
LECTURE NOTES FOR

INTERLACING FAMILIES

PETTER BRÄNDÉN
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1. Introduction

In these notes we follow the two papers [6, 7] where Marcus, Spielman and Sri-
vastava developed a method that they coined the method of interlacing families. In
[6] they proved the existence of infinite families of bipartite Ramanujan graphs for
all degrees, and in [7] they provided a positive answer to the notorious Kadison–
Singer problem. We take the opportunity to have a slightly more general and
unified approach. We consistently use hyperbolic polynomials instead of determi-
nants and barrier function arguments. One benefit of this is that the exposition is
self-contained. We don’t for example use the Helton–Vinnikov theorem on deter-
minantal representations, instead we use simple concavity properties of hyperbolic
polynomials.

2. Graph spectra

In these notes a graph will be (unless explicitly stated) a pair G = (V,E) of
finite sets where E ⊆ {{u, v} : u, v ∈ V, u 6= v}. Recall that the adjacency matrix,
A(G) = (aij(G)), of a graph G = (V,E) is the E × E matrix defined by

aij(G) =

{
1 if {i, j} ∈ E,
0 if {i, j} /∈ E.
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The characteristic polynomial of G is the characteristic polynomial of A(G), i.e.,

χG(x) := χA(G)(x) := det(xI −A(G)),

where I denotes the identity matrix. The spectrum of G, Spec(G), is defined to be
the multiset of eigenvalues of A(G).

Recall that a graph is d–regular if each vertex has degree d. Suppose G is d–
regular. If 1V is the vector of all ones, then A(G)1V = d1V , and hence d ∈ Spec(G).
Let Eij be the matrix with all entries zero but the the (i, j)- and (j, i)-entry which
are one. Recall that a symmetric matrix is positive definite if all its eigenvalues
are positive and positive semi-definite if all its eigenvalues are nonnegative. Clearly
Eii +Ejj −Eij is positive semi-definite (it has eigenvalues 1 and 0). If t > d, then

tI −A(G) = (t− d)I + dI −A(G) = (t− d)I +
∑
ij∈E

Eii + Ejj − Eij ,

is positive definite since it is the sum of a positive definite matrix and a positive
semi-definite matrix. Hence det(tI − A(G)) > 0, so that t /∈ Spec(G). A similar
reasoning proves that if t < −d, then t /∈ Spec(G).

Example 2.1. The adjacency matrix of the complete graph Kd+1 is equal to
J− I, where J is the all ones matrix. From this it is easy to see that Spec(Kd+1) =
{d,−1, . . . ,−1}.

Example 2.2. Recall that a graph is bipartite if the vertex set may be partitioned
as V = X ∪ Y so that each edge is of the form {x, y} where x ∈ X and y ∈ Y .
Hence the adjacency matrix of a bipartite graph has a block structure

A(G) =

(
0 K
KT 0

)
,

where K is a matrix of size |X| × |Y | and KT is the transpose of K. Note that
A(G)w = λw, where w = (xT ,yT )T and x ∈ R|X| and y ∈ R|Y | if and only if
Ky = λx and KTx = λy. Hence

A(G)w = λw if and only if A(G)w̃ = −λw̃, where w̃ = (−xT ,yT )T .

Hence Spec(G) is symmetric around the origin.

3. Expander graphs, Ramanujan graphs and Two-lifts

The nontrivial eigenvalues of a d-regular graph are those in the interval (−d, d).
A d-regular graph is said to be Ramanujan (or d–Ramanujan) if it is connected and
all nontrivial eigenvalues lie in the closed interval [−2

√
d− 1, 2

√
d− 1]. Ramanujan

graphs are extremal in the following sense.

Theorem 3.1 (Alon–Boppana). Let d be a positive integer. There exists a constant
c such that for each d-regular graph G the largest nontrivial eigenvalue of G is larger
than

2
√
d− 1 · (1− c/∆2),

where ∆ is the diameter of G.

Note that the diameter grows to infinity with the size of the ground set.
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The spectral gap of a graph is the difference between its largest and second
largest eigenvalue. Ramanujan graphs are good expander graphs in the following
sense. The edge expansion ratio of a graph G = (V,E) is defined as

h(G) = min

{
|∂S|
|S|

: 0 < |S| ≤ |V |
2

}
, where

∂S = {{u, v} ∈ E : u ∈ S, v /∈ S}.

Theorem 3.2 (Dodziuk, Alon-Milman, Alon). Let G = (V,E) be connected, d
regular with spectral gap δ. Then

δ/2 ≤ h(G) ≤
√

2dδ.

Bilu and Linial suggested a procedure of constructing infinite families of d-
Ramanujan graphs by iteratively applying so called 2-lifts. If G = (V,E) is a
graph and s : E → {−1, 1} is an assignment of signs to the edges, we define a new
graph Gs = (Vs, Es) as follows. The set of vertices Vs = V 1 ∪V 2 is a disjoint union
of two copies V 1 = {v1 : v ∈ V } and V 2 = {v2 : v ∈ V } of V . The edges of Gs come
in pairs, one pair for each edge e = {u, v} ∈ E: If s(e) = 1, then the corresponding
edges in Es are {u1, v1} and {u2, v2}. If s(e) = −1, then the corresponding edges
in Es are {u1, v2} and {u2, v1}.

Lemma 3.3. Let G = (V,E) be a graph and s : E → {−1, 1}. Then

χGs(x) = χG(x) det(xI −As(G)),

where As(G) is the signed adjacency matrix with entry (i, j) equal to zero if {i, j}
is not an edge and s(i, j) if {i, j} is an edge.

Proof. We may order the vertices so that the adjacency matrix of Gs has the form

A(Gs) =

(
A+ A−
A− A+

)
,

where A+ corresponds to the positive edges, and A− corresponds to the negative
edges. Now write w = (xT ,yT )T , where x,y ∈ R|V |. Then A(Gs)w = λw if and
only if

A+x +A−y = λx, and

A−x +A+y = λy

Clearly this happens if and only if A(G)u = λu and As(G)v = λv, where u = x+y
and v = x− y. Hence, for each eigenvalue of A(G) we get an eigenvalue of A(Gs)
by choosing v = 0. Also the dimension of the corresponding eigenspaces coincide.
Similarly, for each eigenvalue of As(G) we get an eigenvalue of A(Gs) by choosing
u = 0. Altogether the sum of the multiplicities of these eigenvalues add up to 2|V |,
which proves that all eigenvalues are accounted for. �

Note that if G is d-regular, then so is Gs. Moreover, the new eigenvalues of Gs are
the eigenvalues of the signed adjacency matrix As(G). Hence if G is a Ramanujan
graph and the eigenvalues of As(G) are bounded in modulus by 2

√
d− 1, then Gs

is also Ramanujan. Bilu and Linial conjectured that this is always possible, and
hence that one can recursively build infinite families of Ramanjuan graphs:
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Conjecture 3.4 (Bilu & Linial). Suppose G is d-regular and Ramanujan. Then
there exists an s : E → {−1, 1} so that the eigenvalues of As(G) lie in [−2

√
d− 1, 2

√
d− 1].

