Lecture 15: List-Decoding Algorithms

April 5, 2007

Based on scribe notes by xxxx.
Let \mathcal{C} be a code with encoding function Enc : $\{1, \ldots, N\} \rightarrow \Sigma^{\hat{n}}$. Given any received word $r \in \Sigma^{\hat{n}}$, we would like to find all elements of $\operatorname{LIST}(r, \varepsilon)=\{m: \operatorname{agr}(m, r) \geq \varepsilon\}$ in polynomial time, where $\operatorname{agr}(m, r)=\operatorname{Pr}_{y}\left[m_{y}=r_{y}\right]$. (For convenience, we have switched to measuring the agreement ε instead of the list-decoding distance $\delta=1-\varepsilon$ as discussed last time.)

1 Review of Algebra

- For every prime power $q=p^{k}$ there is a field \mathbb{F}_{q} of size q, and this field is unique up to isomorphism (renaming elements). The prime p is called the characteristic of the field. \mathbb{F}_{q} has a description of length $O(\log q)$ enabling addition, multiplication, and division to be formed in polynomial time (i.e. time poly $(\log q)$). If $q=p^{k}$ for a given prime p and integer k, this description can be found probabilistically in time poly $(\log p, k)=\operatorname{poly}(\log q)$ and deterministically in time poly (p, k). Note that for even finding a prime p of a desired bitlength, we only know time poly (p) deterministic algorithms. Thus, for computational purposes, a convenient choice is often to instead take $p=2$ and k large, in which case everything can be done deterministically in time poly $(k)=\operatorname{poly}(\log q)$.
- For every field $\mathbb{F}, \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ is the integral domain consisting of formal polynomials $Q\left(X_{1}, \ldots, X_{n}\right)$ with coefficients in \mathbb{F}, where addition and multiplication of polynomials is defined in the usual way.
- A polynomial $Q\left(X_{1}, \ldots, X_{n}\right)$ is irreducible if we cannot write $Q=R S$ where R, S are nonconstant polynomials.
- $\mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ is a unique factorization domain. That is, every polynomial p can be factored as $Q=Q_{1} Q_{2} \cdots Q_{m}$, where each Q_{i} is irreducible and this factorization is unique up to reordering and multiplication by constants from \mathbb{F}. Given the description of a finite field $\mathbb{F}_{p^{k}}$ and the polynomial Q, this factorization can be done in probabilistically in time poly $(\log p, k,|Q|)$ and deterministically in time $\operatorname{poly}(p, k,|Q|)$.
- For $Q(Y, Z) \in \mathbb{F}[Y, Z]$ and $f(Y) \in \mathbb{F}[Y]$, if $Q(Y, f(Y))=0$, then $Z-f(Y)$ is one of the irreducible factors of $Q(Y, Z)$ (and thus can be found in polynomial time).

2 List-Decoding Reed-Solomon Codes

Theorem 1 (Sudan) There is a polynomial-time algorithm for decoding the Reed-Solomon code of degree d over \mathbb{F}_{q} up to distance $\delta=1-2 \sqrt{d / q}$.

In fact the constant of 2 can be improved to 1 , matching the combinatorial list-decoding radius for Reed-Solomon codes given by an optimized form of the Johnson Bound, but we will not do this optimization here.

Proof: We are given a received word $r: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$, and want to find all elements of $\operatorname{LIST}(r, \varepsilon)$ for $\varepsilon=2 \sqrt{d / q}$.

Step 1: Find a low-degree Q 'explaining' r. Specifically, $Q(Y, Z)$ will be a nonzero bivariate polynomial of degree at most d_{Y} in its first variable Y and d_{Z} in its second variable, and will satisfy $Q(y, r(y))=0$ for all $y \in \mathbb{F}_{q}$. Each such y imposes a linear constraint on the $\left(d_{Y}+1\right)\left(d_{Z}+1\right)$ coefficients of Q. Thus, this system has a nonzero solution provided $\left(d_{Y}+1\right)\left(d_{Z}+1\right)>q$, and it can be found in polynomial time by linear algebra (over \mathbb{F}_{q}).

Step 2: Argue that each $f(Y) \in \operatorname{LIST}(r)$ is a 'root' of Q. Specifically, it will be the case that $Q(Y, f(Y))=0$ for each $f \in \operatorname{LIST}(r, \varepsilon)$. The reason is that $Q(Y, f(Y))$ is a univariate polynomial of degree at most $d_{Y}+d \cdot d_{Z}$, and has at least εq zeroes (one for each place that f and r agree). Thus, we can conclude $Q(Y, f(Y))=0$ provided $\varepsilon q>d_{Y}+d \cdot d_{Z}$. Then we can enumerate all of the elements of $\operatorname{LIST}(r)$ by factoring $Q(Y, Z)$ and taking all the factors of the form $Z-f(Y)$.
For this algorithm to work, the two conditions we need to satisfy are

$$
\left(d_{Y}+1\right)\left(d_{Z}+1\right)>q,
$$

and

$$
\varepsilon q>d_{Y}+d \cdot d_{Z}
$$

These conditions can be satisfied by setting $d_{Y}=\lfloor\varepsilon q / 2\rfloor, d_{Z}=\lfloor\varepsilon q /(2 d)\rfloor$, and $\varepsilon=2 \sqrt{d / q}$.
Note that the rate of Reed-Solomon codes is $\rho=(d+1) / q=\Theta\left(\varepsilon^{2}\right)$. The alphabet size is $q=$ $\tilde{\Omega}(n / \rho)=\tilde{\Omega}\left(n / \varepsilon^{2}\right)$. In contrast, an optimal code would have $\rho \approx \varepsilon$ and $q=O(1 / \varepsilon)$.

