CS225: Pseudorandomness Prof. Salil Vadhan

Lecture 18: PRGs from Average-Case Hardness
April 12, 2007 Scribe: David Woodruff, David Troiano, and Denis Chebikin

1 Noncryptographic Pseudorandom Generators Generators

Last time, Dan Gutfreund surveyed cryptographic pseudorandom generators, which numerous ap-
plications within and outside cryptography, including to derandomizing BPP. However, for de-
randomization, we can use generators with weaker properties. Specifically, we only need G :
{0,134 — {0,1}" such that:

1. G fools nonuniform distinguishers running in time n (as opposed to all probabilistic polynomial-
time distinguishers).

2. G is computable in time poly(n,2%). In particular, the PRG may take more time than the
distinguishers it is trying to fool.

Such a generator implies that every BPP algorithm can be derandomized in time poly(n, 25(")).

The benefit of studying such generators is that we can hope to construct them under weaker
assumptions than used cryptographic generators. In particular, a generator with the properties
above no longer implies P # NP, much less the existence of one-way functions. Testing whether
a string is an output of the generator is still an NP search problem, but even if we guess the seed
properly, testing may take more time than the distinguishers are allowed. However, as you will
show on Problem Set 6, such generators still imply nonuniform circuit lower bounds for exponential
time, something that is still beyond the state of the art in complexity theory. Our goal in the next
couple of lectures is to construct generators as above from assumptions that are as weak as possible.

2 Next-bit Unpredictability

In analyzing the pseudorandom generators that we construct, it will be useful to work with a
reformulation of the pseudorandomness property, which says that, given a prefix of the output, it
should be hard to predict the next bit.

For notational convenience, we deviate from our usual conventions use X to refer to an r.v. on
{0,1}"™ which is part of an ensemble, and we use X; for some i € [n] = {1,...,n} to denote the ith
bit of X. We have:

Definition 1 Let X = X be a random variable distributed on {0,1}". For functionst: N — N
and ¢ : N — [0,1], we say that X is (t,e) next-bit unpredictable if for every nonuniform
probabilistic algorithm P running in time t(n) and every i € [n], we have:

1
Pr [P(XlXQ .- 'Xi—l) = Xz] < 5 + e(n),

where the probability is taken over X and the coin tosses of P.

Note that the uniform distribution X = U, is (¢,0) next-bit unpredictable for every ¢. Intuitively,
if X is pseudorandom, it must be next-bit unpredictable, as this is just one specific test one can
perform on X. In fact the converse also holds, and this is the direction we will use.

Theorem 2 Let X be a random variable distributed on {0,1}™. If X is a (t,e) pseudorandom,
then X is (t — O(1),¢e) next-bit unpredictable. Conversely, if X is (t,e) next-bit unpredictable, then
it s (t,n - €) pseudorandom.

Proof: Here U denotes an r.v. uniformly distributed on {0,1}" and U; denotes the i’th bit of U.

X pseudorandom = X next-bit unpredictable. The proof is by reduction. Suppose for contradic-
tion that X is not (t—O(n), €) next-bit unpredictable, so we have a predictor P : {0,1}*~! — {0,1}
that succeeds with probability at least 1/2 4+ e. We construct an algorithm 7" : {0,1}" — {0,1}
that distinguishes X from U,, as follows:

X next-bit unpredictable = X pseudorandom. Also by reduction. Suppose X is not pseudo-
random, so we have a nonuniform algorithm 7" running in time ¢ s.t.

Pr[T(X) = 1] — Pr[T(U) = 1] > ¢,

where we have dropped the absolute values without loss of generality as in lecture 16.

We now use a hybrid argument. Define H; = X;0Xs0---0X;0U;y10U;390---0U,. Then H, = X
and Hy = U. We have:

> (Pr[T(H;) = 1] = Pr[T(H;—q) =1]) >,
i=1

since the sum telescopes. Thus, there must exist an ¢ such that
PI‘[T(HZ) = 1] — PI‘[T(HZ_l) = 1] > e/n.