Marcus, Spielman and Srivastava were able to prove this for bipartite graphs,
[6].

4. The matching polynomial

A matching in a graph G = (V,E) is a subset M ⊆ E such that no two edges in
M have a common vertex. The matching polynomial is the generating polynomial
for matchings:

µG(x) =
∑
k≥0

(−1)kmk(G)x|V |−2k,

where mk(G) denotes the number matchings of size k in G.

Lemma 4.1. If G = (V,E) is a graph and i ∈ V , then

µG(x) = xµG\i(x)−
∑
{i,j}∈E

µG\i\j(x),

where G \ i is the graph obtained by deleting vertex i and all edges incident to i.

Proof. The number of matchings of size k that do not contain i is equal to mk(G\i),
and the number of matchings that contain i is equal to

∑
{i,j}∈Emk−1(G \ i \ j).

Hence

mk(G) = mk(G \ i) +
∑
{i,j}∈E

mk−1(G \ i \ j),

from which the lemma follows. �

Theorem 4.2. Let G = (V,E) be a graph and {s(e)}e∈E independent random
variables with values in {−1, 1} such that Es(e) = 0 for all e ∈ E. Then

Edet(xI −As(G)) = µG(x).

Proof. Let G = (V,E), where V = {1, . . . , n} be a graph and let G′ be the graph
obtained by adding loops to each vertex in G. A cycle v1, v2, . . . , vk = v1 is simple
if vi 6= vj for all 1 ≤ i < j ≤ k − 1. A disjoint cycle cover of G′ is a vertex-disjoint
collection C = {C1, . . . , C`} of simple cycles (loops and two-cycles are allowed) in
G′ such that their union is V . Define the weight of a cycle C = v1, v2, . . . , vk to be

w(C) =

{
x if C is a loop,

(−1)ks(v1, v2)s(v2, v3) · · · s(vk−1, vk) otherwise.

The weight of a disjoint cycle cover C = {C1, . . . , C`} is w(C) = w(C1) · · ·w(C`). If
we extend s so that s(i, j) = 0 whenever {i, j} 6∈ E, then

det(xI +As(G)) =
∑
π∈Sn

sign(π)x#fixed points
∏

i not fixed

s(i, π(i))

=
∑
C
w(C),
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where the sum is over all disjoint cycle covers of G′. Note that if C is a cycle of
length greater than 2, then Ew(C) = 0 because {s(e)} are independent and each
s(e) has expectation 0. If C is a cycle of length 2, then w(C) = −1. Hence

E
∑
C
w(C) =

∑
C={C1,...,C`}

Ew(C1) · · ·Ew(C`) =
∑
C′
w(C′),

where the latter sum is over all disjoint cycle covers into loops and two-cycles.
Clearly such cycle covers are in bijection with matchings. �

The maximum degree of a vertex in of a graph is denoted ∆(G).

Lemma 4.3. Let δ ≥ ∆(G) be an integer greater than 1. If the degree of a vertex
i is smaller than δ, then

µG(x)

µG\i(x)
>
√
δ − 1,

whenever x > 2
√
δ − 1.

Proof. Induction over |V |. If the degree of i is 0, then the quotient is equal to x,
and the lemma follows. Otherwise, by Lemma 4.1 and induction

µG(x)

µG\i(x)
= x−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)

≥ 2
√
δ − 1− (δ − 1)/

√
δ − 1 =

√
δ − 1.

�

Theorem 4.4 (Heilmann & Lieb). Suppose ∆(G) > 1. If x is a real number with

|x| > 2
√

∆(G)− 1, then µG(x) 6= 0.

Proof. Note that µG(x) is even or odd, so that we may assume x > 2
√

∆(G)− 1.
By Lemma 4.3

µG(x)

µG\i(x)
= x−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)
> 2
√

∆(G)− 1−∆(G)/
√

∆(G)− 1 > 0,

for all i ∈ V , since the degree of j in G \ i is smaller than ∆(G). The proof now
follows by induction over |V |. �

5. Interlacing families

Let f and g be two real–rooted polynomials of degree n− 1 and n, respectively.
We say that f is an interleaver of g if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn,
where α1 ≤ · · · ≤ αn−1 and β1 ≤ · · · ≤ βn are the zeros of f and g, respectively.

Example 5.1. If f is a real–rooted polynomial of degree at least two, then f ′ is
an interleaver of f . Indeed, by Rolle’s theorem there is a zero of f ′ between each
pair consecutive different zeros of f . A multiple zero of f is also a zero of f ′ (of
multiplicity one less) from which the interlacing property follows.

Example 5.2. If A is a hermitian matrix and A′ is a maximal sub–matrix of A
obtained by deleting row and column i for some i, then the characteristic polynomial
of A′ is an interleaver of the characteristic polynomial of A.
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By the next theorem we see that the zeros of the matching polynomials are real
and located in the interval [−2

√
∆(G)− 1, 2

√
∆(G)− 1].

Theorem 5.1 (Heilmann–Lieb). Let G = (V,E) be a graph and i ∈ V . Then
µG(x) is real–rooted and µG\i(x) is an interleaver of µG(x) for all i ∈ V .

Proof. Induction on n = |V |. Assume the theorem is true for n and that |V | = n+1.
Hence µG\i\j(x) is an interleaver of µG\i(x) for all i, j ∈ V . Assume first that all
zeros α1 > α2 > · · · > αn of µG\i(x) are distinct and that for each 1 ≤ k ≤ n there is
a j such that {i, j} ∈ E such that µG\i\j(αk) 6= 0. Then by the interlacing property

(−1)k−1µG\i\j(αk) ≥ 0 for all {i, j} ∈ E and 1 ≤ k ≤ n. Hence (−1)kµG(αk) > 0
by Lemma 4.1 for all 1 ≤ k ≤ n. It follows that µG\i(x) is an interleaver of µG(x).
If µG\i(x) has a zero α of multiplicity m > 1, then by the interlacing property
α is a zero of µG\i\j(x) of multiplicity at least m − 1 for all j. Hence we may

factor through (x − α)m−1 and reduce it to the case of simple zeros. The same
type of reduction applies if there is a k such that µG\i\j(αk) = 0 for all j such that
{i, j} ∈ E. �

Lemma 5.2. Let f and g be real–rooted polynomials. Then the polynomial

f

(
d

dx

)
g(x) =

∑
k≥0

f (k)(0)

k!
g(k)(x)

is either identically zero or real–rooted.
Moreover f ′ is an interleaver of f + αf ′ for all α ∈ R.

