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Based on scribe notes by xxxx.

Let C be a code with encoding function Enc : {1, . . . , N} → Σn̂. Given any received word r ∈ Σn̂,
we would like to find all elements of LIST(r, ε) = {m : agr(m, r) ≥ ε} in polynomial time, where
agr(m, r) = Pry[my = ry]. (For convenience, we have switched to measuring the agreement ε
instead of the list-decoding distance δ = 1− ε as discussed last time.)

1 Review of Algebra

• For every prime power q = pk there is a field Fq of size q, and this field is unique up to
isomorphism (renaming elements). The prime p is called the characteristic of the field. Fq

has a description of length O(log q) enabling addition, multiplication, and division to be
formed in polynomial time (i.e. time poly(log q)). If q = pk for a given prime p and integer
k, this description can be found probabilistically in time poly(log p, k) = poly(log q) and
deterministically in time poly(p, k). Note that for even finding a prime p of a desired bitlength,
we only know time poly(p) deterministic algorithms. Thus, for computational purposes, a
convenient choice is often to instead take p = 2 and k large, in which case everything can be
done deterministically in time poly(k) = poly(log q).

• For every field F, F[X1, . . . , Xn] is the integral domain consisting of formal polynomials
Q(X1, . . . , Xn) with coefficients in F, where addition and multiplication of polynomials is
defined in the usual way.

• A polynomial Q(X1, . . . , Xn) is irreducible if we cannot write Q = RS where R,S are non-
constant polynomials.

• F[X1, . . . , Xn] is a unique factorization domain. That is, every polynomial p can be factored as
Q = Q1Q2 · · ·Qm, where each Qi is irreducible and this factorization is unique up to reordering
and multiplication by constants from F. Given the description of a finite field Fpk and the
polynomial Q, this factorization can be done in probabilistically in time poly(log p, k, |Q|)
and deterministically in time poly(p, k, |Q|).

• For Q(Y,Z) ∈ F[Y, Z] and f(Y ) ∈ F[Y ], if Q(Y, f(Y )) = 0, then Z − f(Y ) is one of the
irreducible factors of Q(Y, Z) (and thus can be found in polynomial time).

2 List-Decoding Reed-Solomon Codes

Theorem 1 (Sudan) There is a polynomial-time algorithm for decoding the Reed-Solomon code
of degree d over Fq up to distance δ = 1− 2

√
d/q.
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In fact the constant of 2 can be improved to 1, matching the combinatorial list-decoding radius for
Reed–Solomon codes given by an optimized form of the Johnson Bound, but we will not do this
optimization here.

Proof: We are given a received word r : Fq → Fq, and want to find all elements of LIST(r, ε) for
ε = 2

√
d/q.

Step 1: Find a low-degree Q ‘explaining’ r. Specifically, Q(Y, Z) will be a nonzero bivariate
polynomial of degree at most dY in its first variable Y and dZ in its second variable, and will satisfy
Q(y, r(y)) = 0 for all y ∈ Fq. Each such y imposes a linear constraint on the (dY + 1)(dZ + 1)
coefficients of Q. Thus, this system has a nonzero solution provided (dY + 1)(dZ + 1) > q, and it
can be found in polynomial time by linear algebra (over Fq).

Step 2: Argue that each f(Y ) ∈ LIST(r) is a ‘root’ of Q. Specifically, it will be the case that
Q(Y, f(Y )) = 0 for each f ∈ LIST(r, ε). The reason is that Q(Y, f(Y )) is a univariate polynomial
of degree at most dY + d · dZ , and has at least εq zeroes (one for each place that f and r agree).
Thus, we can conclude Q(Y, f(Y )) = 0 provided εq > dY + d · dZ . Then we can enumerate all of
the elements of LIST(r) by factoring Q(Y, Z) and taking all the factors of the form Z − f(Y ).

For this algorithm to work, the two conditions we need to satisfy are

(dY + 1)(dZ + 1) > q,

and
εq > dY + d · dZ .