This says that T is more likely to output 1 when we put X; in the ¢’th bit than when we put a
random bit U;. We can view U; as being X; with probability 1/2 and being X; with probability
1/2. The only advantage T has must be coming from the latter case, because in the former case,
the two distributions are identical. Formally,

PI‘[T(Xl te Xz'—le'Uz'+1 ce Un) = 1]+1—PI‘[T(X1 te Xi—lyiUi—i-l ce Un) = 1] = 2‘(PI‘[T(H¢) = 1] — PI‘[T(HZ'_1:
This motivates the following next-bit predictor:

P(zizg---xi_1):

1. Choose random bits u;, . .., up {0,1}.
2. Compute b =T (21 xi—1U; - Up).

3. If b =1, output u;, otherwise output u;.

The intuition is that T" is more likely to output 1 when u; = x; than when u; = ¥;. Formally, we
have:

PI“[P(Xl e Xi—l) = Xz]

1

1 _
= 5 (Pr[T(X;y -+ Xim1 XiUir -+ Up) = 1] + 1 = Pr[T(Xy -+ X; 1 XU -+ Up) = 1))
N 1 ¢

2 n

Note that as described P runs in time ¢+ O(n). If we use circuit-size as our measure of nonuniform
time, we can reduce its running time to t as follows. First, we may nonuniformly fix the coin tosses
Ui, - .., Uy of P while preserving its advantage. Then all P does is run T on z7 - - - x;_1 concatenated
with some fixed bits and and either output what 7' does or its negation (depending on the fixed
value of u;). Fixing some input bits and negation can be done without increasing circuit size. Thus
we contradict the next-bit unpredictability of X. |

We note that an analogue of this result holds for uniform distinguishers and predictors, provided
that we change the definition of next-bit predictor to involve a random choice of i < [n] instead of a
fixed value of i, and change the time bounds in the conclusions to be ¢t — O(n) rather than ¢t — O(1)
and t (we can’t do tricks like in the final paragraph of the proof). In contrast to the multiple-sample
indistinguishability result from last time, this result does not need X to be efficiently samplable
for the uniform version.

3 Average-Case Hardness

We now turn to the assumptions under which we can construct pseudorandom generators suitable
for derandomization. Today, we will construct them from boolean functions that are hard on
average for nonuniform algorithms (eg. circuits) but be computed in (uniform) exponential time.

Definition 3 For functions f : N — N and o : N — [0,1], we say that a Boolean function
fe: {0,1}6 — {0,1} is (t,«) average-case hard if for all nonuniform probabilistic algorithm A
running in time t({),

PriA(X) = f(X)] < 1—a(4).

for sufficiently large £.

Observe that the negation of this definition is that there is nonuniform algorithm A running in
time t(¢) such that Pr[A(X) = f(X)] > 1 — a({) for infinitely many in put lengths ¢. Normally,

when we say that a function is easy, we mean that there is an algorithm that does well on all input
lengths ¢. The above definition is thus stronger than the usual definition of ‘easiness’. If we only
have a function f that is not easy, this means that it is hard for infinitely values of ¢, and thus we
will only be able to use it to construct generators G, that are pseudorandom for infinitely many
values of n (which in turn will lead to a deterministic simulation of BPP that works correctly for
infinitely many input lengths n).

Note that when @ = 0 and we consider deterministic algorithms A, then the above definition says
that f is hard in the worst case. A definition of worst-case hardness for probabilistic algorithms
will be given next time.

Today we consider v = 3 — €(¢), where €(¢) = 1/t(¢). That is, no efficient algorithm can compute
f much better than random guessing. A typical setting of parameters we use is t(¢) somewhere in
range from ¢“() (slightly superpolynomial) to #(¢) = 2% for a constant 6 > 0. (Note that every
function is computable by a nonuniform algorithm running in time roughly 2¢, so we cannot take
t(¢) to be any larger.) We will also require f is computable in (uniform) time 29 so that our
pseudorandom generator will be computable in time exponential in its seed length. The existence
of such an average-case hard function does seem to be quite a strong assumption, but next time

we will see how to relax it to a worst-case hardness assumption.

Now we show how to obtain a pseudorandom generator from average-case hardness.

Proposition 4 If f: {0,1}* — {0,1} is (t,1/2 — £) average-case hard, then G(z) = z o f(z) is a
(t,e) pseudorandom generator.

