick two uniformly chosen strings y0, y1 ∈ Dk.

3. Output (s0, s1), r, (y0, y1).

Note that the strings y0, y1 that appear in SA's output are identically distributed to strings y0, y1

that are sent by Bob in an actual execution of the protocol (A,B). This is because when Bob is
applying fk to a uniformly chosen x ∈ Dk the result is a uniformly chosen y ∈ Dk. Next, consider
a machine SB(c, s, 1n) that acts as follows:

1. Pick (k, t) R← G(1n) for the trapdoor permutation.

2. Pick x, y
R← Dk using coin tosses r. Set yc = fk(x) and y1−c = y.

3. Compute zc = bk(x)⊕ s and randomly choose z1−c .

4. Output c, r, (k, (z0, z1)).

Note that except (z0, z1) the output of SB is distributed identically to the corresponding part of Bob's
view. This holds even if we include zc (which equals bk(x)⊕s both in the actual execution and in the
execution of SB). Thus, the only di�erence is in the value of z1−c. The latter's indistinguishability
from the corresponding value in actual executions of the protocol follows from the fact that the
function bk() is a hard-core predicate for the family F . �

3.2 Using OT for Computing AND

Given a protocol for OT2
1, the task of computing the function f(a, b) = a ∧ b becomes simple.

Suppose Alice has input a and Bob has input b. To compute f(a, b) = a ∧ b we let them run the
OT2

1 protocol with Alice as the sender and Bob as the receiver in the following way:

A: Set (s0, s1) = (0, a).

B: Set c = b.

A↔ B: Run the OT2
1 protocol with ((s0, s1), c) as input. Bob gets the value of sc as output.

B: send sc to Alice.

A,B: output sc as the result of the protocol for computing f(a, b).

It can be seen that sc = 1 if and only if a = b = 1. Thus, the protocol indeed computes f(a, b) = a∧b.

Claim 3 Suppose that the OT is secure. Then, protocol (A,B) securely computes f(a, b) = a ∧ b.

4



4 Computing an Arbitrary Function

We next sketch the construction of a secure two-party protocol for computing an arbitrary f(a, b).

4.1 Computing Functions with Boolean Circuits

A Boolean Circuit is a DAG whose edges (wires) are labeled with a value in {0, 1}, and whose nodes
(gates) correspond to Boolean operations (e.g. AND, OR, NOT). We may assume without loss of
generality that nodes in the circuit have maximal in-degree 2.

The computation takes place in the natural way, where for each gate we label its outgoing wire(s)
with the value that corresponds to the output of the gate function when applied to the {0, 1} values
with which the two incoming wires are labeled. For example if the gate corresponds to the AND
function and its incoming wires are labeled with ai, bi respectively then its outgoing wire(s) will be
labeled with the value of ai ∧ bi.

The inputs a, b of the function correspond to the value of input wires (which are �sources" in
the DAG). The inputs a, b are viewed as bit strings and each wire corresponds to one bit of input.
The output of the function corresponds to certain output wires (which are �sinks� in the DAG) and
equals the value these wires are labeled with.

Fact 4 Any polynomial time computable function f(a, b) can be computed by a polynomial size

Boolean Circuit with only AND and NOT gates.

4.2 Computing with Shared Inputs

Alice and Bob hold inputs a1, . . . , an and b1, . . . , bn respectively, where ai, bi are bits. They wish
to jointly compute the function f((a1, . . . , an), (b1, . . . , bn)). To do so, they start by exchanging
"shares" of each of their input bits ai and bi. Thus is done in the following way. Suppose that Alice
would like to share an input bit a and Bob would like to share an input bit b:

A→ B: Pick a1
R← {0, 1} and set a2 = a⊕ a1. Send a2 to Bob.

B → A: Pick b2
R← {0, 1} and set b1 = b⊕ b2. Send b1 to Alice.

Note that a1 ⊕ a2 = a and b1 ⊕ b2 = b so a1, a2 can be thought of �shares� of a and b1, b2 can be
though of �shares� of b. Also note that following the above process we have:

1. Alice holds �shares� a1, b1 of a and b respectively.

2. Bob holds �shares� a2, b2 of a and b respectively.

3. Neither a1 or a2 individually reveal any information about a.

4. Neither b1 or b2 individually reveal any information about b.

Alice and Bob repeat this process for every one of their input bits ai and bi. As a consequence, they
both hold shares for all of the circuit's input wires.

Their objective is, given shares of the form a1, b1 and a2, b2 for two wires that enter a certain
gate, to jointly compute shares for the label of the corresponding output wire(s). If they can do this
for any given gate, they can eventually go through all the gates of the circuit (one by one) while
computing new shares for all �intermediate� wires.

5



Eventually they reach the output wires of the circuit. If all goes as planned, they are holding
shares for the output wires that encode the value of f((a1, . . . , an), (b1, . . . , bn)). Alice and Bob can
then send each other their shares so that they can both reconstruct the output of the function.

The key for implementing the above idea in a secure manner is to insure that the joint compu-
tation of shares of intermediate wires: (1) results in correct shares for the outgoing wire, and (2)
does not reveal anything about the values shared (both the inputs to the gate and the outputs).

4.3 Computing NOT with Shared Inputs

Suppose Alice and Bob hold shares a1 and a2 for a bit a. To jointly compute the function f(a) = ¬a,
we let Alice simply negate her share a1. This results in new shares c1 = ¬a1 and c2 = a2, whose
combination c = c1 ⊕ c2 equals ¬a.

4.4 Computing AND with Shared Inputs

The more involved case involves the joint computation of the AND function. Suppose Alice and
Bob hold shares a1, b1 and a2, b2 for bits a and b respectively. Their objective is to jointly compute
uniformly chosen shares c1 and c2 for the value c = a ∧ b. Viewing the AND function as the
multiplication of two bits modulo 2 and the XOR function as addition modulo 2, we can restate the
problem as wanting to provide each party with a random share of the value

(a1 + a2) · (b1 + b2).

To this end, we let Alice pick a random bit c1 and engage in a 1-out-4 OT (OT4
1) protocol with

Bob, where Alice's values are de�ned as follows (values in rightmost column are taken modulo 2):

Index of B's shares Value of the secret
the secret (a2, b2) (B's output)

1 (0, 0) c1 + a1b1

2 (0, 1) c1 + a1 · (b1 + 1)
3 (1, 0) c1 + (a1 + 1) · b1

4 (1, 1) c1 + (a1 + 1)(b1 + 1)

That is, Bob sets its choice bit to be 2a2 + b2 + 1, and obtains the value c1 + (a1 + a2) · (b1 + b2).
Bob sets its share c2 to be equal to the value it has received in the OT4

1.

Claim 5 Suppose that OT4
1 is secure. Then, above protocol securely computes the random mapping:

(a1, b1), (a2, b2) 7→ (c1, c2)

where c1, c2 are random bits subject to the constraint c1 + c2 = (a1 + a2) · (b1 + b2).

6