These conditions can be satisfied by setting dY = bεq/2c, dZ = bεq/(2d)c, and ε = 2
√

d/q.

Note that the rate of Reed-Solomon codes is ρ = (d + 1)/q = Θ(ε2). The alphabet size is q =
Ω̃(n/ρ) = Ω̃(n/ε2). In contrast, an optimal code would have ρ ≈ ε and q = O(1/ε).

3 Parvaresh–Vardy Codes

Our aim is to improve the rate-distance tradeoff to ρ = Θ̃(ε). Intuitively, the power of the Reed–
Solomon list-decoding algorithm comes from the fact that we can interpolate the q points (y, r(y))
of the received word using a bivariate polynomial Q to be of degree roughly

√
q in each variable

(think of d = O(1) for now). If we could use m variables instead of 2, then the degrees would only
have to be around q1/m.

First attempt: Replace Step 1 with finding an (m + 1)-variate polynomial Q(Y, Z1, . . . , Zm) of
degree dY in Y and dZ in each Zi such that Q(y, r(y), r(y), . . . , r(y)) = 0 for every y ∈ Fq.
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Second attempt: Replace Step 1 with finding an (m + 1)-variate polynomial Q(Y, Z1, . . . , Zm)
of degree dY in Y and dZ = h − 1 in each Zi such that Q(y, r(y)h, r(y)h2

, . . . , r(y)hm−1
) = 0 for

every y ∈ Fq.

We get the best of both worlds by providing more information with each symbol — not just the
evaluation of f at each point, but the evaluation of m− 1 other polynomials, each of which is still
of degree d (as is good for Step 1), but can be viewed as raising f to successive powers of h for the
purposes of the getting a nonzero polynomial in one variable Z in Step 2.

To introduce this idea, we need some additional algebra.

• For univariate polynomials f(Y ) and E(Y ), we define f(Y ) mod E(Y ) to be the remainder
when f is divided by E. If E(Y ) is of degree k, then f(Y ) mod E(Y ) is of degree at most
k − 1.

• The ring F[Y ]/E(Y ) consists of all polynomials of degree at most k−1 with arithmetic modulo
E(Y ) (analogous to Zn consisting integers smaller than n with arithmetic modulo n). If E is
irreducible then, F[Y ]/E(Y ) is a field (analogous to Zp being a field when p is prime). Indeed,
this is how the finite field of size pk is constructed: take F = Zp and E(Y ) to be an irreducible
polynomial of degree k over Zp, and then F[Y ]/E(Y ) is the (unique) field of size pk.

• A multivariate polynomial Q(Y,Z1, . . . , Zm) can be reduced modulo E(Y ) by writing it as a
polynomial in variables Z1, . . . , Zm with coefficients in F[Y ] and then reducing each coefficient
modulo E(Y ).

Now we can define the Parvaresh–Vardy codes.

• Σ = Fm
q for the finite field Fq of size q and an integer parameter m.

• Blocklength: q.

• Message space: Fd+1
q , where we view each message as representing a polynomial f(Y ) of

degree at most d over Fq.

• Codewords: for y ∈ Fq, the y’th symbol of the encoding of f is

[f0(y), f1(y), . . . , fm−1(y)],

where fi(Y ) = f(Y )hi
mod E(Y ) and E is a fixed irreducible polynomial of degree d + 1 over

Fq.

Theorem 2 For an appropriate setting of h and m, the Parvaresh–Vardy code above has rate
ρ = Ω̃(d/q) and can be list-decoded in polynomial time up to distance δ = 1− Õ(d/q).

Proof: We are given a received word r : Fq → Fm
q .
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Step 1: Find a low-degree Q ‘explaining’ r. We find a polynomial Q(Y,Z0, . . . , Zm−1) of
degree at most dY in its first variable Y and at most h− 1 in each of the remaining variables, and
will satisfy Q(y, r(y)) = 0 for all y ∈ Fq.

