CS 225 - Pseudorandomness Prof. Salil Vadhan

Take-Home Final
Harvard SEAS - Fall 2016 Due: Mon. Dec 12, 2016 (5pm sharp)

Your take-home final solutions must be typed (in e.g. XTEX) and submitted electronically to
cs225-hw@seas.harvard.edu. There are no late days for this problem set. Please name your file
final-lastname. *.

Collaboration or use of references other than the course materials (the text, problem sets,
solutions, your notes) is not allowed. You may only discuss these problems with course staff. You
may use any result proved in the text, on problem sets, or in sections, as long as you state it clearly.
*ed problems are extra credit.

Problem 2.11 (Consequences of Derandomizing prBPP)

Even though prBPP is a class of decision problems, it also captures many other types of problems
that can be solved by randomized algorithms:

2. (NP Search Problems) An NP search problem is specified by a polynomial-time verifier V' and
a polynomial p; the problem is, given an input = € {0,1}", find a string y € {0, 1}?("™) such that
V(z,y) = 1. Suppose that such a search problem can be solved in probabilistic polynomial
time, i.e. there is a probabilistic polynomial-time algorithm A such that for every input
z € {0,1}", outputs y € {0,1}?(™) such that V(z,y) = 1 with probability at least 2/3 over
the coin tosses of A. Show that if prBPP = prP, then there is a deterministic polynomial-
time algorithm B such that for every x € {0,1}", B(x) always outputs y € {0, 1}?(") such that
V(z,y) = 1. (Hint: consider a promise problem whose instances include pairs (x,r) where
r is a prefix of the coin tosses of A, and use it to approximate the Method of Conditional
Probabilities.)

4. Use Part 2, the Prime Number Theorem (see Problem 2.4), and the fact that PRIMALITY
is in BPP (Problem 2.6) to show that if prBPP = prP, then there is a deterministic
polynomial-time algorithm that given a number N, outputs a prime in the interval [N,2N)
for all sufficiently large N.

Problem 6.4 (/y,-extractors)

Call a function Ext : {0,1}" x {0,1}¢ — {0,1}™ a (k,e) fo-extractor if for every k-source X,
|Ext(X,Uq) — Unll3 < /M

1. Prove that a (k,e) fo-extractor is also a (k,+/e) extractor.

2. Show that for every n,k,m € N with m < n, k& > m/2, and ¢ > 0, there exists a (k,¢)
ly-extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ with d = min{O(n — k + log(1/e)),m/2 +
O(log(n/e))}. (Hint: Problem 3.4 may be useful.)

3. Show that if Ext : {0,1}" x {0,1}¢ — {0,1}™ is a (k, 1) fe-extractor, then d > min{n —
k,m/2} —O(1). (Hint: consider a k-source that is uniform over {z : 3y Ext(z,y) € T} for an
appropriately chosen set T of size | M/2D?].)

Problem 7.8 (Hitting-Set Generators)

A set Hy, C {0,1}™ is a (t,e) hitting set if for every nonuniform algorithm 7" running in time ¢
that accepts greater than an e fraction of m-bit strings, T accepts at least one element of H,,.

1. Show that if, for every m, we can construct an (m,1/2) hitting set H,, in time s(m) > m,
then RP C J, DTIME(s(n®)). In particular, if s(m) = poly(m), then RP = P.

2. Show that if there is a (¢,&) pseudorandom generator G,, : {0,1}¢ — {0,1}™ computable in
time s, then there is a (t,¢) hitting set H,, constructible in time 27 - s.

3. Show that if, for every m, we can construct an (m,1/2) hitting set H,, in time s(m) =
poly(m), then BPP = P. (Hint: This can be proven in at least two ways: one uses Prob-
lem 3.1 and the other uses a variant of Problem 7.1 together with Corollary 7.64. For extra
credit, discuss how the efficiency of the derandomization for general s(m) (not necessarily
poly(m)) compares between the two approaches.)

4. Define the notion of a (¢, k, £) black-box construction of hitting set-generators (similar to Def-
inition 7.65), and show that, when ¢t = oo, such constructions are equivalent to constructions
of dispersers (Definition 6.19).

Problem 7.12 (Local List Decoding the Hadamard Code)

For a function f : Z5' — Zg, A parameterized subspace x + V of Z3' of dimension d is given by
a linear map V : Z¢ — Z7' and a shift + € ZJ'. (We do not require that the map V be full
rank.) We write V for 0 + V. For a function f : ZJ* — Zs, we define f|,4v : Z3 — Z3* by

flerv () = flx+V(y)).

1. Let ¢ : Z8» — Zy be a codeword in the Hadamard code (i.e. a linear function), r : Z5* — Zs
a received word, V' a parameterized subspace of Z3' of dimension d, and x € Z3'. Show that
if dg(r|z4v, ¢|z+v) < 1/2, then ¢(z) can be computed from z, V, ¢|y, and oracle access to r
in time poly(m, 2%) with 2¢ queries to 7.

2. Show that for every m € N and ¢ > 0, the Hadamard code of dimension m has a (1/2—¢) local
list-decoding algorithm (Decy, Decg) in which both Dec; and Decy run in time poly(m, 1/¢),
and the list output by Dec; has size O(1/¢?). (Hint: consider a random parameterized
subspace V' of dimension 2log(1/¢) + O(1), and how many choices there are for c|y.)

Problem 7.10(*) (PRGs are Necessary for Derandomization)

1. Call a function G : {0,1}¢ — {0,1}™ a (t,4,€) pseudorandom generator against bounded-
nonuniformity algorithms iff for every probabilistic algorithm 7" that has a program of length

at most ¢ and that runs in time at most ¢ on inputs of length n, we have
|Pr[T(G(Uy)) = 1] = Pr[T(Up,) = 1]| < e.

Consider the promise problem II whose YES instances are truth tables of functions G :
{0,1}¢ — {0,1}™ that are (m, log m, 1/m) pseudorandom generators against bounded-nonuniformity
algorithms, and whose NO instances are truth tables of functions that are not (m,logm,2/m)
pseudorandom generators against bounded-nonuniformity algorithms. (Here m and d are pa-
rameters determined by the input instance G.) Show that II is in prBPP.

. Using Problem 2.11, show that if prBPP = prP, then there is a mildly explicit (m,1/m)
pseudorandom generator against uniform algorithms with seed length O(logm). (See Prob-
lem 7.9 for the definition. It turns out that the hypothesis prBPP = prP here can be
weakened to obtain an equivalence between PRGs vs. uniform algorithms and average-case
derandomization of BPP.)

