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Abstract

We prove that there exist infinite families of regular bipartite Ramanujan graphs of every
degree bigger than 2. We do this by proving a variant of a conjecture of Bilu and Linial
about the existence of good 2-lifts of every graph.

We also establish the existence of infinite families of ‘irregular Ramanujan’ graphs, whose
eigenvalues are bounded by the spectral radius of their universal cover. Such families were
conjectured to exist by Linial and others. In particular, we prove the existence of infi-
nite families of (c, d)-biregular bipartite graphs with all non-trivial eigenvalues bounded by√
c− 1 +

√
d− 1, for all c, d ≥ 3.

Our proof exploits a new technique for demonstrating the existence of useful combinatorial
objects that we call the “method of interlacing polynomials”.

1 Introduction

Ramanujan graphs have been the focus of substantial study in Theoretical Computer Science
and Mathematics. They are graphs whose non-trivial adjacency matrix eigenvalues are as small
as possible. Previous constructions of Ramanujan graphs have been sporadic, only producing
Ramanujan graphs of particular degrees. In this paper, we prove a variant of a conjecture of
Bilu and Linial [5], and use it to realize an approach they suggested for constructing bipartite
Ramanujan graphs of every degree.

Our main technical contribution is a novel existence argument. The conjecture of Bilu
and Linial requires us to prove that every graph has a signed adjacency matrix with all of its
eigenvalues in a small range. We do this by proving that the roots of the expected characteristic
polynomial of a randomly signed adjacency matrix lie in this range. In general, a statement
like this is useless, as the roots of a sum of polynomials do not necessarily have anything to
do with the roots of the polynomials in the sum. However, there seem to be many sums of
combinatorial polynomials for which this intuition is wrong. With this in mind, we identify
certain special collections of polynomials which we call “interlacing families”, and prove that
such families always contain a polynomial whose largest root is at most the largest root of the
sum. We show that the polynomials arising from signings of a graph form such a family. To

∗A preliminary version of this paper appeared in the Proceedings of the 54th IEEE Annual Symposium on
Foundations of Computer Science.
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finish the proof, we then bound the largest root of the sum of the characteristic polynomials of
the signed adjacency matrices of a graph by observing that this sum is the well-studied matching
polynomial of the graph.

This paper is the first one in a series which develops the method of interlacing polynomials.
In the next paper [32], we use the method to give a positive resolution to the Kadison–Singer
problem.

2 Technical Introduction and Preliminaries

2.1 Ramanujan Graphs

Ramanujan graphs are defined in terms of the eigenvalues of their adjacency matrices. If G
is a d-regular graph and A is its adjacency matrix, then d is always an eigenvalue of A. The
matrix A has an eigenvalue of −d if and only if G is bipartite. The eigenvalues of d, and −d
when G is bipartite, are called the trivial eigenvalues of A. Following Lubotzky, Phillips and
Sarnak [31], we say that a d-regular graph is Ramanujan if all of its non-trivial eigenvalues
lie between −2

√
d− 1 and 2

√
d− 1. It is easy to construct Ramanujan graphs with a small

number of vertices: d-regular complete graphs and complete bipartite graphs are Ramanujan.
The challenge is to construct an infinite family of d-regular graphs that are all Ramanujan. One
cannot construct infinite families of d-regular graphs whose eigenvalues lie in a smaller range:
the Alon–Boppana bound (see [35]) tells us that for every constant ǫ > 0, every sufficiently large
d-regular graph has a non-trivial eigenvalue with absolute value at least 2

√
d− 1− ǫ.

Lubotzky, Phillips and Sarnak [31] and Margulis [33] were the first to construct infinite
families of Ramanujan graphs of constant degree. They built both bipartite and non-bipartite
Ramanujan graphs from Cayley graphs. All of their graphs are regular and have degrees p +
1 where p is a prime. There have been very few other constructions of Ramanujan graphs
[37, 8, 24, 34]. To the best of our knowledge, the only degrees for which infinite families of
Ramanujan graphs were previously known to exist were those of the form q + 1 where q is
a prime power. Lubotzky [29, Problem 10.7.3] asked whether there exist infinite families of
Ramanujan graphs of every degree greater than 2. We resolve this conjecture in the affirmative
in the bipartite case.

