
CS 120/CSCI E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen Sept. 28, 2006

Lecture Notes 4:

Review of Algorithms & Complexity

Recommended Reading.
• Goldreich, 1.3.

• Katz�Lindell 8.1, 8.2.

• Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms (2nd ed), Ch. 1�3, 5, 31, 34.

• Sipser. Introduction to the Theory of Computation. (various parts)

1 Algorithms
In this course, we will not use a speci�c model of computation when talking about algorithms.
An algorithm can be a program for a Turing machine, RAM model, or your favorite model of
computation, as they are roughly equivalent in terms of e�ciency.

The inputs of an algorithm are strings over an alphabet Σ, Σ being often {0, 1}. Hence an
algorithm A is a function from Σ∗ to Σ?.

• A computes a function f : {0, 1}∗ → {0, 1}∗: on input x in {0, 1}∗, A outputs f(x) ∈ {0, 1}∗

• A decides a language L ⊂ {0, 1}∗: on input x, A outputs 1 if x ∈ L and 0 if x /∈ L. (equivalent
to computing a boolean function f : {0, 1}∗ → {0, 1}).

• A runs in time T : N → N: for all x, A(x) halts after at most T (‖x‖) time units, where ‖x‖
is the length of the string x.

• A runs in polynomial time if it runs in time O(nc) for some constant c.
E�cient (or feasible) algorithms are ones that run in polynomial time. (Although the con-
stant c is important for practical e�ciency, the �polynomial time� e�ciency criterion has the
advantage that it does not depend on the encoding of the data or the model of computation
(given reasonable choices for these).) An algorithm that does not run in polynomial time is
viewed as infeasible.
Note that numbers are encoded using their binary representation so if the input is an integer
N , an algorithm that runs in polynomial time should run in time polynomial in ‖N‖ ≈ log N .

2 Polynomial time
The complexity class P consists of all problems solvable in polynomial time. (Technically, it is a
class of languages)

• problems seen in CS124: sorting, shortest path, maximum �ow, linear programming, ...

• many arithmetic functions which are important in cryptography.

1

Examples:

• DIV(x, y) = (q, r) such that x = y · q + r where r < y. The remainder r is also denoted x
mod y.

• GCD(x, y) is de�ned as the largest z such that z|x and z|y. It can be computed in polynomial
time using Euclid's algorithm.

• exponentiation: EXP(x, y) = xy

• modular exponentiation: MODEXP(x, y, z) = xy mod z

2.1 Problems believed to not be in P

Computational problems which are not solvable in poynomial time are said to be intractable. Here
are some examples.

• A problem provably not in P?

• The complexity class NP is the class of decision problems (yes/no answer) or languages that
have �short proofs� of membership.
More formally: L ∈ NP if there exists a polynomial time veri�er V and a polynomial q such
that

x ∈ L ⇐⇒ ∃w : |w| ≤ q(‖x‖) , V (x,w) = 1.

The string w is the witness for x.
Example: SAT.

• NP-complete problems are the �hardest problems in NP�. Formally, problem Π is NP-
complete if it is in NP and every problem in NP reduces to Π.

� Satisfiability, Travelling Salesman Problem, and Graph 3-Coloring.
� If an NP-complete problem were solvable in polynomial time, then every NP problem

would be solvable in polynomial time.
� P 6= NP widely believed (but still unproven).

• Integer Factorization: given a composite number N , �nd a non-trivial (=other than 1
and N) factor of N .

� Neither known to be in P nor NP-complete.

Some algorithms:

� exhaustive search / trial division
� quadratic sieve: this is the best provable algorithm, it runs in time roughly 2

√
‖N‖

� number �eld sieve: the unproven time bound for this algorithm is roughly 2
3
√
‖N‖

So far, there is no known polynomial-time algorithm.

2

2.2 Asymptotic vs. concrete complexity
For theoretical study, it is convenient to focus on the asymptotic complexity of an algorithm. How-
ever, when evaluating the security or e�ciency of a speci�c implementation, we are also interested
in complexity for �xed input length, e.g. �how many cycles on a Pentium does it take to factor a
1000 digit composite number?� This notion is less robust because it depends on the choice of model
of computation and the encoding of the data. We must also measure the program size in addition
to the running time � why?

3 Randomized Algorithms
3.1 De�nition
A fundamental assumption in cryptography is that randomization is possible, i.e. we can have
algorithms that �toss coins�. We assume there is a black box in the computer that gives us the
results of fair coin tosses. We will not consider where this randomness comes from: we just assume
that every party/algorithm has its own physical source of randomness.

Let A be a randomized algorithm. We write A(x; r) for the output of A on input x and coin
tosses r ∈ {0, 1}∗, and write A(x) for the random variable giving A's output when the coin tosses
are chosen uniformly at random. The probability space is the set of all r's, where every sequence
of coin tosses is equally likely.

What does it mean for a randomized algorithm to solve a problem?

A computes f : {0, 1}∗ → {0, 1}∗ if ∀xPrr[A(x; r) = f(x)] ≥ 2/3.

The algorithm works on every input correctly with high probability. The bound 2/3 can be
replaced by any constant c > .5, as we can reduce the error probability to 2−k by doing O(k)
independent repetitions and taking the majority vote. It is important to note that the probability
is only over the coin tosses and not the input.

A randomized algorithm which can give the wrong answer with small probability is referred to
as being a �Monte Carlo� algorithm (as opposed to �Las Vegas� where the algorithm always outputs
the correct answer or fail).

BPP is the class of problems that can be solved by polynomial-time randomized algorithms.
These are what we will consider to be �easy problems�. We will use PPT as an abbreviation for
probabilistic polynomial-time. It is widely believed NP 6⊂ BPP (in fact, there is evidence that
P = BPP � take CS225!)

3.2 Primality testing
• The Primality Testing problem: given an integer N , is it prime?

• In BPP: Solovay�Strassen, Miller�Rabin (1970's).

• In P: Agarwal�Kayal�Saxena (2002).

• Example of a BPP algorithm for primality testing, on input an odd integer N :

� Repeat several times (i being the index for the loop)
∗ Choose a random number yi between 1 and N : yi

R← {1, · · · , N}

3

∗ If gcd(yi, N) = 1 then compute zi = y
N−1

2
i mod N

� If all the zi's belong to {1, N − 1} and both values 1 and N − 1 occurr, output �prime�.
Otherwise, output �composite�.

This is a polynomial-time algorithm because the gcd is computed with Euclid's algorithm in
polynomial time and the modular exponentiation is computed with the repeated squares and multi-
ply algorithm in polynomial time. For this randomized algorithm, the probability is taken over the
random choices of yi's. The Miller�Rabin primality test is analyzed in Katz�Lindell. One disad-
vantage of this algorithm over other primality testing algorithms is that there is a two-sided error.
(For the other algorithms, an error occurs only when a composite number is said to be prime)

4