Proof: This follows from the equivalence of pseudorandomness and next-bit unpredictability.
Considering uniformly random seed X, we certainly can’t predict the first ¢ bits with any advantage
whatsoever, so the only hope is to predict f(z) from z, but f is (%—e)—hard. A black-box application
of Theorem 2 would lose a factor of £ + 1 in the advantage £, but we do not need to pay it here
because the first ¢ bits are perfectly uniform. (Following the proof of Theorem 2, we would have
Pr[T(H;) =1] = Pr[T(H;—1) =1]=0fori=1,...,¢.) [

Note that this generator includes its seed in its output. This is impossible for cryptographic
pseudorandom generators, but is feasible (as shown above) when the generator can have more
resources than the distinguishers it is trying to fool.

Of course, this generator is quite weak, stretching by only one bit. We would like to get many bits
out. Here are two attempts:

e Define G(x1---xg) = @1+ -z f(z1)--- f(xg). This is a (¢, ke) pseudorandom generator be-
cause we have k independent samples of a pseudorandom distribution so nonuniform computa-
tional indistinguishability is preserved. Note that already here we are relying on nonuniform
indistinguishability, because the distribution (Upy, f(Ur)) is not samplable (in time that is
feasible for the distinguishers).

e Use composition. For example, try to get two bits out using the same seed length by defining
G'(z) = G(G(x)1---G(x)¢)G(x). This works for cryptographic pseudorandom generators,
but not for the generators we are considering here. Why not?

4 The Nisan—Wigderson Generator

Our goal now is to show the following: Given f € E = DTIME(2°(®)) ! that is (3 - ﬁ)—hard
for nonuniform time ¢(¢), construct an (n,1/n) pseudorandom generator G : {0,1}°® — {0,1}"
with n = ¢(¢)° for constant § > 0. (This is analogous to the parameters achieved for constructing
pseudorandom generators from one-way permutations, as surveyed last time, but we are now using

a weaker assumption.) Actually the generator we construct will have a slightly worse seed length
than O(¢).

The idea is to apply f on slightly dependent inputs, i.e. x; and z; share very few bits. The sets of
seed bits used for each output bit will be given by a design, as on Problem Set 2:
Definition 5 Sy,---, S, C [d] is an (¢, a)-design if
1. Vi,|S;| = ¢
2. Vi#74,18n8;|<a
We want lots of sets having small intersections over a small universe.

Lemma 6 For every constant v > 0 and every {,m € N, there exists an (¢,a)-design S1,- -+, Sm C

[d] with d = O (%) and a = v -logm. Such a design can be constructed deterministically in time

poly(m, d).

This follows from the results on Problem Set 2. There you did the calculation for v = 1 and m = 2
for constant ¢ > 0. For this case, the lemma gives d = O (g) = O(¥), matching what you showed.

Given an (¢,a)-design Si,---,S,, C [d] and average-case hard f : {0,1}¢ — {0,1}, define G :
{0,134 — {0,1}™ as

G(x) = f(x]s)f (z]s,) - -+ fl]s,)
where if is a string in {0,1}4 and S C [d], |S| = ¢, z|s is the string of length ¢ obtained from =
by selecting the bits indexed by S.

Theorem 7 Suppose that f : {0,1}* — {0,1} is (5—1)-hard for nonuniform timet, and Sy, -+, Sp, C
[d] is an (£,a)-design with m = t'/3 and a = % -logt, then G : {0,1}% — {0,1}™ is an (m,1/m)
pseudorandom generator.

By construction of the design, the seed length is d = O (62 / log t), which is slightly worse than our
original aim of d = O(¢), but we do achieve our aim for the important case when t(¢) = 2. (We
have seen earlier that this exponential hardness corresponds to what is needed to show BPP =P
case.)

Proof: Suppose G is not an (m,e) pseudorandom generator for ¢ = 1/m. By Theorem 2, there
is a nonuniform time m next-bit predictor P such that

PP(f(X]5,)F (X]s) -+ f (X5,) = F(X]s)] > 5+ = (1)

'E should be contrasted with the larger class EXP = DTIME(2r° ()

for some i € [m]. From P, we construct A that computes f with probability % + .

Let Y = X|s,. By averaging, we can fix all bits of X|g = z such that the prediction probability

is at least % + += (over Y and the coin tosses of the predictor P). Define f;(y) = f(z|s,) for

je{l,---,i—1}. (That is, fj(y) forms = by placing y in the positions in S; and z in the others,
and then applies f to z|g,). Then

1

PHP(i(Y) - fiea (V) = J (V)] > 5 + .