Proof. Clearly it suffices to prove the second statement. Let g be the greatest
common divisor of f and f ′. Then f ′/g is an interleaver of f/g and they have no
common zeros. Hence f/g alternates in sign at consecutive zeros of f ′/g. The same
is true for f/g + αf ′/g. Hence f ′/g is an interleaver of f/g + αf ′/g. �

Lemma 5.3. Suppose ε ∈ R and f is a real–rooted polynomial of degree n. Then
all zeros of

fε(x) :=

(
1 + ε

d

dx

)n
f(x)

are real and distinct.

Proof. Suppose α is a zero of multiplicity m ≥ 2 of f + εf ′. Then α is a zero of
f ′ (since f ′ is an interleaver of f + εf ′ by Lemma 5.2). But then α is a zero of
f = (f + εf ′) − εf ′. Since the multiplicity of α as a zero of f is one greater than
the multiplicity of α as a zero of f ′, it follows that that the multiplicity of α as a
zero of f is precisely m+ 1.

We have proved that if f has zero of multiplicity greater than one, then the
quantity “highest multiplicity of the zeros” goes down by one when applying 1 +
εd/dx. This proves the lemma. �

We will on several occasions use the fact that the zeros of a polynomial (or
analytic function) depends continuously on its coefficients:

Lemma 5.4 (Hurwitz’ theorem). Let {fn(z)}∞n=1 be a sequence of functions that
are analytic on a connected open set Ω ⊆ C. Suppose fn converges to f , uniformly
on each compact subset of Ω. If ζ is a zero of f(z) of multiplicity M , then for each
ε > 0 there exists a number N such that for each n ≥ N , fn has exactly M zeros
in {z ∈ Ω : |z − ζ| < ε} counted with multiplicities.
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Lemma 5.5. Let f0 and f1 be two real–rooted polynomials of the same degree and
with positive leading coefficient. The following are equivalent:

(S) For all p ∈ [0, 1], the polynomial

fp(x) := (1− p)f0(x) + pf1(x)

is real–rooted.
(I) The polynomials f0(x) and f1(x) have a common interleaver.

Proof. By using Lemma 5.3 and Hurwitz’ theorem we may assume that f0 and f1

have simple zeros [How?]. By factoring through any common zeros we may also
assume that f0 and f1 have no zeros in common.

(I) =⇒ (S): By slightly altering h we may assume that the common interleaver,
h, has no zeros in common with f0f1. Let α1 < · · · < αn−1 be the zeros of h. Then
(−1)n−kfp(αk) > 0 for all 1 ≤ k ≤ n − 1. It follows that fp has a zero in each

of the n open intervals cut out by {αi}n−1
i=1 . Hence fp is real–rooted and h is an

interleaver of fp.
(S) =⇒ (I): Let β1 < · · · < βn be the zeros of f0. We claim that for each

1 ≤ i ≤ n− 1, there is a point γi ∈ (βi, βi+1) such that f0(γi)f1(γi) > 0. The claim

implies that the polynomial
∏n−1
i=1 (x − γi) is a common interleaver of f0 and f1.

Suppose that the claim is false for some i, and that (without loss of generality) f0

is positive on (βi, βi+1). As p increases from 0, the zero βi will move to the right
and βi+1 will move to the left until they coincide for some 0 < p0 < 1. When we
increase p from p0 we will lose the two zero in [βi, βi+1], and since the zeros depend
continuously on the coefficients we have created a pair of non–real zeros contrary
to the assumptions. �

If f(x) is a real–rooted polynomial with zeros α1 ≤ α2 ≤ · · · ≤ αn, let Ik =
[αk, αk+1] ⊂ R and B(f) = I1 × I2 × · · · × In−1 ⊂ Rn−1. Note that a family
f1, . . . , fk of real–rooted polynomials of the same degree have a common interleaver
if and only if B(f1) ∩ · · · ∩B(fk) 6= ∅.

We will only need the (almost trivial) d = 1 case of Helly’s theorem.

Theorem 5.6 (Helly’s theorem). Let C1, . . . , Ck ⊆ Rd be convex sets such that each
collection of d+1 of them have non-empty intersection. Then C1∩C2∩· · ·∩Ck 6= ∅.

Theorem 5.7. Let f1(x), . . . , fm(x) be real–rooted polynomials of the same degree
and positive leading coefficients. The following are equivalent.

(1) For all 1 ≤ i < j ≤ m and p ∈ [0, 1], the polynomial

(1− p)fi(x) + pfj(x)

is real–rooted.
(2) For all 1 ≤ i < j ≤ m, fi(x) and fj(x) have a common interleaver.
(3) f1(x), . . . , fm(x) have a common interleaver.
(4) for all p1, . . . , pm ≥ 0,

∑
i pi = 1, the polynomial

p1f1(x) + · · ·+ pmfm(x)

is real–rooted.

Proof. (1) ⇒ (2) follows from Lemma 5.5, while (2) ⇒ (3) follows from Helly’s
theorem. (3) ⇒ (4) is proved exactly as in the proof of Lemma 5.5 and (4) ⇒ (1)
is immediate. �
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Corollary 5.8. Suppose f(x) and g(x) are polynomials of degree n + 1 and n
respectively, both with positive leading coefficients. The following are equivalent:

(1) f(x) + αg(x) is real–rooted for all α ∈ R.
(2) g(x) is an interleaver of f(x).

Proof. (2) ⇒ (1) follows by a standard sign-analysis as above.
For (1) ⇒ (2) consider the family FN = {fm(x)}Nm=−N where fm(x) = f(x) +

mg(x) and N > 0 is an integer. By Theorem 5.7 the polynomials in FN have a
common interleaver. When m → ∞ one zero of fm(x) will tend to −∞ and the
rest of the zeros will approach the zeros of g(x), by Hurwitz’ theorem. Similarly
as m → −∞ one zero will tend to ∞ and the rest of the zeros will approach
the zeros of g(x). Let hN (x) be a common interleaver of FN . It follows that
limN→∞ hN (x) = g(x). Since, by construction, hN (x) is an interleaver of f(x), we
have by Hurwitz’ theorem that g(x) is an interleaver of f(x). �

Lemma 5.9. Let f1, . . . , fm be real–rooted polynomials that have the same degree
and positive leading coefficients. If f1, . . . , fm have a common interleaver, then for
some 1 ≤ i ≤ m the largest zero of fi is smaller or equal to the largest zero of the
polynomial

f∅ := f1 + f2 + · · ·+ fm.