2.2 2-Lifts

Bilu and Linial [5] suggested constructing Ramanujan graphs through a sequence of 2-lifts of a
base graph. Given a graph G = (V,E), a 2-lift of G is a graph that has two vertices for each
vertex in V . This pair of vertices is called the fibre of the original vertex. Every edge in E
corresponds to two edges in the 2-lift. If (u, v) is an edge in E, {u0, u1} is the fibre of u, and
{v0, v1} is the fibre of v, then the 2-lift can either contain the pair of edges

{(u0, v0), (u1, v1)} , or (1)

{(u0, v1), (u1, v0)} . (2)

If only edge pairs of the first type appear, then the 2-lift is just two disjoint copies of the original
graph. If only edge pairs of the second type appear, then we obtain the double-cover of G.
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To analyze the eigenvalues of a 2-lift, Bilu and Linial study signings s : E → {±1} of the
edges of G. They place signings in one-to-one correspondence with 2-lifts by setting s(u, v) = 1
if edges of type (1) appear in the 2-lift, and s(u, v) = −1 if edges of type (2) appear. They
then define the signed adjacency matrix As to be the same as the adjacency matrix of G, except
that the entries corresponding to an edge (u, v) are s(u, v). They prove [5, Lemma 3.1] that the
eigenvalues of the 2-lift are the union, taken with multiplicity, of the eigenvalues of the adjacency
matrix A and those of the signed adjacency matrix As. Following Friedman [14], they refer to
the eigenvalues of A as the old eigenvalues and the eigenvalues of As as the new eigenvalues. The
main result of their paper is that every graph of maximal degree d has a signing in which all of
the new eigenvalues have absolute value at most O(

√

d log3 d). They then build arbitrarily large
d-regular expander graphs by repeatedly taking 2-lifts of a complete graph on d+ 1 vertices.

Bilu and Linial conjectured that every d-regular graph has a signing in which all of the new
eigenvalues have absolute value at most 2

√
d− 1. If one repleatedly applied the corresponding

2-lifts to the d-regular complete graph, one would obtain an infinite sequence of d-regular Ra-
manujan graphs. We prove a weak version of Bilu and Linial’s conjecture: every d-regular graph
has a signing in which all of the new eigenvalues are at most 2

√
d− 1. The difference between

our result and the original conjecture is that we do not control the smallest new eigenvalue.
This is why we consider bipartite graphs. The eigenvalues of the adjacency matrices of bipartite
graphs are symmetric about zero (see, for example, [16, Theorem 2.4.2]). So, a bound on the
smallest non-trivial eigenvalue follows from a bound on the largest. We also use the fact that
a 2-lift of a bipartite graph is also bipartite. By repeatedly applying the corresponding 2-lifts
to the d-regular complete bipartite graph, we obtain an infinite sequence of d-regular bipartite
Ramanujan graphs.

2.3 Irregular Ramanujan Graphs and Universal Covers

We say that a bipartite graph is (c, d)-biregular if all vertices on one side of the bipartition have
degree c and all vertices on the other side have degree d. The adjacency matrix of a (c, d)-
biregular graph always has eigenvalues ±

√
cd; these are its trivial eigenvalues. Feng and Li [13]

(see also [25]) prove a generalization of the Alon–Boppana bound that applies to (c, d)-biregular
graphs: for all ǫ > 0, all sufficiently large (c, d)-biregular graphs have a non-trivial eigenvalue
that is at least

√
c− 1 +

√
d− 1 − ǫ. Thus, we say that a (c, d)-biregular graph is Ramanujan

if all of its non-trivial eigenvalues have absolute value at most
√
c− 1 +

√
d− 1. We prove the

existence of infinite families of (c, d)-biregular Ramanujan graphs for all c, d ≥ 3.
The regular and biregular Ramanujan graphs discussed above are actually special cases of a

more general phenomenon. To describe it, we will require a construction known as the universal
cover. The universal cover of a graph G is the infinite tree T such that every connected lift
of G is a quotient of the tree (see, e.g., [23, Section 6]). It can be defined concretely by first
fixing a “root” vertex v0 ∈ G, and then placing one vertex in T for every non-backtracking walk
(v0, v1, . . . , vℓ) of any length ℓ ∈ N starting at v0, where a walk is non-backtracking if vi−1 6= vi+1

for all i. Two vertices of T are adjacent if and only if the walk corresponding to one can be
obtained by appending one vertex to the walk corresponding to the other. That is, the edges
of T are all of the form (v0, v1, . . . , vℓ) ∼ (v0, v1, . . . , vℓ, vℓ+1). The universal cover of a graph is
unique up to isomorphism, independent of the choice of v0.

