
CS225: Pseudorandomness Prof. Salil Vadhan

Lecture 11: Extractors vs. Hashing and Expanders.

March 15, 2007

Based on scribe notes by John Provine.

As mentioned in the previous lecture, we mentioned that extractors have played a unifying role in the
theory of pseudorandomness, through their close connections with a variety of other pseudorandom
objects. In this lecture, we will see two of these connections. Specifically, how by reinterpreting
them appropriately, extractors can be viewed as providing families of hash functions, and as being
a certain type of highly expanding graphs.

1 Extractors as Hash Functions

One of the results we saw last time says that for any subset S ⊆ [N] of size K, if we choose a
completely random hash function h : [N] → [M] for M � K, then h will map the elements of
S almost-uniformly to [M]. Equivalently, if we let H be distributed uniformly over all functions
h : [N] → [M] and X be uniform on the set S, then (H,H(X)) is statistically close to (H,U [M]).
Can we use a smaller family of hash functions than the set of all functions h : [N] → [M]? This
gives rise to the following variant of extractors.

Definition 1 (strong extractors) Extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-
extractor if for every k-source X on {0, 1}n, (Ud,Ext(X,Ud)) is ε-close to (Ud, Um). Equivalently,

Ext′(x, y) = (y,Ext(x, y)) is a standard (k, ε)-extractor.

The nonconstructive existence proof from last time can be extended to establish the existence of
very good strong extractors.

Theorem 2 For every n, k ∈ N and ε > 0 there exists a strong (k, ε)-extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with m = k − 2 log(1

ε
)−O(1) and d = log(n− k) + 2 log(1

ε
) + O(1).

Note that the output length m ≈ k instead of m ≈ k + d; intuitively a strong extractor needs to
extract randomness that is independent of the seed and thus can only get the k bits from the source.

We see that strong extractors can be viewed as very small families hash functions having the almost-
uniform mapping property mentioned above. Indeed, our first explicit construction of extractors is
obtained by using pairwise independent hash functions.

The Leftover Hash Lemma shows us how to explicitly construct an extractor from a family of
pairwise independent functions H. The extractor uses a random hash function h

R←H as its seed
and keeps this seed in the output of the extractor. Thus, the extractor is strong.1

1Recall that a (k, ε)-extractor Ext is strong if Ext(x, y)
def
= y ◦ Ext′(x, y) for some function Ext′.

1

Theorem 3 (Leftover Hash Lemma) If H = {h : {0, 1}n → {0, 1}m} is a pairwise independent

family where m = k − 2 log(1
ε
), then Ext(x, h)

def
= h(x) is a strong (k, ε)-extractor.

Note that the seed length is d = O(n), i.e., the number of random bits required to choose h
R←H.

This is far from optimal; for the purposes of simulating randomized algorithms we would like
d = O(log n). However, the output length of the extractor is m = k− 2 log(1

ε
), which is optimal up

to an additive constant.

Proof: Let X be an arbitrary k-source on {0, 1}n, H as above, and H
R←H. Let d be the the

seed length. We show that (H,H(X)) is ε-close to Ud × Um in the following three steps:

1. We show that the collision probability of (H,H(X)) is close to that of Ud × Um.

2. We note that this is equivalent to saying that the `2 distance between (H,H(X)) and Ud×Um

is small.

3. Then we deduce that the statistical difference is small, by recalling that the statistical differ-
ence equals half of the `1 distance, which can be (loosely) bounded by the `2 distance.

Proof of 1: By definition, CP(H,H(X)) = Pr [(H,H(X)) = (H ′,H ′(X ′))], where (H ′, X ′) is inde-
pendent of and identically distributed to (H,X). Note that (H,H(X)) = (H ′,H ′(X)) if and only
if H = H ′ and either X = X ′ or X 6= X ′ but H(X) = H(X ′). Thus

CP(H,H(X)) = CP(H)
(

CP(X) + Pr
[

H(X) = H(X ′) | X 6= X ′
]

)

≤ 1

D

(

1

K
+

1

M

)

=
1 + ε2

DM
.

