
CS 225 - Pseudorandomness Prof. Salil Vadhan

Problem Set 2

Harvard SEAS - Fall 2016 Due: Fri. Sep. 30, 2016 (5pm sharp)

Your problem set solutions must be typed (in e.g. LATEX) and submitted electronically to
cs225-hw@seas.harvard.edu. You are allowed 12 late days for the semester, of which at most 5
can be used on any individual problem set. (1 late day = 24 hours exactly). Please name your file
ps2-lastname.*.

The problem sets may require a lot of thought, so be sure to start them early. You are encouraged
to discuss the course material and the homework problems with each other in small groups (2-3
people). Identify your collaborators on your submission. Discussion of homework problems may
include brainstorming and verbally walking through possible solutions, but should not include one
person telling the others how to solve the problem. In addition, each person must write up their
solutions independently, and these write-ups should not be checked against each other or passed
around.

Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included to
stimulate your thinking and for your enjoyment, not to overwork you. *ed problems are extra
credit.

Problem 2.9 (Spectral Graph Theory)

Let M be the random-walk matrix for a d-regular undirected graph G = (V,E) on n vertices. We
allow G to have self-loops and multiple edges. Recall that the uniform distribution is an eigenvector
of M of eigenvalue λ1 = 1. Prove the following statements. (Hint: for intuition, it may help to
think about what the statements mean for the behavior of the random walk on G.)

1. All eigenvalues of M have absolute value at most 1.

2. G is disconnected ⇐⇒ 1 is an eigenvalue of multiplicity at least 2.

3. Suppose G is connected. Then G is bipartite ⇐⇒ −1 is an eigenvalue of M .

4. G connected ⇒ all eigenvalues of M other than λ1 are at most 1− 1/poly(n, d). To do this,
it may help to first show that the second largest eigenvalue of M (not necessarily in absolute
value) equals

max
x
〈xM, x〉 = 1− 1

d
·min

x

∑
(i, j) ∈ E

(xi − xj)2,

where the maximum/minimum is taken over all vectors x of length 1 such that
∑

i xi = 0,
and 〈x, y〉 =

∑
i xiyi is the standard inner product. For intuition, consider restricting the

above maximum/minimum to x ∈ {+α,−β}n for α, β > 0.

5. G connected and nonbipartite ⇒ all eigenvalues of M (other than 1) have absolute value at
most 1− 1/poly(n, d) and thus γ(G) ≥ 1/poly(n, d).
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(6*) Establish the (tight) bound 1−Ω(1/d ·D ·n) in Part 4, where D is the diameter of the graph.
Conclude that γ(G) = Ω(1/d2n2) if G is connected and nonbipartite.

Problem 3.1 (Derandomizing RP versus BPP)

Show that prRP = prP implies that prBPP = prP, and thus also that BPP = P. (Hint: Look
at the proof that NP = P⇒ BPP = P.)

Problem 3.2 (Designs)

Designs (also known as packings) are collections of sets that are nearly disjoint. In Chapter ??, we
will see how they are useful in the construction of pseudorandom generators. Formally, a collection
of sets S1, S2, . . . , Sm ⊂ [d] is called an (`, a)-design (for integers a ≤ ` ≤ d) if

• For all i, |Si| = `.

• For all i 6= j, |Si ∩ Sj | < a.

For given `, we’d like m to be large, a to be small, and d to be small. That is, we’d like to pack
many sets into a small universe with small intersections.

1. Prove that if m ≤
(
d
a

)
/
(
`
a

)2
, then there exists an (`, a)-design S1, . . . , Sm ⊂ [d].

Hint: Use the Probabilistic Method. Specifically, show that if the sets are chosen randomly,
then for every S1, . . . , Si−1,

E
Si

[#{j < i : |Si ∩ Sj | ≥ a}] < 1.

2. Conclude that for every constant γ > 0 and every `,m ∈ N, there exists an (`, a)-design

S1, · · · , Sm ⊂ [d] with d = O
(
`2

a

)
and a = γ · logm. In particular, setting m = 2`, we fit

exponentially many sets of size ` in a universe of size d = O(`) while keeping the intersections
an arbitrarily small fraction of the set size.

3. Using the Method of Conditional Expectations, show how to construct designs as in Parts 1
and 2 deterministically in time poly(m, d).

Problem 3.6 (Frequency Moments of Data Streams)

Given one pass through a huge “stream” of data items (a1, a2, . . . , ak), where each ai ∈ {0, 1}n, we
want to compute statistics on the distribution of items occurring in the stream while using small
space (not enough to store all the items or maintain a histogram). In this problem, you will see
how to compute the 2nd frequency moment f2 =

∑
am

2
a, where ma = #{i : ai = a}.

The algorithm works as follows: Before receiving any items, it chooses t random 4-wise indepen-
dent hash functions H1, . . . ,Ht : {0, 1}n → {+1,−1}, and sets counters X1 = X2 = · · · = Xt = 0.
Upon receiving the i’th item ai, it adds Hj(ai) to counter Xj . At the end of the stream, it outputs
Y = (X2

1 + · · ·+X2
t )/t.

Notice that the algorithm only needs space O(t · n) to store the hash functions Hj and space
O(t · log k) to maintain the counters Xj (compared to space k · n to store the entire stream, and
space 2n · log k to maintain a histogram).
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1. Show that for every data stream (a1, . . . , ak) and each j, we have E[X2
j ] = f2, where the

expectation is over the choice of the hash function Hj .

2. Show that Var[X2
j ] ≤ 2f22 .

3. Conclude that for a sufficiently large constant t (independent of n and k), the output Y is
within 1% of f2 with probability at least .99.

4. Show how to decrease the error probability to δ while only increasing the space by a factor
of log(1/δ).
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