CS 120 / E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen

Dec. 18, 2006

Lecture Notes 22:

Conclusions

1 What to take away

How to think about cryptographic problems precisely.

- Command of basic cryptographic notions encryption, one-way functions, pseudorandom generators, MACs, etc.
- Defining security
 - Adversary's goal
 - Probability of success
 - Adversary's computational resources
 - Adversary's access to system and the communication model
 - Conservative approach
- Constructions
 - Build "complex" cryptographic objects from simpler objects/assumptions.
 - Justify via reductions.
 - Always analyze wrt success probability.
 - Stated asymptotically, but can be analyzed concretely
- Some Q's to ask yourself when encountering a new cryptographic protocol:
 - What are we trying to achieve?
 - What are the building blocks? And what are reasonable assumptions about them?
 - Do the assumptions about the building blocks provably imply security of the protocol? If not, are the building blocks at least being used in a way intuitively appropriate to their properties?
- Assumptions we have used
 - complexity assumptions (stronger than $P \neq NP$, e.g. one-way functions)
 - adversary's computational resources
 - one protocol running over single communication line, with passive or active adversary in between
 - public keys readily available
 - secret keys truly secret, generating using perfect random bits
 - "party" = "algorithm" = black box mapping inputs to outputs

2 What we didn't cover

- Concurrency and composability
 - Want security when many protocols running concurrently, even under a coordinated attack. ('universal composability')
 - Very active research area
- Key management
 - Key exchange protocols
 - Issues with Public-Key Infrastructure (PKI), Certificate Authorities
 - Human passwords
 - Compromised keys
- Attacks outside the basic models
 - Network security: traffic analysis, denial of service
 - Physical attacks: power analysis, timing analysis, fault analysis
 - Human error
 - Dangerous programs: buggy/insecure code, viruses, worms
- Symbolic analysis of protocols (formal methods)
 - Logic to describe crypto protocols, with idealized model of encryption
 - Can apply automated deduction to analyze these protocols, but does not imply security when implemented with computationally secure primitives
 - Closing this gap is an active research area
- Alternative models
 - Quantum cryptography
 - Bounded-storage model Rabin's hyperencryption protocol
 - Both allow information-theoretic (statistical) security, no complexity assumptions.
- Social, legal, and policy issues
 - What data *should* be protected? (as opposed to how to protect it)
 - Should digital signatures be legally binding?
 - Should citizens be allowed to use strong cryptography?
 - Tension between privacy/anonymity and security/accountability.

3 What next?

- CS 199r (Computation and Society: Privacy, Technology, and the Law)
 - Mike Smith, Jim Waldo, Alon Rosen, Allan Friedman
 - Spring 2007, TuTh 2:30-4
- More Theory of Cryptography:
 - CS 220r (Cryptography: Trust & Adversity): Graduate-level cryptography course. Starts from first principles, so some amount of overlap with this course, but covers a number of different topics and has a different emphasis.
 - MIT 6.875 (Cryptography and Cryptanalysis): Graduate-level cryptography. Covers almost exactly the same topics as we did, except with a bit more depth and more emphasis on theoretical issues.
 - MIT 6.876J (Advanced Cryptography): Covers recent results and current research directions in cryptography, topics vary from year-to-year. You are probably sufficiently prepared for this course (depending on what they plan to cover), if you are willing to do a little extra reading to fill in any gaps.
 - Further readings
 - * Goldreich's books: most comprehensive, most theoretical
 - * Lecture notes of Bellare et al.
- Security & Practice of Cryptography
 - Keep a critical eye!
 - MIT 6.857 (Network & Computer Security, Rivest)
 - CS 143 (Computer Networks, Kung)
 - Further Readings:
 - * C. Kaufman, R. Perlman, M. Speciner. Network Security: Private Communication in a Public World.
 - * W. Stallings. Cryptography and Network Security.
 - * A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
 - * B. Schneier. Applied Cryptography.
 - * D. Stinson. Cryptography: Theory & Practice.
- Other areas of theoretical CS highly influenced by cryptography
 - CS 121, 124 (if you haven't taken them yet)
 - Almost all CS 22* courses, e.g. CS 224r (Randomness in Computation), CS 225 (Pseudorandomness), CS 221 (Computational Complexity), CS 228 (Computational Learning Theory)
- Number Theory
 - Math 124, and many other courses in the math department.