The adjacency matrix AT of the universal cover T is an infinite-dimensional symmetric
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matrix. We will be interested in the spectral radius ρ(T ) of T , which may be defined1 as:

ρ(T ) := sup
‖x‖2=1

‖ATx‖2 (3)

where ‖x‖22 :=
∑∞

i=1 x(i)
2 whenever the series converges. Naturally, the spectral radius of a

finite tree is defined to be the norm of its adjacency matrix.
With these notions in hand, we can state the definition of an irregular Ramanujan graph. As

before, the largest (and smallest, in the bipartite case) eigenvalues of finite adjacency matrices
are considered trivial. Greenberg [20] (see also [10]) showed that for every ǫ > 0 and every
infinite family of graphs that have the same universal cover T , all sufficiently large graphs in
the family have a non-trivial eigenvalue that is at least ρ(T ) − ǫ. Following Hoory, Linial, and
Wigderson [23, Definition 6.7], we therefore define an arbitrary graph to be Ramanujan if all of
its non-trivial eigenvalues are smaller in absolute value than the spectral radius of its universal
cover.

The universal cover of every d-regular graph is the infinite d-ary tree, whereas the universal
cover of every (c, d)-biregular graph is the infinite (c, d)−biregular tree in which the degrees
alternate between c and d on every other level [25]. The former tree is known to have spectral
radius 2

√
d− 1 while the latter has a spectral radius of

√
c− 1 +

√
d− 1 (see [19, 25]). Thus,

a definition based on universal covers generalizes both the regular and biregular definitions of
Ramanujan graphs, and the bound of Greenberg generalizes both the Alon-Boppana and Feng-Li
bounds.

In this general setting, we show that every graph G has a 2-lift in which all of the new eigen-
values are less than the spectral radius of its universal cover. Applying these 2-lifts inductively
to any finite irregular bipartite Ramanujan graph yields an infinite family of irregular bipartite
Ramanujan graphs whose degree distribution matches that of the initial graph (since taking a
2-lift simply doubles the number of vertices of each degree). In particular, applying them to the
(c, d)-biregular complete bipartite graph yields an infinite family of (c, d)-biregular Ramanujan
graphs. As far as we know, infinite families of irregular Ramanujan graphs were not known to
exist prior to this work.

2.4 Related Work

There have been numerous studies of random lifts of graphs. For some results on the spectra of
random lifts, we point the reader to [3, 27, 2, 26, 1, 28]. Friedman [15] has proved that almost
every d-regular graph almost meets the Ramanujan bound: he shows that for every ǫ > 0 the
absolute value of all the non-trivial eigenvalues of almost every sufficiently large d-regular graph
are at most 2

√
d− 1 + ǫ. In the irregular case, Puder [38] has shown that with high probability

a high-order lift of a graph G has new eigenvalues that are bounded in absolute value by
√
3ρ,

where ρ is the spectral radius of the universal cover of G.
We remark that constructing bipartite Ramanujan graphs is at least as easy as constructing

non-bipartite ones: the double-cover of a d-regular non-bipartite Ramanujan graph is a d-regular
bipartite Ramanujan graph. For many applications of expander graphs, we refer the reader to

1In functional analysis, the spectral radius of an infinite-dimensional operator A is traditionally defined to be
the largest λ for which (A − λI) is unbounded. However, in the case of self-adjoint operators, this definition is
equivalent to the one presented here (see, for example, Theorem VI.6 in [39]).

4



[23]. For those applications of expanders that just require upper bounds on the second eigen-
value, one can use bipartite Ramanujan graphs. Some applications actually require bipartite
expanders, while others require the non-bipartite ones. For example, the explicit constructions
of error correcting codes of Sipser and Spielman [41] require non-bipartite expanders, while the
improvements of their construction [43, 40, 4] require bipartite Ramanujan expanders.

3 2-Lifts and The Matching Polynomial

For a graph G, let mi denote the number of matchings in G with i edges. Set m0 = 1. Heilmann
and Lieb [22] defined the matching polynomial of G to be the polynomial

µG(x)
def
=
∑

i≥0

xn−2i(−1)imi,

where n is the number of vertices in the graph. They proved two remarkable theorems about the
matching polynomial that we will exploit in this paper. It is worth mentioning that the proofs
of these theorems are elementary and short, relying only on simple recurrence formulas for the
matching polynomial.

Theorem 3.1 (Theorem 4.2 in [22]). For every graph G, µG(x) has only real roots.

Theorem 3.2 (Theorem 4.3 in [22]). For every graph G of maximum degree d, all of the roots
of µG(x) have absolute value at most 2

√
d− 1.