To see the penultimate inequality, note that CP(H) = 1/D because there are D hash functions,
CP(X) ≤ 1/K because H∞(X) ≥ k, and Pr [H(X) = H(X ′) |X 6= X ′] = 1/M by pairwise inde-
pendence.

Proof of 2:

‖(H,H(X)) − U[D] × U[M]‖2 = CP(H,H(X)) − CP(Ud × Um)

≤ 1 + ε2

DM
− 1

DM
=

ε2

DM
.

Proof of 3: Recalling that the statistical difference between two random variables X and Y is equal
to 1

2 |X − Y |1, we have:

∆((H,H(X), Ud × Um) =
1

2
|(H,H(X)) − Ud × Um|1

≤
√

DM

2
‖(H,H(X)) − Ud × Um‖

≤
√

DM

2
·
√

ε2

DM

=
ε

2
.

2

Thus, we have in fact obtained a strong (k, ε
2)-extractor.

The proof above actually shows that Ext(x, h) = h(x) extracts with respect to CP, or equivalently,

with respect to the `2-norm. This property may be expressed in terms of Renyi entropy H2(Z)
def
=

log(1/CP(Z)). Indeed, we can define Ext : {0, 1}n×{0, 1}d −→ {0, 1}m to be a (k, ε) Renyi-entropy

extractor if H2(X) ≥ k implies H2(Ext(X,Ud)) ≥ m − ε (or H2(Ud,Ext(X,Ud)) ≥ m + d − ε for
strong Renyi-entropy extractors). Then the above proof shows that pairwise-independent hash
functions yield strong Renyi-entropy extractors.

In general, it turns out that an extractor with respect to Renyi entropy must have seed length
d ≥ Ω(min{m,n−k}) (as opposed to d = O(log n)); this explains why the seed length in the above
extractor is large.

2 Extractors vs. Expanders

Extractors have a natural interpretation as graphs. Specifically, we can interpret an extractor
Ext : {0, 1}n × {0, 1}d −→ {0, 1}m as a bipartite multigraph G = ([N], [M], E), where (u, v) ∈ E
if and only if Ext(u, r) = v for some r ∈ {0, 1}d. Typically n � m, so the graph is unbalanced.
Note that G is D-regular on the left; indeed, this is why d is used to denote the seed length of
an extractor. It turns out that the extraction property of Ext is related to various “expansion”
properties of G. In this section, we explore this relationship.

2.1 Dispersers and Vertex Expansion

Let Ext : {0, 1}n × {0, 1}d −→ {0, 1}m be a (k, ε)-extractor and G = ([N], [M], E) the associated
graph. Recall that it suffices to examine Ext with respect to flat k-sources: in this case, the
extractor property says that given a subset S of size k on the left, a random neighbor of a random
element of S should be close to uniform on the right. In particular, if S ⊆ [N] is a subset on the
left of size k, then |N(S)| ≥ (1 − ε)M . This property is just like vertex expansion, except that it
ensures expansion only for sets of size exactly K, not any size ≤ K. Indeed, this gives rise to the
following weaker variant of extractors.

Definition 4 (dispersers) A function Disp : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-disperser if

for every k-source X on {0, 1}n, Disp(X,Ud) has a support of size at least (1− ε) · 2m.

While extractors can be used to simulate BPP algorithms with a weak random source, dispersers
can be used simulate RP algorithms with a weak random source.

Then, we have:

Proposition 5 A function Disp : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-disperser iff the cor-

responding bipartite graph G = ([N], [M], E) with left-degree D is a (K,A) vertex expander for

A = (1− ε) ·M/K.

Note that extractors and dispersers are interesting even when M � K, so the expansion parameter
A may be less than 1. Indeed, A < 1 is interesting for vertex ‘expanders’ when the graph is

3

highly imbalanced. Still, for an optimal extractor, we have M = Θ(ε2KD) (because m = k +
d− 2 log(1/ε) −Θ(1)), which corresponds to expansion factor A = Θ(ε2D). (An optimal disperser
actually gives A = Θ(D/ log(1/ε)).) Note this is smaller than the expansion factor of D/2 in
Ramanujan graphs and D−O(1) in random graphs; the reason is that those expansion factors are
for ‘small’ sets, whereas here we are asking for sets to expand to almost the entire right-hand side.