3 Parvaresh-Vardy Codes

Our aim is to improve the rate-distance tradeoff to $\rho=\tilde{\Theta}(\varepsilon)$. Intuitively, the power of the ReedSolomon list-decoding algorithm comes from the fact that we can interpolate the q points $(y, r(y))$ of the received word using a bivariate polynomial Q to be of degree roughly \sqrt{q} in each variable (think of $d=O(1)$ for now). If we could use m variables instead of 2 , then the degrees would only have to be around $q^{1 / m}$.

First attempt: Replace Step 1 with finding an $(m+1)$-variate polynomial $Q\left(Y, Z_{1}, \ldots, Z_{m}\right)$ of degree d_{Y} in Y and d_{Z} in each Z_{i} such that $Q(y, r(y), r(y), \ldots, r(y))=0$ for every $y \in \mathbb{F}_{q}$.

Second attempt: Replace Step 1 with finding an $(m+1)$-variate polynomial $Q\left(Y, Z_{1}, \ldots, Z_{m}\right)$ of degree d_{Y} in Y and $d_{Z}=h-1$ in each Z_{i} such that $Q\left(y, r(y)^{h}, r(y)^{h^{2}}, \ldots, r(y)^{h^{m-1}}\right)=0$ for every $y \in \mathbb{F}_{q}$.

We get the best of both worlds by providing more information with each symbol - not just the evaluation of f at each point, but the evaluation of $m-1$ other polynomials, each of which is still of degree d (as is good for Step 1), but can be viewed as raising f to successive powers of h for the purposes of the getting a nonzero polynomial in one variable Z in Step 2.
To introduce this idea, we need some additional algebra.

- For univariate polynomials $f(Y)$ and $E(Y)$, we define $f(Y) \bmod E(Y)$ to be the remainder when f is divided by E. If $E(Y)$ is of degree k, then $f(Y) \bmod E(Y)$ is of degree at most $k-1$.
- The ring $\mathbb{F}[Y] / E(Y)$ consists of all polynomials of degree at most $k-1$ with arithmetic modulo $E(Y)$ (analogous to \mathbb{Z}_{n} consisting integers smaller than n with arithmetic modulo n). If E is irreducible then, $\mathbb{F}[Y] / E(Y)$ is a field (analogous to \mathbb{Z}_{p} being a field when p is prime). Indeed, this is how the finite field of size p^{k} is constructed: take $\mathbb{F}=\mathbb{Z}_{p}$ and $E(Y)$ to be an irreducible polynomial of degree k over \mathbb{Z}_{p}, and then $\mathbb{F}[Y] / E(Y)$ is the (unique) field of size p^{k}.
- A multivariate polynomial $Q\left(Y, Z_{1}, \ldots, Z_{m}\right)$ can be reduced modulo $E(Y)$ by writing it as a polynomial in variables Z_{1}, \ldots, Z_{m} with coefficients in $\mathbb{F}[Y]$ and then reducing each coefficient modulo $E(Y)$.

Now we can define the Parvaresh-Vardy codes.

- $\Sigma=\mathbb{F}_{q}^{m}$ for the finite field \mathbb{F}_{q} of size q and an integer parameter m.
- Blocklength: q.
- Message space: \mathbb{F}_{q}^{d+1}, where we view each message as representing a polynomial $f(Y)$ of degree at most d over \mathbb{F}_{q}.
- Codewords: for $y \in \mathbb{F}_{q}$, the y 'th symbol of the encoding of f is

$$
\left[f_{0}(y), f_{1}(y), \ldots, f_{m-1}(y)\right]
$$

where $f_{i}(Y)=f(Y)^{h^{i}} \bmod E(Y)$ and E is a fixed irreducible polynomial of degree $d+1$ over \mathbb{F}_{q}.

Theorem 2 For an appropriate setting of h and m, the Parvaresh-Vardy code above has rate $\rho=\tilde{\Omega}(d / q)$ and can be list-decoded in polynomial time up to distance $\delta=1-\tilde{O}(d / q)$.

Proof: We are given a received word $r: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}^{m}$.

Step 1: Find a low-degree Q 'explaining' r. We find a polynomial $Q\left(Y, Z_{0}, \ldots, Z_{m-1}\right)$ of degree at most d_{Y} in its first variable Y and at most $h-1$ in each of the remaining variables, and will satisfy $Q(y, r(y))=0$ for all $y \in \mathbb{F}_{q}$.
This is possible provided

$$
d_{Y} \cdot h^{m}>q .
$$

Moreover, we may assume that Q is not divisible by $E(Y)$. If it is, we can divide out all the factors of $E(Y)$, which will not affect the conditions $Q(y, r(y))=0$ since E has no roots (being irreducible).