The preceding theorems will allow us to prove the existence of infinite families of d-regular
bipartite Ramanujan graphs. To handle the irregular case, we will require a refinement of these
results due to Godsil. This refinement uses the concept of a path tree, which was also introduced
by Godsil (see [17] or [16, Section 6]). Recall that a path in G is a walk that does not visit any
vertex twice.

Definition 3.3. Given a graph G and a vertex u, the path tree P (G,u) contains one vertex for
every path in G (with distinct vertices) that starts at u. Two paths are adjacent if one can be
obtained by appending one vertex to the other. That is, all edges of P (G,u) are all of the form
(u, v1, . . . , vℓ) ∼ (u, v1, . . . , vℓ, vℓ+1).

The path tree provides a natural relationship between the roots of the matching polynomial
of a graph and the spectral radius of its universal cover:

Theorem 3.4 (Godsil [17]). Let P (G,u) be a path tree of G. Then the matching polynomial of
G divides the characteristic polynomial of the adjacency matrix of P (G,u). In particular, all of
the roots of µG(x) are real and have absolute value at most ρ(P (G,u)).

Lemma 3.5. Let G be a graph and let T be its universal cover. Then the roots of µG(x) are
bounded in absolute value by ρ(T ).

Proof. Let u be any vertex of G and let P be the path tree rooted at u. Since the paths that
correspond to the vertices of P are themselves non-backtracking walks (as defined in Section 2.3),
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P is a finite induced subgraph of the universal cover T , and AP is a finite submatrix of AT . By
Theorem 3.4, the roots of µG are bounded by

‖AP ‖2 = sup
‖x‖2=1

‖APx‖2

≤ sup
‖y‖2=1,supp(y)⊂P

‖AT y‖2

≤ sup
‖y‖2=1

‖AT y‖2 = ρ(T ),

as desired.

We remark that one can directly prove an upper bound of 2
√
d− 1 on the spectral radius of

a path tree of a d-regular graph and an upper bound of
√
c− 1 +

√
d− 1 on the spectral radius

of a path tree of a (c, d)-regular bipartite graph without considering infinite trees. We point the
reader to Section 5.6 of Godsil’s book [16] for an elementary argument.

We now recall an identity of Godsil and Gutman: the expected characteristic polynomial of
a random signing of the adjacency matrix of a graph is equal to its matching polynomial. To
associate a signing of the edges of G with a vector in {±1}m, we choose an arbitrary ordering
of the m edges of G, denote the edges by e1, . . . , em, and denote a signing of these edges by
s ∈ {±1}m. We then let As denote the signed adjacency matrix corresponding to s, and define
fs(x) = det (xI −As) to be characteristic polynomial of As.

Theorem 3.6 (Corollary 2.2 of Godsil and Gutman [18]).

Es∈{±1}m [fs(x)] = µG(x).

For the convenience of the reader, we present a simple proof of this theorem in Appendix A.
To prove that a good lift exists, it suffices, by Theorems 3.2 and 3.6, to show that there is a

signing s so that the largest root of fs(x) is at most the largest root of Es∈{±1}m [fs(x)]. To do
this, we prove that the polynomials {fs(x)}s∈{±1}m are what we call an interlacing family. We
define interlacing families and examine their properties in the next section.

4 Interlacing Families

Definition 4.1. We say that a polynomial g(x) =
∏n−1

i=1 (x−αi) interlaces a polynomial f(x) =
∏n

i=1(x− βi) if
β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn

We say that polynomials f1, . . . , fk have a common interlacing if there is a polynomial g so that
g interlaces fi for each i.

Let βi,j be the jth smallest root of fi. The polynomials f1, . . . , fk have a common interlacing
if and only if there are numbers α0 ≤ α1 ≤ · · · ≤ αn so that βi,j ∈ [αj−1, αj ] for all i and j. The
numbers α1, . . . , αn−1 come from the roots of the polynomial g, and α0 (αn) can be chosen to
be any number that is smaller (larger) than all of the roots of all of the fi.
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Lemma 4.2. Let f1, . . . , fk be polynomials of the same degree that are real-rooted and have
positive leading coefficients. Define

f∅ =
k
∑

i=1

fi.

If f1, . . . , fk have a common interlacing, then there exists an i so that the largest root of fi is at
most the largest root of f∅.

Proof. Let the polynomials be of degree n. Let g be a polynomial that interlaces all of the
fi, and let αn−1 be the largest root of g. As each fi has a positive leading coefficient, it is
positive for sufficiently large x. As each fi has exactly one root that is at least αn−1, each fi is
non-positive at αn−1. So, f∅ is also non-positive at αn−1, and eventually becomes positive. This
tells us that f∅ has a root that is at least αn−1, and so its largest root is at least αn−1. Let βn
be this root.