Proof. If α is the largest zero of the common interleaver, then fi(α) ≤ 0 for all i,
so that the largest zero, β, of f∅ is located in the interval [α,∞), as are the largest
zeros of fi for each 1 ≤ i ≤ m. Since f∅(β) = 0, there is an index i such that
fi(β) ≤ 0. Hence the largest zero of fi is smaller or equal to β. �

Definition 5.1. Let S1, . . . , Sm be finite nonempty sets and {fs(x)}s∈S1×···×Sm
a

set of polynomials of the same degree and with positive leading coefficients. For
s1 ∈ S1, . . . , sk ∈ Sk, where 1 ≤ k ≤ m, define

fs1s2···sk(x) :=
∑

sk+1···sm∈Sk+1×···×Sm

fs1···sksk+1···sm(x).

Also let
f∅(x) :=

∑
s∈S1×···×Sm

fs(x).

The family {fs(x)}s∈S1×···×Sm is an interlacing family if for each 0 ≤ k ≤ m − 1
and s1 ∈ S1, . . . , sk ∈ Sk the polynomial {fs1···sksk+1

}sk+1∈Sk+1
have a common

interleaver.

Theorem 5.10. Suppose {fs(x)}s∈S1×···×Sm
is an interlacing family. Then there

exists an s ∈ S1 × · · · × Sm such that the largest zero of fs(x) is no larger than the
largest zero of f∅(x).

Proof. Induction over m. The case m = 1 is Lemma 5.9, so suppose m > 1. Clearly
the family {fs′(x)}s′∈S1×···×Sm−1

is an interlacing family. By induction there is a
sequence s′ = s1 · · · sm−1 ∈ S1 × · · · × Sm−1 so that the largest zero of fs′(x) is no
larger then the largest zero of f∅(x). By definition the polynomials {fs′sm(x)}sm∈Sm

have a common interleaver so the theorem follows from Lemma 5.9 since

fs′(x) =
∑

sm∈Sm

fs′sm(x).

�
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To prove Conjecture 3.4 for bipartite graphs it remains to prove that

{det(xI −As(G))}s∈{−1,1}E

is an interlacing family. To do this we will use the following theorem.

Theorem 5.11. Let S1, . . . , Sm be finite nonempty sets and {fs(x)}s∈S1×···×Sm
a

set of polynomials of the same degree and with positive leading coefficients.
If for all choices of independent random variables σ1 ∈ S1, . . . , σm ∈ Sm the

expected polynomial

Efσ(x)

is real–rooted, then {fs(x)}s∈S1×···×Sm is an interlacing family.
Moreover for each such tuple of random variables there is an s ∈ S1 × · · · × Sm

with P[σ = s] > 0 such that the largest zero of fs(x) is no larger than the largest
zero of Efσ.

Proof. Let s1 · · · sk ∈ S1 × · · · × Sk be fixed and let σ1, . . . , σm be independent
random variables defined by

• σ1, . . . , σk are deterministic, i.e., P[σi = si] = 1 for all 1 ≤ i ≤ k,
• If Sk+1 = {t1, . . . , t`}, let P[σk+1 = ti] = pi for all 1 ≤ i ≤ `.
• σj is uniform on Sj for k + 2 ≤ j ≤ m.

Then

Efσ = |Sk+2|−1 · · · |Sm|−1
∑̀
j=1

pjfs1···sktj

is real–rooted by assumption. By Theorem 5.7 {fs1···sktj}`j=1 have a common in-
terleaver and the first part of the theorem follows.

The second part of the theorem follows by considering the interlacing family {gs}
defined by gs = P[σ = s]fs. �

6. Hyperbolic polynomials

The notion of hyperbolic polynomials is a multivariate generalization of real–
rootedness which has its origin in PDE theory where it was studied by Petrovsky,
G̊arding, Bott, Atiyah and Hörmander. During recent years hyperbolic polynomials
have been studied in diverse areas such as control theory, optimization, probability
theory, computer science and combinatorics.

A homogeneous polynomial h(x) ∈ R[x1, . . . , xn] is hyperbolic with respect to
a vector e ∈ Rn if h(e) > 0, and if for all x ∈ Rn the univariate polynomial
t 7→ h(te−x) has only real zeros. Here are some examples of hyperbolic polynomials:

(1) Let h(x) = x1 · · ·xn. Then h(x) is hyperbolic with respect to any vector
e ∈ Rn++ = (0,∞)n:

h(te− x) =

n∏
j=1

(tej − xj).

(2) Let X = (xij)
n
i,j=1 be a matrix of n(n + 1)/2 variables where we impose

xij = xji. Then det(X) is hyperbolic with respect to I = diag(1, . . . , 1).
Indeed t 7→ det(tI − X) is the characteristic polynomial of the symmet-
ric matrix X, so it has only real zeros. Hence hyperbolic polynomials are
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generalizations of determinants, and it is often useful to think about de-
terminants and matrices to get an intuition for the theory of hyperbolic
polynomials.

More generally we may consider complex hermitian Z = (xjk+iyjk)ni,j=1

(where i =
√
−1) of n2 real variables where we impose xjk = xkj and

yjk = −ykj , for all 1 ≤ j, k ≤ n. Then det(Z) is a real polynomial which is
hyperbolic with respect to I.

(3) Let h(x) = x2
1 − x2

2 − · · · − x2
n. Then h is hyperbolic with respect to

(1, 0, . . . , 0)T .

A recent celebrated theorem of Helton and Vinnikov says that all hyperbolic poly-
nomials in three variables arise from the determinant:

Theorem 6.1 ([3, 5]). Suppose that h(x, y, z) is of degree d and hyperbolic with
respect to e = (e1, e2, e3)T . Suppose further that h is normalized such that h(e) = 1.
Then there are symmetric d × d matrices A,B,C such that e1A + e2B + e3C = I
and

h(x, y, z) = det(xA+ yB + zC).

Suppose h is hyperbolic with respect to e, and of degree d. We may write

h(te− x) = h(e)

d∏
j=1

(t− λj(x)), (6.1)

where λ1(x) ≤ · · · ≤ λd(x) are called the eigenvalues of x (with respect to e). In
particular

h(x) = λ1(x) · · ·λd(x). (6.2)

By homogeneity we have

λj(sx) = sλj(x) for all s > 0, and λj(x+se) = λj(x)+s for all s ∈ R, (6.3)

for all 1 ≤ j ≤ n, x ∈ Rn and s ∈ R.
The (open) hyperbolicity cone is the set

Λ++ = Λ++(e) = {x ∈ Rn : λ1(x) > 0}.

We denote its closure by Λ+ = Λ+(e) = {x ∈ Rn : λ1(x) ≥ 0}. Since h(te − e) =
h(e)(t− 1)d we see that e ∈ Λ++. The hyperbolicity cones for the examples above
are:

(1) Λ++(e) = Rn++.
(2) Λ++(I) is the cone of symmetric positive definite matrices.
(3) Λ++(1, 0, . . . , 0) is the Lorentz cone{

x ∈ Rn : x1 >
√
x2

2 + · · ·+ x2
n

}
.

Proposition 6.2. The hyperbolicity cone is the connected component of

{x ∈ Rn : h(x) 6= 0}

which contains e.