Step 2: Argue that each $f(Y) \in \operatorname{LIST}(r)$ is a 'root' of a related univariate polynomial Q^{*}. First, we argue as before that if $f \in \operatorname{LIST}(r, \varepsilon)$, we have

$$
Q\left(Y, f_{0}(Y), \ldots, f_{m-1}(Y)\right)=0
$$

This will be ensured provided

$$
\varepsilon q>d_{Y}+(h-1) \cdot d \cdot m
$$

Once we have this, we can reduce both sides modulo $E(Y)$ and deduce

$$
\begin{aligned}
0 & =Q\left(Y, f_{0}(Y), f_{2}(Y), \ldots, f_{m-1}(Y)\right) \bmod E(Y) \\
& =Q\left(Y, f(Y), f(Y)^{2}, \ldots, f(Y)^{m-1}\right) \bmod E(Y)
\end{aligned}
$$

Thus, if we define the univariate polynomial

$$
Q^{*}(Z)=Q\left(Y, Z, Z^{h}, \ldots, Z^{h^{m-1}}\right) \bmod E(Y),
$$

then $f(Y)$ is a root of Q^{*} over the field $\mathbb{F}_{q}[Y] / E(Y)$.
Observe that Q^{*} is nonzero because Q is not divisible by $E(Y)$ and has degree at most $h-1$ in each Z_{i}. Thus, we can find all elements of $\operatorname{LIST}(r)$ by factoring $Q^{*}(Z)$.
For this algorithm to work, the two conditions we need to satisfy are

$$
d_{Y} \cdot h^{m}>q .
$$

and

$$
\varepsilon q>d_{Y}+(h-1) \cdot d \cdot m
$$

We can satisfy the second condition by setting $d_{Y}=\varepsilon q-d h m$, in which case the first condition is satisfied provided

$$
\varepsilon>\frac{1}{h^{m}}+\frac{d h m}{q} .
$$

The theorem can be obtained by taking $h=2$ and $m=O(\log (1 / \varepsilon))$, and noting that the rate is $\rho=d /(m q)$.

4 Folded Reed-Solomon Codes

We now sketch the ideas that were used by Guruswami and Rudra last year to achieve list-decoding capacity.
They use the Parvaresh-Vardy construction with $E(Y)=Y^{q-1}-\gamma$, where γ is generator of \mathbb{F}_{q}^{*}. (That is, $\left\{\gamma, \gamma^{2}, \ldots, \gamma^{q-1}\right\}=\mathbb{F}_{q} \backslash\{0\}$.) Then it turns out that $f^{q}(Y)=f(\gamma Y) \bmod E(Y)$. So they use $f_{i}(Y)=f^{q^{2}}(Y) \bmod E(Y)$, and for each nonzero element y of \mathbb{F}_{q}, the y^{\prime} th symbol of the PV encoding of $f(Y)$ becomes

$$
\left[f(y), f(\gamma y), \ldots, f\left(\gamma^{m-1} y\right)\right]=\left[f\left(\gamma^{j}, f\left(\gamma^{j+1}\right), \ldots, f\left(\gamma^{j+m-1}\right)\right],\right.
$$

where we write $y=\gamma^{j}$.
Thus, the symbols of the encoding have a lot of overlap. For example, the γ^{j} 'th symbol and the γ^{j+1} 'th symbol share all but one component. Intuitively, this means that we should only have to send roughly a $1 / m$ fraction of the symbols of the codeword, saving us a factor of m in the rate. (The other symbols can be automatically filled in by the receiver.) Thus, the rate becomes $\rho \approx d / q$, just like in Reed-Solomon codes.
However, there is still an extra factor m in the second term of

$$
\varepsilon>\frac{1}{h^{m}}+\frac{d h m}{q} .
$$

prohibit us to achieve $\rho=\Theta(\varepsilon)$. To deal with this, we don't just require that $Q(y, r(y))=0$ for each y, but instead require that Q has a root of multiplicity s at each point $(y, r(y))$. Formally, this means that the polynomial $Q\left(Y+y, Z_{0}+r(y)_{0}, \ldots, Z_{m-1}+r(y)_{m-1}\right)$ has no monomials of degree smaller than s.

Then the second inequality becomes

$$
\varepsilon q s>d_{Y}+(h-1) \cdot d \cdot m .
$$

However, we pay a price in the other condition, because asking for a root of multiplicity s amounts to $\binom{m+s}{s-1}$ constraints on the coefficients of Q (one for each monomial of degree smaller than s). So the other constraint becomes

$$
d_{Y} \cdot h^{m}>q \cdot\binom{m+s}{s-1}
$$

If we take large $s=m$, these two constraints can be satisfied provided

$$
\varepsilon>\frac{1}{m \cdot(h / 4)^{m}}+\frac{d h m}{q s} \approx \frac{d}{q} \approx \rho,
$$

as desired.