As f∅ is the sum of the fi, there must be some i for which fi(βn) ≥ 0. As fi has at most
one root that is at least αn−1, and fi(αn−1) ≤ 0, the largest root of fi is it at least αn−1 and at
most βn.

One can show that the assumptions of the lemma imply that f∅ is itself a real-rooted poly-
nomial. The conclusion of the lemma also holds for the kth largest root by a similar argument.
However, we will not require these facts here.

If the polynomials do not have a common interlacing, the sum may fail to be real rooted:
consider (x + 1)(x + 2) + (x − 1)(x − 2). Even if the sum of two polynomials is real rooted,
the conclusion of Lemma 4.2 may fail to hold if the interval containing the largest roots of each
polynomial overlaps the interval containing their second-largest roots. For example, consider
the sum of the polynomials (x + 5)(x − 9)(x − 10) and (x + 6)(x − 1)(x − 8). It has roots at
approximately −5.3, 6.4, and 7.4, so its largest root is smaller than the largest root of both
polynomials of which it is the sum.

Definition 4.3. Let S1, . . . , Sm be finite sets and for every assignment s1, . . . , sm ∈ S1×· · ·×Sm

let fs1,...,sm(x) be a real-rooted degree n polynomial with positive leading coefficient. For a partial
assignment s1, . . . , sk ∈ S1 × . . .× Sk with k < m, define

fs1,...,sk
def
=

∑

sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,...,sm,

as well as
f∅

def
=

∑

s1∈S1,...,sm∈Sm

fs1,...,sm .

We say that the polynomials {fs1,...,sm}s1,...,sm form an interlacing family if for all k =
0, . . . ,m− 1, and all s1, . . . , sk ∈ S1 × · · · × Sk, the polynomials

{fs1,...,sk,t}t∈Sk+1

have a common interlacing.

Theorem 4.4. Let S1, . . . , Sm be finite sets and let {fs1,...,sm} be an interlacing family of poly-
nomials. Then, there exists some s1, . . . , sm ∈ S1 × · · · × Sm so that the largest root of fs1,...,sm
is less than the largest root of f∅.
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Proof. From the definition of an interlacing family, we know that the polynomials {ft} for t ∈ S1

have a common interlacing and that their sum is f∅. So, Lemma 4.2 tells us that one of the
polynomials has largest root at most the largest root of f∅. We now proceed inductively. For any
s1, . . . , sk, we know that the polynomials {fs1,...,sk,t} for t ∈ Sk+1 have a common interlacing and
that their sum is fs1,...,sk . So, for some choice of t (say sk+1) the largest root of the polynomial
fs1,...,sk+1

is at most the largest root of fs1,...,sk .

We will prove that the polynomials {fs}s∈{±1}m defined in Section 3 are an interlacing
family. According to definition 4.3, this requires establishing the existence of certain common
interlacings. There is a systematic way to do this based on the fact that common interlacings
are equivalent to real-rootedness statements. In particular the following result seems to have
been discovered a number of times. It appears as Theorem 2.1 of Dedieu [11], (essentially) as
Theorem 2′ of Fell [12], and as (a special case of) Theorem 3.6 of Chudnovsky and Seymour [9].

Lemma 4.5. Let f1, . . . , fk be (univariate) polynomials of the same degree with positive leading
coefficients. Then f1, . . . , fk have a common interlacing if and only if

∑k
i=1 λifi is real rooted

for all convex combinations λi ≥ 0,
∑k

i=1 λi = 1.

5 The main result

Our proof that the polynomials {fs}s∈{±1}m form an interlacing family relies on the following
generalization of the fact that the matching polynomial is real-rooted. It amounts to saying that
if we pick each sign independently with any probabilities, then the resulting polynomial is still
real-rooted.

Theorem 5.1. Let p1, . . . , pm be numbers in [0, 1]. Then, the following polynomial is real-rooted

∑

s∈{±1}m

(

∏

i:si=1

pi

)(

∏

i:si=−1

(1− pi)

)

fs(x).

We will prove this theorem using machinery that we develop in Section 6. It immediately
implies our main technical result as follows.

Theorem 5.2. The polynomials {fs}s∈{±1}m are an interlacing family.

