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Definition 1 Let H = (V,E) be a (countably) infinite undirected graph (i.e. the vertex set V is
countably infinite) of bounded degree. Let `2(V ) be the set of g : V → R such that

∑
i∈V f(i)2 <∞.

The adjacency operator AH is the map that takes a function g ∈ `2(V ) to the function gAH ∈ `2(V )
given by (gAH)(j) =

∑
(i,j)∈E g(i). The spectral radius ρ(H) is defined to be supg∈`2(V ) ‖gAH‖/‖g‖.

Lemma 2 If λ is a root of the matching polynomial µG(x) of a D-regular graph G, then |λ| ≤
ρ(TD), where TD is the infinite D-regular tree.

Proof: Pick a vertex u in G, and let P = P (G, u) be the path tree of G starting from u
(Definition 3.3 in MSS). Consider the function g that assigns a vertex (u, v1, . . . , v`) of P the value
µG\{u,v1,...,v`}(λ). The recurrence relation for µG(x) (Lemma 4.1 in Branden’s notes) tells us that:

λg(u) = µG(λ) +
∑

v1:(u,v1)∈E

g(u, v1) =
∑

v1:(u,v1)∈E

g(u, v1) = (gAP )(u),

and for every vertex (u, v1, . . . , v`) of P with ` ≥ 1, we have

λg(u, v1, . . . , v`) = g(u, v1, . . . , v`−1)+
∑

v`+1:(v`,v`+1)∈E,v`+1 /∈{u,v1,...,v`}

g(u, v1, . . . , v`+1) = (gAP )(u, v1, . . . , v`).

Thus g is an eigenvector AP of eigenvalue λ.
Now, consider P as an induced subgraph of TD, and let g̃ be the extension of g to the vertices

of TD (assigning 0 to all vertices not in P ).
Then we have:

λ‖g‖ = ‖gAP ‖
≤ ‖g̃ATD

‖
≤ ρ(TD) · ‖g‖.

where the first inequality follows by observing that g̃ATD
and gAP are equal on the vertices of

P .

Lemma 3 ρ(TD) ≤ 2
√
D − 1.
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Proof: If we think of TD = (V,E) as an infinite tree in both directions (i.e. not rooted) then for
every vertex i ∈ V , we have one parent p(i) and D − 1 children c1(i), . . . , cD−1(i). Then given any
g ∈ `2(V ), we can write:

‖gTD‖2 =
∑
i∈V

(gTD)(i)2

=
∑
i∈V

(g(p(i)) + g(c1(i)) + · · · g(cD−1(i)))
2

=
∑
i∈V

〈
(g(p(i))/

√
D − 1, g(c1(i)), . . . , g(cD−1(i))), (

√
D − 1, 1, . . . , 1)

〉2
≤

∑
i∈V

(∥∥∥(g(p(i))/
√
D − 1, g(c1(i)), . . . , g(cD−1(i)))

∥∥∥ · ∥∥∥(
√
D − 1, 1, . . . , 1)

∥∥∥)2
=

∑
i∈V

(
g(p(i))2/(D − 1) + g(c1(i))

2 + · · ·+ g(cD−1(i))
2
)
· 2(D − 1)

=
∑
j∈V

g(j)2 · ((D − 1) · 1/(D − 1) + 1) · 2(D − 1)

= 4(D − 1) · ‖g‖2

The penultimate equality follows from observing that each vertex j occurs as the parent of D − 1
vertices and the child of 1 vertex. This also motivates the choice to scale g(p(i)) by a factor of√
D − 1 in the second equality before applying Cauchy-Schwartz, to balance out the contributions

coming from parenthood and childhood.

For the material on interlacing families, I recommend starting with Sections 4 and 5 in MSS. I
prefer to think of the property that two real-rooted polynomials f1(x) and f2(x) of degree n have
a common interlacing as follows: if we sort the roots α1 ≤ α2 ≤ · · · ≤ αn and β1 ≤ β2 ≤ · · ·βn,
then both α1 and β1 are less than or equal to both α2 and β2, which are both less than or equal
to α3 and β3. (However the αi and βi can have any ordering between them.) It is not hard to
see that, when both f1 and f2 have leading coefficients of the same sign, this is equivalent to
every convex combination pf1(x) + (1 − p)f2(x) being real-rooted (see Lemma 5.5 in Branden’s
lecture notes). Thus it is natural that the proofs that the family {fs} is an interlacing family
involve working with generalizations of real-rootedness (“real-stable polynomials” in MSS’ proof,
“hyperbolic polynomials” in Branden’s proof) and applying various closure properties of these
generalized properties. (That’s all I can tell you about the proofs!)

Notice the similarity between the proof of MSS’ Theorem 4.4 and the Method of Conditional
Expectations. Similarly to the Method of Conditional Expectations, it could be implemented in
polynomial time and give a mildly explicit construction, if we could compute the univariate poly-
nomials fs1,...,sk,1 and fs1,...,sk,−1 at each step, because then we could find their roots in polynomial
time and pick the one with the smaller max-root. However, in the construction of MSS2013, these
polynomials are NP-hard (even #P-hard) to compute. For example, f∅ is the matching polynomial.
Computing this polynomial requires counting the number of matchings of all sizes in G, which is
a classic #P-hard problem. The recent mildly explicit construction of Cohen2016 is obtained by
showing that for the MSS2015 (Bipartite Ramanujan Graphs of all Sizes) existence proof (which
is obtained by taking the union of D perfect matchings on N vertices, rather than a sequence of
2-lifts), the polynomials in the interlacing family can be computed in polynomial time.
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More notes and cautions about TD and the spectra of infinite graphs:

• TD is the “universal cover” for every D-regular graph (under a topology-like definition of
covering maps between graphs). Most of what we have said generalizes if we replace G with
any graph and TD with its universal cover T : If we start with a constant-sized graph G0

whose nontrivial eigenvalues are bounded by the spectral radius of its universal cover T , by
repeatedly taking 2-lifts we obtain an infinite family of graphs whose non-trivial eigenvalues
are bounded by the spectral radius of T (and all of whom are covered by T ).

• TD does not have any eigenvectors or eigenvalues in the usual sense. You can find functions
f : V → R such that fTD = λf (such as a constant function, with λ = D), but none of these
are in `2(V ).

• The supremum in the definition of the ρ(TD) is not achieved by any function g (if it were,
g would be an eigenvector of eigenvalue 2

√
D − 1). This is possible because the unit ball in

`2(V ) is not compact when V is infinite.

• In general, the spectrum of an infinite graph H is defined as {λ : λI −AH is not invertible}.
When H is finite, then this is exactly the set of eigenvalues of AH . When H is infinite, λ can
be in the spectrum because λI−AH has a nontrivial kernel (so λ is an eigenvalue) or because
λI − AH is not surjective. As mentioned earlier, in the case of H = TD, all the eigenvalues
come from the latter case.

• It turns out that the spectral radius ρ(H) equals the largest absolute value of elements of the
spectrum of H. (In the case of directed graphs, i.e. non-symmetric operators, a slightly more
involved definition of spectral radius is needed.) In fact, in the case of TD the spectral radius
equals [−2

√
D − 1, 2

√
D − 1].

For more on this, see the survey “Expander Graphs and their Applications” by Hoory, Linial, and
Wigderson.
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