Proof. Let C be the connected component that contains e. First we prove C ⊆ Λ++.
Suppose that x(s), 0 ≤ s ≤ 1 is a continous path in C connecting e = x(0) and
x = x(1) ∈ C. Then λ1(x(s)) > 0 for all 0 ≤ s ≤ 1 for otherwise λ1(x(s)) = 0
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for some 0 ≤ s ≤ 1 which implies h(x(s)) = 0 contrary to the assumption that
x(s) ∈ C.

One the other hand if x ∈ Λ++, then by homogeneity

h(tx + (1− t)e) = h(e)

d∏
j=1

(tλj(x) + (1− t)).

Since λj(x) > 0 for all j we see that tx + (1− t)e ∈ C for all 0 ≤ t ≤ 1. �

Theorem 6.3. Suppose h is hyperbolic with respect to e.

(i) If e′ ∈ Λ++(e), then h is hyperbolic with respect to e′, and Λ++(e′) =
Λ++(e).

(ii) Λ++(e) is a convex cone.

Proof. Suppose e′ ∈ Λ++(e). We claim that for each y ∈ Rn all zeros of the
polynomial (in t) p(y; t) = h(te′ − ie − y) have positive imaginary parts. To see
that the claim implies that h is hyperbolic with respect to e′ consider the polynomial
εdp(y/ε, t/ε) = h(te′ − εie − y) whose zeros have positive imaginary parts by the
claim. By Hurwitz’ theorem, the zeros of the real polynomial t 7→ h(te′ − y) have
nonnegative imaginary parts. Since non-real zeros come in complex conjugate pairs
we see that all zeros of t 7→ h(te′−y) are real, and thus h is hyperbolic with respect
to e′.

The claim is true for y = 0, since then the zeros are iλj(e
′)−1 for 1 ≤ j ≤ d.

Suppose that the claim fails for some y ∈ Rn, and consider the line segment {θy :
0 ≤ θ ≤ 1}. By Hurwitz’ theorem, the claim is true for θy for all sufficiently small
θ ≥ 0. Hence at least one zero of t 7→ h(te′ − ie − θy) will cross the real axis for
some θ between 0 and 1. For such a θ we have 0 = h(−ie − θy + αe′), for some
α ∈ R. This contradicts the hyperbolicity of h with respect to e and proves the
claim, which then establishes (i).

That Λ++(e′) = Λ++(e) now follows from Proposition 6.2.
By the proof of Proposition 6.2 we have that for each x ∈ Λ++(e) the line

segment between e and x is in Λ++(e) whenever x ∈ Λ++(e). If x,y ∈ Λ++(e),
then since Λ++(e) = Λ++(x) = Λ++(y), the line segment between x and y is in
Λ++(x)(= Λ++(e)). �

Theorem 6.4. Let λ1(x) : Rn → R be given by (6.1). Then λ1(x) is concave.

Proof. By (6.3)

λ1(x) = max{s ∈ R : x− se ∈ Λ+}.

Thus x − λ1(x)e,y − λ1(y)e ∈ Λ+ which by Theorem 6.3 gives x + y − (λ1(x) +
λ1(y))e ∈ Λ+, and thus λ1(x + y) ≥ λ1(x) + λ1(y). �

Lemma 6.5. Suppose h is hyperbolic with respect to e and let v ∈ Rn. The
following are equivalent:

(1) All eigenvalues of v (with respect to e) are zero;
(2) v ∈ Λ+ and −v ∈ Λ+.

Proof. It follows by homogeneity that λj(−x) = −λd+1−j(x) for all x ∈ Rn, from
which the lemma follows. �
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Recall that the directional derivative of h(x) ∈ R[x1, . . . , xn] with respect to
v = (v1, . . . , vn)T ∈ Rn is defined as

Dvh(x) =

n∑
k=0

vk
∂h

∂xk
(x),

and note that

(Dvh)(x + tv) =
d

dt
h(x + tv).

Theorem 6.6. Let h(x) be a hyperbolic polynomial and let v ∈ Λ+ be such that
Dvh(x) 6≡ 0. Then

(1) Dvh(x) is hyperbolic with hyperbolicity cone containing Λ++. Moreover,
for each x ∈ Rn, the polynomial Dvh(te−x) is an interleaver of h(te−x).

(2) The polynomial h(x)−yDvh(x) ∈ R[x1, . . . , xn, y] is hyperbolic with hyper-
bolicity cone containing Λ++ × {0}.

(3) The rational function

x 7→ h(x)

Dvh(x)
is concave on Λ++.

Proof. (2). Suppose first that v ∈ Λ++. Then h(tv − x) + aDvh(tv − x) =
(1 + ad/dt)h(tv − x) is real–rooted for all x ∈ Rn and a ∈ R by Lemma 5.2. Thus
Hv(x, y) := h(x)− yDvh(x) is hyperbolic with respect to v ⊕ 0. If e ∈ Λ++, then
Hv(e ⊕ 0) = h(e) > 0 which by Proposition 6.2 proves (2) whenever v ∈ Λ++.
If v ∈ Λ+ is on the boundary and a ∈ R, then by Hurwitz’ theorem p(t) =
h(te − x) + aDvh(te − x) is real–rooted or identically zero. However, the leading
coefficient of p(t) is h(e) > 0, so that p(t) is real–rooted and Hv(e⊕ 0) = h(e) > 0.

(1) follows immediately from (2) and Proposition 5.8 if we can prove thatDvh(e) >
0 for all e ∈ Λ++. By (6.1), we see that

Dvh(e)

h(e)
=

d∑
j=1

λj(v),

and since v ∈ Λ+ we have λj(v) ≥ 0 for all 1 ≤ j ≤ d. Hence if Dvh(e) ≤ 0 for
some e ∈ Λ++, then λj(v) = 0 for all 1 ≤ j ≤ d. By Lemma 6.5 this condition does
not depend on the choice of e ∈ Λ++. Thus Dvh(e′) = 0 for all e′ ∈ Λ++. Since
Λ++ is open and non-empty this implies Dvh(x) ≡ 0 contrary to the assumptions.

(3). If x ∈ Λ++, then (by Proposition 6.2) x ⊕ y is in the closure of the hyper-
bolicity cone of H(x, y) if and only if

y ≤ h(x)

Dvh(x)
.

Since hyperbolicity cones are convex we have for all x1,x2 ∈ Λ++.

y1 ≤
h(x1)

Dvh(x1)
and y2 ≤

h(x2)

Dvh(x2)
imply y1 + y2 ≤

h(x1 + x2)

Dvh(x1 + x2)
,

from which (3) follows. �

Let h(x) be hyperbolic with respect to e. The inertia of v ∈ Rn is the triple
(n−(v, e), n0(v, e), n+(v, e)), where n0(v, e) is the number of eigenvalues of v (with
respect to e) that are equal to zero and n±(v, e) is the number of positive/negative
eigenvalues.
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Proposition 6.7. The inertia does not depend on the choice of e ∈ Λ++.