Proof. We will show that for every 0 ≤ k ≤ m−1, every partial assignment s1 ∈ ±1, . . . , sk ∈ ±1,
and every λ ∈ [0, 1], the polynomial

λfs1,...,sk,1(x) + (1− λ)fs1,...,sk,−1(x)

is real-rooted. The theorem will then follow from Lemma 4.5.
To show that the above polynomial is real-rooted, we apply Theorem 5.1 with pk+1 = λ,

pk+2, . . . , pm = 1/2, and pi = (1 + si)/2 for 1 ≤ i ≤ k.

Theorem 5.3. Let G be a graph with adjacency matrix A and universal cover T . Then there
is a signing s of A so that all of the eigenvalues of As are at most ρ(T ). In particular, if G is
d-regular, there is a signing s so that the eigenvalues of As are at most 2

√
d− 1.
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Proof. The first statement follows immediately from Theorems 4.4 and 5.2 and Lemma 3.5.
The second statement follows by noting that the universal cover of a d-regular graph is the
infinite d-regular tree, which has spectral radius at most 2

√
d− 1, or by directly appealing to

Theorem 3.2.

Lemma 5.4. Every non-trivial eigenvalue of a complete (c, d)-biregular graph is zero.

Proof. The adjacency matrix of this graph has rank 2, so all its eigenvalues other than ±
√
cd

must be zero.

Theorem 5.5. For every d ≥ 3 there is an infinite sequence of d-regular bipartite Ramanujan
graphs.

Proof. We know from Lemma 5.4 that the complete bipartite graph of degree d is Ramanujan.
By Lemma 3.1 of [5] and Theorem 5.3, for every d-regular bipartite Ramanujan graph G, there
is a 2-lift in which every non-trivial eigenvalue is at most 2

√
d− 1. As the 2-lift of a bipartite

graph is bipartite, and the eigenvalues of a bipartite graph are symmetric about 0, this 2-lift is
also a regular bipartite Ramanujan graph.

Thus, for every d-regular bipartite Ramanujan graph G, there is another d-regular bipartite
Ramanujan graph with twice as many vertices.

Theorem 5.6. For every c, d ≥ 3, there is an infinite sequence of (c, d)-biregular bipartite
Ramanujan graphs.

Proof. We know from Lemma 5.4 that the complete (c, d)-biregular is Ramanujan. We will use
this as a base for a construction of an infinite sequence of (c, d)-biregular bipartite Ramanujan
graphs. Let G be any (c, d)-biregular bipartite Ramanujan graph. As mentioned in Section 2.3,
the universal cover of G is the infinite (c, d)-biregular tree, which has spectral radius

√
c− 1 +√

d− 1. Thus, Theorem 5.3 tells us that there is a 2-lift of G with all new eigenvalues at most√
c− 1+

√
d− 1. As this graph is bipartite, all of its non-trivial eigenvalues have absolute value

at most
√
c− 1+

√
d− 1. So, the resulting 2-lift is a larger (c, d)-biregular bipartite Ramanujan

graph.

To conclude the section, we remark that repeated application of Theorem 5.3 can be used to
generate an infinite sequence of irregular Ramanujan graphs from any finite irregular bipartite
Ramanujan graph, since all of the lifts produced will have the same universal cover. In contrast,
Lubotzky and Nagnibeda [30] have shown that there exist infinite trees that cover infinitely
many finite graphs but such that none of the finite graphs are Ramanujan.

6 Real stable polynomials

In this section we will establish the real-rootedness of a class of polynomials which includes the
polynomials of Theorem 5.1. We will do this by considering a multivariate generalization of
real-rootedness called real stability (see, e.g., the surveys [36, 42]). In particular, we will show
that the univariate polynomials we are interested in are the images, under a well-behaved linear
transformation, of a multivariate real stable polynomial.
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Definition 6.1. A multivariate polynomial f ∈ R[z1, . . . , zn] is called real stable if it is the zero
polynomial or if

f(z1, . . . , zn) 6= 0

whenever the imaginary part of every zi is strictly positive.

Note that a real stable polynomial has real coefficients, but may be evaluated on complex
inputs.

We begin by considering certain determinantal polynomials whose real stability is guaranteed
by the following lemma, which may be found in Borcea and Brändén [6, Proposition 2.4].

Lemma 6.2. Let A1, . . . , Am be positive semidefinite matrices. Then

det (z1A1 + · · ·+ zmAm)

is real stable.

Real stable polynomials enjoy a number of useful closure properties. In particular, it is
easy to see that if f(x1, . . . , xk) and g(y1, . . . yj) are real stable then f(x1, . . . , xk)g(y1, . . . , yj)
is real stable. A standard limiting argument based on Hurwitz’s theorem shows that the real
stability of f(x1, . . . , xk) implies the real stability of f(x1, . . . , xk−1, c) for every c ∈ R (see, e.g.,
Lemma 2.4 in [42]). For a variable xi, we let Zxi

be the operator on polynomials induced by
setting this variable to zero.