Note that f;(y) depends only on [S; N S;| < a bits of y. We cannot afford to compute f in the
forward direction, but we can represent each f; with a look-up table, which we can include in
the advice to our nonuniform algorithm. Indeed, every function on a bits can be computed by a
boolean circuit of size at most a - 2% = O(t'/3). (In fact, size at most O(2%/a) suffices.)

Then, defining A(y) = P(f1(y) - fi-1(y)), we have:

e A(y) can be computed in nonuniform time time(P) 4+ m - a - 2% = O(t*/3) < t.

e The advantage of A in computing f at least /m = 1/t%/3 > 1/t.

This contradicts the hardness of f. Thus, we conclude G is an (m, %) pseudorandom generator. W

Corollary 8 Suppose that E has a (t(€),1/2 — 1/t(f)) average-case hard function f : {0,1}* —
{0,1}.

1. Ift(¢) = 20| then BPP = P.
2. If t(t) = 2" | then BPP C P.
3. If t() = *1), then BPP C SUBEXP.

We make the following additional remarks:

1. This is a very general construction that works for any average-case hard function f. We only
used f € E to deduce G is computable in E.

2. The reduction works for any nonuniform class of algorithms C where functions of logarithmi-
cally many bits can be computed efficiently.

Indeed, in the next section we will use the same construction to obtain an unconditional pseudo-
random generator following constant-depth circuits.

5 Constant-depth circuits

We consider circuits with gates of type AND, OR, and NOT, and with unbounded fan-in (i.e.
the number of incoming arrows) at gates of type AND and OR. The depth of such a circuit is
the maximum length of a path from an input variable to the output. Typically negations are not
counted in the depth (since they can all be moved to the bottom using De Morgan’s laws).

Theorem 9 For all constants d, the function Parg: {0,1}* — {0,1} defined by Pary(zy,. .., x¢) =
@le x; 18 (t,1/2 — 1/t)-average-case hard for depth d circuits of size t = QUL

Lemma 10 Ewvery function g : {0,1}* — {0,1} can be computed by a depth 2 circuit of size 2°.
The following theorem by Nisan uses the two facts above.

Theorem 11 For every constant d and every m, there exists a poly(m)-time computable (m,1/m)-
pseudorandom generator Gy, : {0, 1}1°go<d)m — {0,1}™ fooling depth d circuits (of size m).

Proof: Put d = d + 10. Choose ¢ such that m = QQ(ZIM). Let G be the Nisan-Wigderson
generator for f = Par, and t(f) = m3 = 22(Y") Get g = logm. Then the seed length of G is
O(2/a) < O(£2) = O(log® m)? = 1og®¥) m.

We now follow the steps of the proof of Theorem 7 to go from an adversary 1" breaking the
pseudorandomness of G to a circuit A calculating the parity function Par,.

If T has depth d, then the corresponding next-bit predictor P has depth dp = d + ¢ for some
small constant c¢. Recall that, in the proof of Theorem 7, we obtain A from P by A(y) =
P(fi(y)fa(y) -+ fi—1(y)) for some i € {1,...,m} and where each f; depends on at most a bits
of y. Now we observe that A can be computed by a small constant-depth circuit (if P can). Specif-
ically, applying Lemma 10 to each f;, the size of A is at most O(m - 2¢) = O(m?) plus the size of
P and the depth of A is at most dp + 2. This contradicts the hardness of Pary (Theorem 9). W

We define BPACy as the class of uniform languages decided by probabilistic constant depth circuits
of polynomial size, where uniformity means that there is a polynomial time algorithm M such that
M(1™) = C,, is the circuits of inputs of length n.

Corollary 12 BPAC, C P.

With more work, this can be strengthened to actually put BPACg in 1/&\60. (The difficulty is that
we use majority voting in the derandomization, but small constant-depth circuits cannot compute
majority. However, they can compute an “approximate” majority, and this suffices.)

While BPACy may not seem a very natural class of randomized algorithms, on Problem Set 6,
you will see how to use the above PRG to derandomize one of the actual randomized algorithms
we have seen (namely the approximate DNF-counting algorithm).