Now let’s look for a graph-theoretic property that is equivalent to the extraction property. Ext is
a (k, ε)-extractor iff for every set S ⊆ [N] of size K,

∆(Ext(US , U[D]), U[M]) = max
T⊆[M]

∣

∣

∣
Pr

[

Ext(US , U[D]) ∈ T
]

− Pr
[

U[M] ∈ T
]

∣

∣

∣
≤ ε,

where US denotes the uniform distribution on S. This inequality may be expressed in graph-
theoretic terms as follows. For every set T ⊆ [M],

∣

∣

∣
Pr

[

Ext(US , U[D]) ∈ T
]

− Pr
[

U[M] ∈ T
]

∣

∣

∣
≤ ε

⇔
∣

∣

∣

∣

e(S, T)

|S|D − |T |
M

∣

∣

∣

∣

≤ ε

⇔
∣

∣

∣

∣

e(S, T)

ND
− µ(S)µ(T)

∣

∣

∣

∣

≤ εµ(S)

Thus, we have:

Proposition 6 Ext is a (k, ε)-extractor iff the corresponding bipartite graph G = ([N], [M], E)

with left-degree D has the property that
∣

∣

∣

e(S,T)
ND

− µ(S)µ(T)
∣

∣

∣
≤ εµ(S) for every S ⊆ [N] of size K

and every T ⊆ [M].

Note that this is very similar to the Expander Mixing Lemma, which states that if a graph G has
spectral expansion λ, then for all sets S, T ⊆ [N] we have

∣

∣

∣

∣

e(S, T)

ND
− µ(T)

∣

∣

∣

∣

≤ λ
√

µ(S)µ(T).

It follows that if λ
√

µ(S)µ(T) ≤ εµ(S) for all S ⊆ [N] of size K and all T ⊆ [N], then G gives rise
to a (k, ε)-extractor (by turning G into a D-regular bipartite graph with N vertices on each side
in the natural way). It suffices for λ ≤ ε ·

√

K/N for this to work.

We can use this connection to turn our explicit construction of spectral expanders into an explicit
construction of extractors. To achieve λ ≤ ε ·

√

K/N , we can take an appropriate power of a
constant-degree expander. Specifically, if G0 is a D0-regular expander on N vertices with bounded
second eigenvalue, we can consider the tth power of G0, G = Gt

0, where t = O(log((1/ε)
√

N/K)) =
O(n− k + log(1/ε)). The degree of G is D = Dt

0 = poly(1/λ) = poly(1/ε,N/K). This yields the
following result:

Theorem 7 For every n, k ∈ N and ε > 0, there is an explicit (k, ε)-extractor Ext : {0, 1}n ×
{0, 1}d −→ {0, 1}n with d = O(n− k + log(1

ε
)).

4

Note that the seed length is significantly better than in the construction from pairwise-independent
hashing when k is close to n, say k ≥ n − O(log n) (i.e. K = Ω(N/ log N)). The output length
is just n, which is much larger than the typical output length for extractors (usually m � n).
Using a Ramanujan graph (rather than an arbitrary constant-degree expander), the seed length
can be improved to d = n − k + 2 log(1/ε) + O(1), which yields an optimal output length n =
k + d− 2 log(1/ε) −O(1).

Another way of proving Theorem 7 is to use the fact that a random step on an expanders decreases
the `2 distance to uniform, like in the proof of the Leftover Hash Lemma. This analysis shows that
we actually get a Renyi-entropy extractor; and thus explains the large seed length d ≈ n− k.

The following table summarizes the main differences between “classic” expanders and extractors.

Expanders Extractors

Measured by vertex or spectral expansion Measured by min-entropy/statistical difference

Typically constant degree Typically logarithmic or poly-logarithmic degree

All sets of size at most K expand All sets of size exactly (or at least) K expand

Typically balanced Typically unbalanced, bipartite graphs

Figure 1: Differences between “classic” expanders and extractors

5