In [7], Borcea and Brändén characterize an entire class of differential operators that preserve
real stability. To simplify notation, we will let ∂zi denote the operation of partial differentiation
with respect to zi. For α, β ∈ N

n, we use the notation

zα =

n
∏

i=1

zαi

i and ∂β =

n
∏

i=1

(∂zi)
βi .

Theorem 6.3 (Theorem 1.3 in [7]). Let T : R[z1, . . . , zn] → R[z1, . . . , zn] be an operator of the
form

T =
∑

α,β∈Nn

cα,βz
α∂β

where cα,β ∈ R and cα,β is zero for all but finitely many terms. Define

FT (z, w) :=
∑

α,β

cα,βz
αwβ .

Then T preserves real stability if and only if FT (z,−w) is real stable.

We will use a special case of this result.

Corollary 6.4. For non-negative real numbers p and q and variables u and v, the operator
T = 1 + p∂u + q∂v preserves real stability.

Proof. We just need to show that the polynomial 1− pu− qv is real stable. To see this, consider
u and v with positive imaginary parts. The imaginary part of 1− pu− qv will then be negative,
and so cannot be zero.
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We now show how operators of the preceding kind can be used to generate the expected
characteristic polynomials that appears in Theorem 5.1.

Lemma 6.5. For an invertible matrix A, vectors a and b, and a number p ∈ [0, 1],

ZuZv(1+ p∂u+(1− p)∂v) det
(

A+ uaaT + vbbT
)

= p det
(

A+ aaT
)

+(1− p) det
(

A+ bbT
)

.

Proof. The matrix determinant lemma (see, e.g., [21]) states that for every nonsingular matrix
A and every real number t,

det
(

A+ taaT
)

= det (A) (1 + taTA−1a).

One consequence of this is Jacobi’s formula for the derivative of the determinant:

∂t det
(

A+ taaT
)

= det (A) (aTA−1a).

This formula implies that

ZuZv(1+p∂u+(1−p)∂v) det
(

A+ uaaT + vbbT
)

= det (A)
(

1 + p(aTA−1a) + (1− p)(bTA−1b)
)

.

By the matrix determinant lemma, this equals

p det
(

A+ aaT
)

+ (1− p) det
(

A+ bbT
)

.

Using these tools, we prove our main technical result on real-rootedness.

Theorem 6.6. Let a1, . . . , am and b1, . . . , bm be vectors in R
n, and let p1, . . . , pm be real numbers

in [0, 1], and let D be a positive semidefinite matrix. Then every (univariate) polynomial of the
form

P (x)
def
=

∑

S⊆[m]

(

∏

i∈S

pi

)





∏

i 6∈S

1− pi



 det



xI +D +
∑

i∈S

aia
T
i +

∑

i 6∈S

bib
T
i





is real-rooted.

Proof. Let u1, . . . , um and v1, . . . , vm be formal variables and define

Q(x, u1, . . . , um, v1, . . . , vm) = det

(

xI +D +
∑

i

uiaia
T
i +

∑

i

vibib
T
i

)

.

Lemma 6.2 implies that Q is real stable.
We claim that we can rewrite P as

P (x) =

(

m
∏

i=1

Zui
ZviTi

)

Q(x, u1, . . . , um, v1, . . . , vm),

where Ti = 1 + pi∂ui
+ (1− pi)∂vi . To see this, we prove by induction on k that

(

k
∏

i=1

Zui
ZviTi

)

Q(x, u1, . . . , um, v1, . . . , vm)

11



equals

∑

S⊆[k]

(

∏

i∈S

pi

)





∏

i∈[k]\S

1− pi



 det



xI +D +
∑

i∈S

aia
T
i +

∑

i∈[k]\S

bib
T
i +

∑

i>k

uiaia
T
i + vibib

T
i



 .

The base case (k = 0) is trivially true, as it is the definition of Q. The inductive step follows
from Lemma 6.5. The case k = m is exactly the claimed identity.

Starting with Q (a real stable polynomial) we can then apply Corollary 6.4 and the closure
of real stable polynomials under the restrictions of variables to real constants to see that each
of the polynomials above, including P (x), is also real stable. As P (x) is real stable and has one
variable, it is real-rooted.