Proof. Let e, e′ ∈ Λ++ and x ∈ Rn, and let m(h) and m′(h) be the multiplicity of
0 as an eigenvalue of x with respect to e and e′, respectively. Let us prove that
m(h) = m′(h) by induction over d, the degree of h. By (6.2) we have m(h) > 0
if and only if m′(h) > 0. Suppose without loss of generality that m(h) ≤ m′(h).
Then, by Theorem 6.6 (1) Deh is hyperbolic with respect to e and e′. Moreover
m(Deh) = m(h)− 1 and m′(Deh) ≥ m′(h)− 1, since Deh(te′−x) is an interleaver
of h(te′ − x) by Theorem 6.6 (1). By induction we have m′(Deh) = m(Deh), and
hence m(h) ≥ m′(h).

To see that the above proves the proposition assume that the inertia of x with
respect to e and e′ is N = (a + r, b, c) and N ′ = (a, b, c + r), respectively (where
r ≥ 1). Consider the parametrized polynomial

fs(t) = t−bh
(
t((1− s)e + se′)− x

)
.

As s runs from 0 to 1 exactly r zeros will change from negative to positive. Hence,
by Hurwitz’ theorem, there is a number s ∈ (0, 1) such that fs(0) = 0, contrary to
what was just proved above. �

We denote the inertia of v by (n−(v), n0(v), n+(v)). The rank of v is defined
as rk(v) = n−(v) + n+(v) = d− n0(v).

Note that for a univariate polynomial f(t), we have( ∞∑
k=0

(−y)k(d/dt)k

k!

)
f(t) = f(t− y)

and hence

h(x− yv) =

( ∞∑
k=0

(−y)kDk
v

k!

)
h(x). (6.4)

Thus

h(e− tv) = h(e)

d∏
j=1

(1− tλj(v)) =

d∑
k=0

(−1)k
Dk

vh(e)

k!
tk,

and hence

rk(v) = deg h(e− tv) = min{k : Dj
vh(e) = 0 for all j > k}.

By Proposition 6.7, the rank does not depend on the choice of e ∈ Λ++. Hence
if Dk+1

v h(e) = Dk+2
v h(e) = · · · = 0 for some e ∈ Λ++, then Dk+1

v h(e′) =
Dk+2

v h(e′) = · · · = 0 for all e′ ∈ Λ++. Since Λ++ has non-empty interior this
means that Dk

vh ≡ 0. We have thus the following equivalent definition of rank

rk(v) = min{k : Dk+1
v h ≡ 0}, (6.5)

which makes sense for polynomials which are not necessarily hyperbolic.

7. Mixed hyperbolic polynomials

If h(x) ∈ R[x1, . . . , xn] and v1, . . . ,vm ∈ Rn let h[v1, . . . ,vm] be the polynomial
in R[x1, . . . , xn, y1, . . . , ym] defined by

h[v1, . . . ,vm] =

m∏
j=1

(
1− yjDvj

)
h(x).

By iterating Theorem 6.6 (2) we get:
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Theorem 7.1. If h(x) is hyperbolic with hyperbolicity cone Λ++ and v1, . . . ,vm ∈
Λ+, then h[v1, . . . ,vm] is hyperbolic with hyperbolicity cone containing Λ++ ×{0}.

Lemma 7.2. If v1, . . . ,vm have rank at most one, then

h[v1, . . . ,vm] = h(x− y1v1 − · · · − ymvm).

Proof. If v has rank at most one, then Dk
vh ≡ 0 for all k ≥ 2. Hence, by (6.4),

h(x− yv) =

( ∞∑
k=0

(−y)kDk
v

k!

)
h(x) = (1− yDv)h(x),

from which the lemma follows. �

Note that h[v1, . . . ,vm] is affine in each coordinate, i.e., for all p ∈ R:

h[pv1 + (1− p)u1, . . . , vm] = ph[v1, . . . ,vm] + (1− p)h[u1, . . . ,vm].

Hence if v1, . . . ,vm are independent random variables, then

Eh[v1, . . . ,vm] = h[Ev1, . . . ,Evm]. (7.1)

Theorem 7.3. Let h(x) be a hyperbolic with respect to e ∈ Rn. Let V1, . . . , Vm be
finite sets of vectors in Λ+ and let w ∈ Rn+m. For V = (v1, . . . ,vm) ∈ V1×· · ·×Vm,
let

fV(x) := h[v1, . . . ,vm](xe + w).

Then {fV(x)}V∈V1×···×Vm is an interlacing family.
In particular if in addition all vectors in V1 ∪ · · · ∪ Vm have rank at most one,

and

gV(x) := h(xe + w − v1 − · · · − vm),

where w ∈ Rn, then {gV(x)}V∈V1×···×Vm
is an interlacing family.

Proof. Let v1 ∈ V1, . . . ,vm ∈ Vm be independent random variables. Then the
polynomial Eh[v1, . . . ,vm] = h[Ev1, . . . ,Evm] is hyperbolic with respect to e ⊕ 0
by Theorem 7.1 (since Evi ∈ Λ+ for all i by convexity). The theorem now follows
from Theorem 5.11.

�

The following corollary establishes Conjecture 3.4 for bipartite graphs.

Corollary 7.4. Let G = (V,E) be a graph. Then

{det(xI −As(G))}s∈{−1,1}E

is an interlacing family.

Proof. For e = {i, j} ∈ E, let Be(±1) = ±Eij+Eii+Ejj and Ve = {Be(−1), Be(1)}.
Then Be(±1) is positive semidefinite of rank one, and hence Be(±1) is in the closure
of the hyperbolicity cone of det. Moreover if s ∈ {−1, 1}E then

det

(
xI +D(G)−

∑
e∈E

Be(s(e))

)
= det(xI −As(G)),

where D(G) is the diagonal matrix with (i, i)-entry equal to the degree of i. Hence
the corollary follows from Theorem 7.3 �
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8. The Kadison–Singer problem

The Kadison–Singer problem is a problem formulated by Kadison and Singer [4]
in 1959 and originates in speculations made by Dirac.

Problem 1 (Kadison–Singer). Does every pure state on the algebra of bounded
diagonal operators on the complex Banach space `2 have a unique extension to a
state on the algebra of all bounded operators on `2?

This problem was one of the central open problems in operator theory until its
recent resolution by Marcus, Spielman and Srivastava [7]. Several equivalent prob-
lems have been stated in different mathematical context by Andersson, Akemann,
Weaver and others, see ?? for an introduction and more references to Problem 1.

The following conjecture by Weaver [8] is known to imply a positive solution to
the Kadison–Singer problem.

