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In Lecture Notes 18, we saw how to construct pseudorandom generators from boolean functions
that are very hard on average, where every nonuniform algorithm running in time t must err with
probability greater than 1/2 − 1/t on a random input. Now we want to relax the assumption to
refer to worst-case hardness. Here is the correct definition for probabilistic algorithms.

Definition 1 A function f` : {0, 1}` → {0, 1} is worst-case hard for (nonuniform) time t(`) if, for
all (nonuniform) probabilistic algorithms A running in time t(`) and all sufficiently large `, there
exists x ∈ {0, 1}` such that Pr[A(x) 6= f`(x)] > 1/3, where the probability is over the coin tosses of
A.

Note that, for deterministic algorithms A, the conclusion simply says A(x) 6= f(x). In the nonuni-
form case, restricting to deterministic algorithms is without loss of generality because we can always
derandomize the algorithm using (additional) nonuniformity. Specifically, following the proof that
BPP ⊆ P/poly, it can be shown that if f is worst-case hard for nonuniform deterministic al-
gorithms running in time t(`), then it is worst-case hard for nonuniform probabilistic algorithms
running in time Ω(t(`)/`).

A natural goal is to be able to construct an average-case hard function from a worst-case hard
function. More formally, given a function f : {0, 1}` → {0, 1} vs. time t = t(`), construct a
function f̂ : {0, 1}O(`) → {0, 1} such that f̂ is average-case hard vs. time t′ = tΩ(1). Moreover, we
would like f̂ to be in E if f is in E. (Whether we can obtain a similar result for NP is a major
open problem, and indeed there are negative results ruling out natural approaches to doing so.)

Our approach to doing this will be via error-correcting codes. Specifically, we will show that if f̂
is the encoding of f in an appropriate kind of error-correcting code, then worst-case hardness of f
implies average-case hardness of f̂ .

Specifically, we view f as a message of length L = 2`, and apply an error-correcting code Enc :

{0, 1}L → ΣL̂ to obtain f̂ = Enc(f), which we view as a function f̂ : {0, 1}
ˆ̀
→ Σ, where ˆ̀= log L̂.

Pictorially:

message f : {0, 1}` → {0, 1} −→ Enc −→ codeword f̂ : {0, 1}
ˆ̀
→ Σ .

(Ultimately, we would like Σ = {0, 1}, but along the way we will discuss larger alphabets.)

Now we argue the average-case hardness of f̂ as follows. Suppose, for contradiction, that f̂ is not δ
average-case hard. By definition, there exists an efficient algorithm A with Pr[A(x) = f̂(x)] > 1−δ.
We may assume that A is deterministic by fixing its coins. Then A may be viewed as a received

word in ΣL̂, and our condition on A becomes ∆(A, f̂) < δ. So if Dec is a δ-decoding algorithm for
Enc, then Dec(A) = f . By assumption A is efficient, so if Dec is efficient, then f may be efficiently
computed everywhere. This would contradict our worst-case hardness assumption, assuming that
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Dec(A) gives a time t(`) algorithm for f . However, the standard notion of decoding requires

reading all 2
ˆ̀

values of the received word A and writing all 2` values of the message Dec(A), and
thus Time(Dec(A)) � 2`. Everything is easy for nonuniform time 2`, and even in the uniform
case we are mostly interested in t(`) � 2`. To solve this problem we introduce the notion of local
decoding.

Definition 2 A local δ-decoding algorithm for some Enc : {0, 1}L → ΣL̂ is a probabilistic oracle
algorithm Dec with the following property. Let f : {0, 1}` → {0, 1} be any message with associated

codeword f̂ = Enc(f), and let g : {0, 1}
ˆ̀
→ Σ be such that ∆(g, f̂ ) < δ. Then for all x ∈ {0, 1}` we

have Pr[Decg(x) = f(x)] ≥ 2/3, where the probability is taken over the coins flips of Dec.

In other words, given oracle access to g, we want to efficiently compute any bit of f with high
probability. So both the input (namely, g) and the output (namely, f) are treated implicitly; the
decoding algorithm does not need to read/write either in its entirety. This makes it possible to
have sublinear-time (or even polylogarithmic-time) decoding. Also, we note that the bound of 2/3
in the definition can be amplified in the usual way. Having formalized a notion of local decoding,
we can now make our earlier intuition precise.

Proposition 3 Let Enc be an error-correcting code with local δ-decoding algorithm Dec, and let
f be worst-case hard for nonuniform time t. Then f̂ = Enc(f) is (t′, δ) average-case hard, where
t′ = t/Time(Dec).

Proof: We do everything as explained before except with DecA in place of Dec(A), and now
the running time is at most Time(Dec) · Time(A), since Dec can make at most Time(Dec) calls to
A.

To simplify matters, we have only dealt with the nonuniform case. We used nonuniformity in the
proof to fix the coin flips of A, making it deterministic. There are similar results for the uniform
case (choosing the coin tosses of A randomly instead of nonuniformly, and replacing δ-average-case
hard by, say, (δ/3)-average-case hard in the conclusion), so nonuniformity is not being used in any
essential way. Anyway, in light of the above proposition, our task is now to find an error-correcting
code with a local decoding algorithm. Specifically, we would like the follows parameters.

1. We want ˆ̀= O(`), or equivalently L̂ = poly(L).

2. We would like Enc to be computable in time 2O(`) = poly(L). This is because we want f ∈ E

to imply f̂ ∈ E.

3. Ideally we would like a local δ-decoding algorithm with δ = 1/2− t−Ω(1) (for Σ = {0, 1}), but
this is impossible because one cannot decode from beyond half the minimum-distance. We
will see how to deal with this next time.

4. Recalling that f̂ will be average-case hard against time t/Time(Dec), we would want the
running time of Dec to be at most tα for a constant α < 1.
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