Alternatively, one can prove Theorem 6.6 by observing that P is a mixed characteristic
polynomial and then applying results of the second paper in this series [32].

Proof of Theorem 5.1. For each vertex u, let du be its degree, and let d = maxu du. We need to
prove that the polynomial

∑

s∈{±1}m

(

∏

i:si=1

pi

)(

∏

i:si=−1

(1− pi)

)

det (xI −As)

is real-rooted. This is equivalent to proving that the the following polynomial is real-rooted

∑

s∈{±1}m

(

∏

i:si=1

pi

)(

∏

i:si=−1

(1− pi)

)

det (xI + dI −As) , (4)

as their roots only differ by d.
We now observe that the matrix dI−As is a signed Laplacian matrix of G plus a nonnegative

diagonal matrix. For each edge (u, v), define the rank 1-matrices

L1
u,v = (eu − ev)(eu − ev)

T , and

L−1
u,v = (eu + ev)(eu + ev)

T ,

where eu is the elementary unit vector in direction u. Consider a signing s and let su,v denote
the sign it assigns to edge (u, v). Since the original graph had maximum degree d, we have

dI −As =
∑

(u,v)∈E

L
su,v
u,v +D,

whereD is the diagonal matrix whose uth diagonal entry equals d−du. As the diagonal entries of
D are non-negative, it is positive semidefinite. If we now set au,v = (eu−ev) and bu,v = (eu+ev),
we can express the polynomial in (4) as

∑

s∈{±1}m

(

∏

i:si=1

pi

)(

∏

i:si=−1

(1− pi)

)

det



xI +D +
∑

su,v=1

au,va
T
u,v +

∑

su,v=−1

bu,vb
T
u,v



 .

The fact that this polynomial is real-rooted now follows from Theorem 6.6.
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7 Conclusion

We conclude by drawing an analogy between our proof technique and the probabilistic method,
which relies on the fact that for every random variable X : Ω → R, there is an ω ∈ Ω for which
X(ω) ≤ E [X]. We have shown that for certain special polynomial-valued random variables
P : Ω → R[x], there must be an ω with λmax(P (ω)) ≤ λmax(E [P ]). In fact it is possible to define
interlacing families in greater generality than we have done here, using probabilistic notation.
In particular, we call a polynomial-valued random variable P useful if P is deterministic and
real-rooted or if there exist disjoint non-trivial events E1, . . . , Ek with

∑

i≤k Pr [Ei] = 1 such
that the polynomials {E [P |Ei]}i≤k have a common interlacing and each polynomial E [P |Ei] is
itself useful. The conclusion of Theorem 4.4 continues to hold for this definition, and we suspect
it will be useful in non-product settings. In the case of this paper, the events Ei are particularly
simple: they correspond to setting one sign of a lift to be +1 or −1, and the resulting sequence
of polynomials f∅, fs1 , . . . , fs1,...,sm forms a martingale (a fact that we do not use, but may be
interesting in its own right).

Like many applications of the probabilistic method, our proof does not yield a polynomial-
time algorithm. In the particular case of random lifts, the polynomial f∅ is itself a matching
polynomial, which is #P -hard to compute in general. It would certainly be interesting to find
computationally efficient analogues of our method.
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A Proof of Theorem 3.6

Let sym(S) denote the set of permutations of a set S and let |π| denote the number of inversions
of a permutation π. Expanding the determinant as a sum over permutations σ ∈ sym([n]), we
have

Es [det(xI −As)]

= Es





∑

σ∈sym([n])

(−1)|σ|
n
∏

i=1

(xI −As)i,σ(i)





=

n
∑

k=0

xn−k
∑

S⊂[n],|S|=k

∑

π∈sym(S)

Es

[

(−1)|π|
∏

i∈S

(As)i,π(i)

]

where π denotes the part of σ with σ(i) 6= i

=

n
∑

k=0

xn−k
∑

S⊂[n],|S|=k

∑

π∈sym(S)

Es

[

(−1)|π|
∏

i∈S

si,π(i)

]

.

Since the sij are independent with E [sij ] = 0, only those products which contain even powers
(0 or 2) of the sij survive. Thus, we may restrict our attention to the permutations π which
contain only orbits of size two. These are just the perfect matchings on S. There are no
perfect matchings when |S| is odd; otherwise, each matching consists of |S|/2 inversions. Since

Es

[

s2ij

]

= 1, we are left with

Es [det(xI −As)]

=
n
∑

k=0

xn−k
∑

|S|=k

∑

matching π on S

(−1)|S|/2 · 1

= µG(x),

as desired.
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