Conjecture 8.1. There are universal constants η ≥ 2 and θ > 0 such that the
following holds. Let w1, . . . ,wm ∈ Cn be such that ‖wi‖ ≤ 1 for all 1 ≤ i ≤ m and

m∑
i=1

|〈u,wi〉|2 = η, (8.1)

for every unit vector u ∈ Cn.
Then there is a partition S1 ∪ S2 = {1, . . . ,m} such that∑

i∈Sj

|〈u,wi〉|2 ≤ η − θ, (8.2)

for every unit vector u ∈ Cn and each j ∈ {1, 2}.

Let us formulate a stronger conjecture in terms of hyperbolic polynomials. To
do this we formulate the terms used in Conjecture 8.1 in terms that make sense for
hyperbolic polynomials.

LetA∗ denote the complex transpose of a matrixA. Note that for any u,w1, . . . ,wm ∈
Cn

m∑
i=1

|〈u,wi〉|2 = u∗

(
m∑
i=1

wiw
∗
i

)
u = 〈Au,u〉,

where A =
∑m
i=1 wiw

∗
i . It follows that (8.1) holds if and only if A = ηI, where I is

the identity matrix. Since Bj :=
∑
i∈Sj

wiw
∗
i we see that (8.2) holds if and only if

λn(Bj) ≤ η − θ,

for j ∈ {1, 2}, where λn(Bj) is the largest eigenvalue of Bj .
Recall that a hermitian n × n matrix A has rank at most one if and only if

A = uu∗ for some u ∈ Cn. Moreover

λmax(A) = Tr(A) = ‖u‖2.

If h is hyperbolic with respect to e ∈ Rn and v ∈ Rn, then the trace of v (with
respect to e) is defined by

Tr(v) =

d∑
i=1

λi(v) =
Dvh(e)

h(e)
,
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where h(te−v) = h(e)
∏d
i=1(t−λi(v)). Hence Tr(v) is linear in v. Now it is plain

to see that the following theorem implies Conjecture 8.1. Indeed let ui = wiw
∗
i /η

and h be the determinant on n× n complex hermitian matrices.

Theorem 8.2. There are universal constants η ≥ 2 and θ > 0 such that the
following holds. Suppose h is hyperbolic with respect to e and of degree d. Let
u1, . . . ,um ∈ Λ+ be of rank at most one and such that Tr(ui) ≤ 1/η for all 1 ≤ i ≤
m and

m∑
i=1

ui = e. (8.3)

Then there is a partition S1 ∪ S2 = {1, . . . ,m} such that

λmax

∑
i∈Sj

ui

 ≤ 1− θ/η, (8.4)

for each j ∈ {1, 2}.

To prove this we use the following theorem:

Theorem 8.3. Suppose h is hyperbolic with respect to e. Let v1, . . . ,vm be inde-
pendent random vectors in Λ+ of rank at most one and with finite supports such
that

E
m∑
i=1

vi = e, (8.5)

and

Tr(Evi) ≤ ε for all 1 ≤ i ≤ m. (8.6)

Then

P

[
λmax

(
m∑
i=1

vi

)
≤ (1 +

√
ε)2

]
> 0. (8.7)

Theorem 8.3 implies the following proposition.

Proposition 8.4. Suppose h is hyperbolic with respect to e and of degree d. Let
u1, . . . ,um ∈ Λ+(e) be of rank at most one and such that Tr(ui) ≤ α for all
1 ≤ i ≤ m, and

∑m
i=1 ui = e. Then there exists a partition S1 ∪ S2 = {1, . . . ,m}

such that

λmax

∑
i∈Sj

ui

 ≤ (1 +
√

2α)2

2
, (8.8)

for each j ∈ {1, 2}.

Proof. Consider the hyperbolic polynomial

H(x,x′) = h(x)h(x′) ∈ R[x1, . . . , xn, x
′
1, . . . , x

′
n],

which is hyperbolic with respect to e⊕e′, where e′ is a copy of e in the x′i-variables.
Let v1, . . .vm be independent random vectors in Λ+(e)⊕ Λ+(e′) such that

P [vi = 2ui] = 1/2 and P [vi = 2u′i] = 1/2,
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where u′1, . . . ,u
′
m are the copies in Λ+(e′) of u1, . . . ,um. Then Evi = ui ⊕ u′i and

Tr(Evi) ≤ 2α, and hence

E
m∑
i=1

vi = e⊕ e′.

By Theorem 8.3 there is a T ⊆ {1, . . . ,m} such that

λmax

∑
i∈T

2ui +
∑
i 6∈T

2u′i

 = max

λmax

(∑
i∈T

2ui

)
, λmax

∑
i 6∈T

2ui

 ≤ (1+
√

2α)2,

and the proposition follows. �

Now let α = 1/η in Proposition 8.4. Then

(1 +
√

2α)2

2
=

1

2
+

√
2

η
+

1

η
≤ 1− θ

η

if and only if

θ ≤ η

2
− 2

√
η

2
− 1.

Hence we have a “solution” to Theorem 8.2 (and thus Conjecture 8.1) for all

η > 6 + 4
√

2 and 0 < θ ≤ η

2
− 2

√
η

2
− 1.

For example η = 18 and θ = 2. It remains to prove Theorem 8.3.

9. Bounds on zeros of mixed hyperbolic polynomials

To prove Theorem 8.3, using the method of interlacing families, we want to
bound the zeros of the mixed characteristic polynomial

t 7→ h[v1, . . . ,vm](te + 1), (9.1)

where h is hyperbolic with respect to e ∈ Rn, 1 ∈ Rm is the all ones vector, and
v1, . . . ,vm ∈ Λ+(e) satisfies v1 + · · · + vm = e and Tr(vi) ≤ ε for all 1 ≤ i ≤ m.
Note that a real number ρ is larger than the maximum zero of (9.1) if and only if
ρe + 1 is in the hyperbolicity cone of h[v1, . . . ,vm].

For the remainder of this section, let h ∈ R[x1, . . . , xn] be hyperbolic with respect
to e, and let v1, . . . ,vm ∈ Λ+. Let ∂j = Dvj

and

ξj [g] =
g

∂jg
.

Note that a continuously differentiable concave function f : (0,∞)→ R satisfies

f(t+ δ) ≥ f(t) + δf ′(t+ δ), for all δ ≥ 0.

Hence by Theorem 6.6

ξi[h](x + δvj) ≥ ξi[h](x) + δ∂jξi[h](x + δvj) (9.2)

for all x ∈ Λ++. The following elementary identity is left for the reader to verify.

Lemma 9.1.

ξi[h− ∂jh] = ξi[h]− ∂jξi[h]

1− ξj [∂ih]−1
.
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Lemma 9.2. If x ∈ Λ++, δ > 1 and

ξj [h](x) ≥ δ

δ − 1
,

then

ξi[h− ∂jh](x + δvj) ≥ ξi[h](x).