This is possible provided
dY · hm > q.

Moreover, we may assume that Q is not divisible by E(Y ). If it is, we can divide out all the factors
of E(Y ), which will not affect the conditions Q(y, r(y)) = 0 since E has no roots (being irreducible).

Step 2: Argue that each f(Y ) ∈ LIST(r) is a ‘root’ of a related univariate polynomial
Q∗. First, we argue as before that if f ∈ LIST(r, ε), we have

Q(Y, f0(Y ), . . . , fm−1(Y )) = 0.

This will be ensured provided
εq > dY + (h− 1) · d ·m.

Once we have this, we can reduce both sides modulo E(Y ) and deduce

0 = Q(Y, f0(Y ), f2(Y ), . . . , fm−1(Y )) mod E(Y )
= Q(Y, f(Y ), f(Y )2, . . . , f(Y )m−1) mod E(Y )

Thus, if we define the univariate polynomial

Q∗(Z) = Q(Y,Z, Zh, . . . , Zhm−1
) mod E(Y ),

then f(Y ) is a root of Q∗ over the field Fq[Y ]/E(Y ).

Observe that Q∗ is nonzero because Q is not divisible by E(Y ) and has degree at most h − 1 in
each Zi. Thus, we can find all elements of LIST(r) by factoring Q∗(Z).

For this algorithm to work, the two conditions we need to satisfy are

dY · hm > q.

and
εq > dY + (h− 1) · d ·m.

We can satisfy the second condition by setting dY = εq − dhm, in which case the first condition is
satisfied provided

ε >
1

hm
+

dhm

q
.

The theorem can be obtained by taking h = 2 and m = O(log(1/ε)), and noting that the rate is
ρ = d/(mq).
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4 Folded Reed–Solomon Codes

We now sketch the ideas that were used by Guruswami and Rudra last year to achieve list-decoding
capacity.

They use the Parvaresh–Vardy construction with E(Y ) = Y q−1 − γ, where γ is generator of F∗q .
(That is, {γ, γ2, . . . , γq−1} = Fq \ {0}.) Then it turns out that f q(Y ) = f(γY ) mod E(Y ). So they
use fi(Y ) = f qi

(Y ) mod E(Y ), and for each nonzero element y of Fq, the y’th symbol of the PV
encoding of f(Y ) becomes

[f(y), f(γy), . . . , f(γm−1y)] = [f(γj , f(γj+1), . . . , f(γj+m−1)],

where we write y = γj .

Thus, the symbols of the encoding have a lot of overlap. For example, the γj ’th symbol and the
γj+1’th symbol share all but one component. Intuitively, this means that we should only have to
send roughly a 1/m fraction of the symbols of the codeword, saving us a factor of m in the rate.
(The other symbols can be automatically filled in by the receiver.) Thus, the rate becomes ρ ≈ d/q,
just like in Reed–Solomon codes.

However, there is still an extra factor m in the second term of

ε >
1

hm
+

dhm

q
.

prohibit us to achieve ρ = Θ(ε). To deal with this, we don’t just require that Q(y, r(y)) = 0 for
each y, but instead require that Q has a root of multiplicity s at each point (y, r(y)). Formally, this
means that the polynomial Q(Y + y, Z0 + r(y)0, . . . , Zm−1 + r(y)m−1) has no monomials of degree
smaller than s.

Then the second inequality becomes

εqs > dY + (h− 1) · d ·m.

However, we pay a price in the other condition, because asking for a root of multiplicity s amounts
to

(
m+s
s−1

)
constraints on the coefficients of Q (one for each monomial of degree smaller than s). So

the other constraint becomes

dY · hm > q ·
(

m + s

s− 1

)
.

If we take large s = m, these two constraints can be satisfied provided

ε >
1

m · (h/4)m
+

dhm

qs
≈ d

q
≈ ρ,

as desired.
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