
CS 225 - Pseudorandomness Prof. Salil Vadhan

Problem Set 3

Harvard SEAS - Fall 2016 Due: Fri. Oct. 14, 2016 (5pm sharp)

Your problem set solutions must be typed (in e.g. LATEX) and submitted electronically to
cs225-hw@seas.harvard.edu. You are allowed 12 late days for the semester, of which at most 5
can be used on any individual problem set. (1 late day = 24 hours exactly). Please name your file
ps3-lastname.*.

The problem sets may require a lot of thought, so be sure to start them early. You are encouraged
to discuss the course material and the homework problems with each other in small groups (2-3
people). Identify your collaborators on your submission. Discussion of homework problems may
include brainstorming and verbally walking through possible solutions, but should not include one
person telling the others how to solve the problem. In addition, each person must write up their
solutions independently, and these write-ups should not be checked against each other or passed
around.

Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included to
stimulate your thinking and for your enjoyment, not to overwork you. *ed problems are extra
credit.

Problem 4.2 (More Combinatorial Consequences of Spectral Expansion)

Let G be a graph on N vertices with spectral expansion γ = 1− λ. Prove that:

1. The independence number α(G) is at most (λ/(1 + λ))N , where α(G) is defined to be the
size of the largest independent set, i.e. subset S of vertices s.t. there are no edges with both
endpoints in S.

2. The chromatic number χ(G) is at least (1 + λ)/λ, where χ(G) is defined to be the smallest
number of colors for which the vertices of G can be colored s.t. all pairs of adjacent vertices
have different colors.

3. The diameter of G is O(log1/λN).

Recall that computing α(G) and χ(G) exactly are NP-complete problems. However, the above
shows that for expanders, nontrivial bounds on these quantities can be computed in polynomial
time.

Problem 4.6 (Error Reduction For Free)

Show that if a problem has a BPP algorithm with constant error probability, then it has a BPP
algorithm with error probability 1/n that uses exactly the same number of random bits.

1



Problem 4.9 (The Replacement Product)

Given a D1-regular graph G1 on N1 vertices and a D2-regular graph G2 on D1 vertices, consider
the following graph G1©r G2 on vertex set [N1] × [D1]: vertex (u, i) is connected to (v, j) iff (a)
u = v and (i, j) is an edge in G2, or (b) v is the i’th neighbor of u in G1 and u is the j’th neighbor
of v. That is, we “replace” each vertex v in G1 with a copy of G2, associating each edge incident
to v with one vertex of G2.

1. Prove that there is a function g such that if G1 has spectral expansion γ1 > 0 and G2 has
spectral expansion γ2 > 0 (and both graphs are undirected), then G1©r G2 has spectral
expansion g(γ1, γ2, D2) > 0. (Hint: Note that (G1©r G2)

3 has G1©z G2 as a subgraph.)

2. Show how to convert an explicit construction of constant-degree (spectral) expanders into an
explicit construction of degree 3 (spectral) expanders.

3. Without using Theorem 4.14, prove an analogue of Part 1 for edge expansion. That is, there
is a function h such that if G1 is an (N1/2, ε1) edge expander and G2 is a (D1/2, ε2) edge
expander, then G1©r G2 is a (N1D1/2, h(ε1, ε2, D2)) edge expander, where h(ε1, ε2, D2) > 0
if ε1, ε2 > 0. (Hint: given any set S of vertices of G1©r G2, partition S into the clouds that
are more than “half-full” and those that are not.)

4. Prove that the functions g(γ1, γ2, D2) and h(ε1, ε2, D2) must depend on D2, by showing that
G1©r G2 cannot be a (N1D1/2, ε) edge expander if ε > 1/(D2 + 1) and N1 ≥ 2.

Problem 4.10 (Unbalanced Vertex Expanders and Data Structures)

Consider a (K, (1 − ε)D) bipartite vertex expander G with N left vertices, M right vertices, and
left degree D.

1. For a set S of left vertices, a y ∈ N(S) is called a unique neighbor of S if y is incident to
exactly one edge from S. Prove that every left-set S of size at most K has at least (1−2ε)D|S|
unique neighbors.

2. For a set S of size at most K/2, prove that at most |S|/2 vertices outside S have at least δD
neighbors in N(S), for δ = O(ε).

Now we’ll see a beautiful application of such expanders to data structures. Suppose we want to
store a small subset S of a large universe [N ] such that we can test membership in S by probing just
1 bit of our data structure. A trivial way to achieve this is to store the characteristic vector of S,
but this requires N bits of storage. The hashing-based data structures mentioned in Section 3.5.3
only require storing O(|S|) words, each of O(logN) bits, but testing membership requires reading
an entire word (rather than just one bit.)

Our data structure will consist of M bits, which we think of as a {0, 1}-assignment to the right
vertices of our expander. This assignment will have the following property.

Property Π: For all left vertices x, all but a δ = O(ε) fraction of the neighbors of x are assigned
the value χS(x) (where χS(x) = 1 iff x ∈ S).

2



3. Show that if we store an assignment satisfying Property Π, then we can probabilistically test
membership in S with error probability δ by reading just one bit of the data structure.

4. Show that an assignment satisfying Property Π exists provided |S| ≤ K/2. (Hint: first assign
1 to all of S’s neighbors and 0 to all its nonneighbors, then try to correct the errors.)

It turns out that the needed expanders exist with M = O(K logN) (for any constant ε), so the
size of this data structure matches the hashing-based scheme while admitting (randomized) 1-bit
probes. However, note that such bipartite vertex expanders do not follow from explicit spectral
expanders as given in Theorem 4.39, because the latter do not provide vertex expansion beyond D/2
nor do they yield highly imbalanced expanders (with M � N) as needed here. But in Chapter 5, we
will see how to explicitly construct expanders that are quite good for this application (specifically,
with M = K1.01 · polylogN).

3