Proof. Since ξi[h] is concave on Λ++ and homogeneous of degree one we have

ξi[h](x + δvj)− ξi[h](x)

δ
≥ ξi[h](vj), for all x ∈ Λ++.

By letting δ → 0 we see that

∂jξi[h](x) ≥ ξi[h](vj) ≥ 0, for all x ∈ Λ++. (9.3)

If x ∈ Λ++, then (by Proposition 6.2) (x, t) is in the closure of the hyperbolicity
cone of h− y∂jh if and only if t ≤ ξj [h](x). By Theorem 6.6 the polynomial

D(vi,0)(h− y∂jh) = ∂ih− y∂j∂ih

is hyperbolic with hyperbolicity cone containing the hyperbolicity cone of h−y∂jh.
Hence if x ∈ Λ++ and t ≤ ξj [h](x), then t ≤ ξj [∂ih](x), and thus

ξj [∂ih](x) ≥ ξj [h](x), for all x ∈ Λ++. (9.4)

By Lemma 9.1 and (9.2)

ξi[h− ∂jh](x + δvj)− ξi[h](x) = ξi[h](x + δvj)− ξi[h](x)− ∂jξi[h]

1− ξj [∂ih]−1
(x + δvj)

≥ ∂jξi[h](x + δvj)

(
δ − ξj [∂ih](x + δvj)

ξj [∂ih](x + δvj)− 1

)
≥ ξi[h](vj)

(
δ − δ/(δ − 1)

δ/(δ − 1)− 1

)
= 0,

where the last inequality follows from (9.3), (9.4) and the concavity of ξj [h].
�

Consider Rn+m = Rn ⊕ Rm and let e1, . . . , em be the standard bases of Rm
(inside Rn ⊕ Rm).

Corollary 9.3. Suppose h is hyperbolic with respect to e ∈ Rn, and let Γ+ be the
closure of the hyperbolicity cone of h[v1, . . . ,vm], where v1, . . . ,vm,x ∈ Λ++(e).
Suppose ti, tj > 1 are such that

x + tkek ∈ Γ+, for k ∈ {i, j}.

Then

x +
tj

tj − 1
vj + ej + tiei ∈ Γ+.

Moreover if e + tkek ∈ Γ+ for all k ∈ [m], then

x +

(
1− 1

m

) m∑
i=1

ti
ti − 1

vi +

(
1− 1

m

) m∑
i=1

ei +
1

m

m∑
i=1

tiei ∈ Γ+.
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Proof. Let δk = tk/(tk − 1). Then

x + tkek ∈ Γ+ if and only if ξk[h] ≥ δk
δk − 1

.

Also ξi[h− ∂jh](x + δjvj) ≥ δi/(δi − 1) is equivalent to

x + δjvj + ej +
δi

δi − 1
ei ∈ Γ+.

Hence the first part follows from Lemma 9.2.
Suppose e + tkek ∈ Γ+ for all k ∈ [m]. By the first part we have x′ + t2e2,x

′ +
t3e3 ∈ Γ+, where

x′ = x +
t1

t1 − 1
v1 + e1

is in the hyperbolicity cone of (1− y1Dv1)h. Hence we may apply the first part of
the theorem with h replaced by (1− y1Dv1)h to conclude

x′ +
t2

t2 − 1
v2 + e2 + t3e3 = x +

t1
t1 − 1

v1 +
t2

t2 − 1
v2 + e1 + e2 + t3e3 ∈ Γ+.

By continuing this procedure with different orderings we may conclude that

x +

(
m∑
i=1

ti
ti − 1

vi

)
− tj
tj − 1

vj +

(
m∑
i=1

ei

)
− ej + tiei ∈ Γ+,

for each 1 ≤ j ≤ m. The second part now follows from convexity of Γ+ upon taking
the convex sum of these vectors. �

Theorem 9.4. Suppose h is hyperbolic with respect to e ∈ Rn and let v1, . . . ,vm ∈
Λ+(e) be such that Tr(vj) ≤ ε for all 1 ≤ j ≤ m and e = v1 + · · ·+ vm. Then the
largest root of

m∏
j=1

(
1−Dvj

)
h(te)

is at most mε if mε < 1 and at most

ε+ 1− 1

m
+ 2

(
1− 1

m

)(√
ε− 1

m

(
1− 1

m

)
− 1

m

)
≤

(
1 +

√
ε− 1

m

)2

,

if mε ≥ 1.

Proof. Let x = se, where s > 0 and ti = t for 1 ≤ i ≤ m and apply Corollary 9.3.
Then for t > 1 and s/t ≤ ε

s+
(
1− 1

m

)
t
t−1

1− 1
m + t

m

e + 1 ∈ Γ+.

Hence (set s = tε) the maximal root is no larger than

inf

{
εt+

(
1− 1

m

)
t
t−1

1− 1
m + t

m

: t > 1

}
.

It is a simple exercise to deduce that the infimum is exactly what is displayed in
the statement of the theorem. �
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[2] O. Güler, Hyperbolic polynomials and interior point methods for convex programming, Math.

Oper. Res., 22 (1997), 350–377.

[3] J. Helton, V. Vinnikov, Linear matrix inequality representation of sets, Comm. Pure Appl.
Math. 60 (2007), 654–674, http://arxiv.org/pdf/math/0306180.pdf.

[4] R. V. Kadison, I. M. Singer, Extensions of pure states Amer. J. Math. 81 (1959), 383400.

[5] A. Lewis, P. Parrilo, M. Ramana, The Lax conjecture is true, Proc. Amer. Math. Soc. 133
(2005), 2495–2499, http://arxiv.org/pdf/math/0304104.pdf.

[6] A. Marcus, D. A. Spielman, N. Srivastava, Interlacing families I: Bipartite Ramanujan graphs
of all degrees, http://arxiv.org/abs/1304.4132.

[7] A. Marcus, D. A. Spielman, N. Srivastava, Interlacing families II: Mixed characteristic poly-

nomials and the Kadison-Singer problem, http://arxiv.org/abs/1306.3969.
[8] N. Weaver, The Kadison-Singer problem in discrepancy theory, Discrete Math. 278 (2004),

227–239.

Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm,

Sweden
E-mail address: pbranden@kth.se

http://arxiv.org/pdf/math/0306180.pdf
http://arxiv.org/pdf/math/0304104.pdf
http://arxiv.org/abs/1304.4132 
http://arxiv.org/abs/1306.3969

	1. Introduction
	2. Graph spectra
	3. Expander graphs, Ramanujan graphs and Two-lifts
	4. The matching polynomial
	5. Interlacing families
	6. Hyperbolic polynomials
	7. Mixed hyperbolic polynomials
	8. The Kadison–Singer problem
	9. Bounds on zeros of mixed hyperbolic polynomials
	References

