
CS 120/CSCI E-177: Introduction to Cryptography

Problem Set 2

Assigned: Oct. 5, 2006 Due: Oct. 11, 2006 (1:10 PM)

Justify all of your answers. See the syllabus for collaboration and lateness policies. You can submit
by email to ciocan@eecs (please include source files) or by hardcopy to Carol Harlow in MD 343.

Problem 1. (Factorization is “NP-easy”)

1. Let L = {(x, y) ∈ N × N : x has a factor between 2 and y}. Show that the language L is in
NP.

2. Show that if L is in P, then there is a polynomial-time algorithm for integer factorization.
Thus, if P = NP, then factorization is easy.

Problem 2. (Reducing the error of randomized algorithms) Suppose we have randomized
algorithm for computing a function f which gives an incorrect answer with probability ≤ 1/3, and
we want to reduce its error by repeating it several times and taking a majority vote. Use the
Chernoff Bound to estimate how many repetitions suffice to reduce the error probability to 1/1000.
And to 2−k?

Problem 3. (Statistical Security) Recall that (G, E,D) has statistically ε-indistinguishable
encryptions if for every two m1,m2 ∈ P and every T ⊆ C,

|Pr [EK(m1) ∈ T ]− Pr [EK(m2) ∈ T ]| ≤ ε,

where the probabilities are taken over K
R←G and the coin tosses of E.

1. Show that statistical 0-indistinguishability is equivalent to perfect indistinguishability.

For the remaining parts, suppose (G, E,D) has statistically ε-indistinguishable encryptions for
message space P. Below you will prove that the number of keys must be at least (1 − ε) · |P|, so
statistical security doesn’t help much to overcome the limitations of perfect secrecy.

2. Call a ciphertext c decryptable to m ∈ P if there is a key k such that Dk(c) = m. Prove that
for every two messages m,m′ ∈ P,

Pr [EK(m) is decryptable to m′] ≥ 1− ε,

where the probability is taken over K
R←G and the coin tosses of E.
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3. Show that for every message m ∈ P,

E
[
#{m′ : EK(m) is decryptable to m′] ≥ (1− ε) · |P|,

where again the probability is taken over K and the coin tosses of E. (Hint: for each m′,
define a random variable Xm′ that equals 1 if EK(m) is decryptable to m′, and equals 0
otherwise.)

4. Conclude that the number of keys must be at least (1− ε) · |P|.

5. Explain where this proof fails for computational security.
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