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April 24, 2007

Based on scribe notes by Sasha Schwartz, Adi Akavia, and Kevin Matulef.

1 Recap

Last time we saw that locally decodable codes, if they exist, could be used to convert worst-case
hard functions to average-case hard functions. Today, we will see how to obtain such codes.

Recall that we wanted a locally decodable code encoding messages f : {0, 1}` → {0, 1} to codewords

f̂ : {0, 1}
ˆ̀
→ {0, 1}:

1. ˆ̀= O(`), ie the block length (2
ˆ̀
) is polynomial in the message length (2`), and moreover the

encoding should be computable in time 2O(`) (i.e. polynomial in the message length).

2. A local (1/2 − ε)-decoding algorithm that runs in time poly(`, 1/ε). That is, given oracle

access to a received word r : {0, 1}
ˆ̀
→ {0, 1} at distance less than (1/2− ε) from a codeword

f̂ and any index x ∈ {0, 1}`, we should be able to compute f(x) with high probability in time
poly(`, 1/ε).

However, we will begin by working with the following modifications of the second requirement:

1. We will give a local δ-decoding algorithm for a small constant δ > 0, rather than a local
(1/2− ε)-decoding algorithm. The reason is that achieving the latter will require a notion of
local list-decoding, which we will introduce later.

2. We will give an algorithm for decoding codeword symbols rather than message symbols, as
formalized by the following definition.

Definition 1 A local δ-decoding algorithm for codeword symbols for a code C ⊂ ΣL̂ is a prob-
abilistic oracle algorithm Dec with the following property. Let f̂ ∈ C be any codeword, and let

g : {0, 1}
ˆ̀
→ Σ be such that ∆(g, f̂) < δ. Then for all x ∈ [L̂] we have Pr[Decg(x) = f̂(x)] ≥ 2/3,

where the probability is taken over the coins flips of Dec.

This implies the standard definition of locally decodable codes under the mild constraint that the
message symbols are explicitly included in the codeword.

Definition 2 An encoding algorithm Enc : {0, 1}L → ΣL̂ for the code C = Im(Enc) is systematic
if there is a polynomial-time computable function I : [L] → [L̂] such that for all f ∈ {0, 1}L,
f̂ = Enc(f), and all x ∈ [L], we have f̂(I(x)) = f(x), where we interpret 0 and 1 as elements of Σ
in some canonical way.
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Lemma 3 If Enc : {0, 1}L → ΣL̂ is systematic and C = Im(Enc) has a local δ-decoding algorithm
for codeword symbols running in time t, then Enc has a local δ-decoding algorithm (in the standard
sense) running in time t + poly(log L).

2 Hadamard Code

Recall the m-variate Hadamard code, which consists of the truth tables of all Z2-linear functions
L : {0, 1}m → {0, 1}.

Proposition 4 The m-variate Hadamard code has a local (1/4−ε)-decoding algorithm for codeword
symbols running in time poly(m, 1/ε).

Proof: We are given oracle access to g : {0, 1}m → {0, 1} that is at distance less than 1/4 − ε
from some (unknown) linear function L, and we want to compute L(x) at an arbitrary point
x ∈ {0, 1}m. The idea is random self-reducibility: we can reduce computing L at an arbitrary
point to computing L at uniformly random points, where g is likely to give the correct answer.
Specifically, L(x) = L(x⊕ r)⊕ L(r) for every r, and both x⊕ r and r are uniformly distributed if

we choose r
R

← {0, 1}m. The probability that g differs from L at either of these points is at most
2 · (1/4− ε) = 1/2− 2ε. Thus g(x⊕ r)⊕ g(r) gives the correct answer with probability noticeably
larger than 1/2. We can amplify this success probability by repetition. Specifically, if we define
Decg(x) = maj1≤j≤t{g(rj) ⊕ g(rj ⊕ x)}, where r1, . . . , rt are chosen independently at random and
where t = O(1/ε2), then we get error probability at most 1/3 in computing L(x).

This local decoding algorithm is optimal in terms of its decoding distance and running time, but
the problem is that the Hadamard code has exponentially small rate.

3 Reed–Muller Code

Recall that the m-variate Reed–Muller code of degree d over Fq consists of all multivariate poly-
nomials p : F

m
q → Fq of total degree at most d. This code has minimum distance δ = 1 − d/q.

Reed–Muller Codes are a common generalization of both Hadamard and Reed–Solomon codes, and
thus we can hope that for an appropriate setting of parameters, we will be able to get the best
of both kinds of codes. That is, we want to combine the efficient local decoding of the Hadamard
code with the good rate of Reed-Solomon codes.

Theorem 5 The Reed-Muller Code of degree d in m variables has a local 1/12-decoding algorithm
for codeword symbols running in time poly(m, |F|) provided d ≤ |F|/9 and |F| ≥ 36.

Note the running time of the decoder is roughly the m’th root of the block length L̂ = |F|m. When
m = 1, our decoder can query the entire string and we simply obtain a global decoding algorithm
for Reed-Solomon Codes (which we already know how to achieve). But for large enough m, the
decoder can only access a small fraction of the received word. In fact, one can improve the running
time to poly(m, d, log |F|), but the weaker result is sufficient for our purposes.
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The key idea behind the decoder is to do restrictions to random lines in F
m. The restriction of a

Reed–Muller codeword to such a line is a Reed–Solomon codeword, and we can afford to run our
global Reed–Solomon decoding algorithm on the line.

Formally, for a, b ∈ F
m, we define the line through a in direction b as the function `a,b : F → F

m

given by `a,b(x) = a + xb. If g : F
m → F is any function and ` : F → F

m is a line, then we use g|`
to denote the restriction of g to `, which is simply the composition g ◦ ` : F→ F. Note that if p is
any polynomial of total degree at most d, then p|` is a (univariate) polynomial of degree at most d.

So we are given an oracle g of distance less than δ from some degree d polynomial p : F
m → F,

and we want to compute p(x) for some x ∈ F
m. We begin be choosing a random line ` through

x. Every point of F
m \ {x} lies on exactly one line through x, so the points on ` (except x) are

distributed uniformly at random over the whole domain, and thus g and p are likely to agree on
these points. Thus we can hope to use the points on this line to reconstruct the value of p(x). If
δ is sufficiently small compared to the degree (e.g. δ = 1/3(d + 1)), we can simply interpolate the
value of p(x) from d + 1 random points on the line. This gives rise to the following algorithm.

Local δ-Decoder for δ = 1/3(d + 1). Input : g : F
m → F that is δ-close to a polynomial p of

total degree at most d, and x ∈ F
m

Output : p(x)
Steps :

1. Choose y
R

← F
m. Let ` = `x,y = {x + ty}t∈F

2. Query β0 = g|`(α0), ..., βd = g|`(αd) where α0, ..., αd ∈ F \ {0} are any fixed points

3. Interpolate to find a unique univariate polynomial q of degree at most d s.t. ∀i, q(αi) = βi

4. Output q(0)

Analysis : Observe that for all αi ∈ F\{0}, `x,y(αi) is uniform over the y ∈ F
m. This implies that

Pr
`

[g|`(αi) 6= p|`(αi)] ≤ δ =
1

3(d + 1)

By union bound

Pr
`

[∃i, g|`(αi) 6= p|`(αi)] ≤ (d + 1)δ =
1

3

Namely, ∀i, q(αi) = p|`(αi), w.p. at least 2/3. Therefore, q(0) = p(x), w.p. at least 2/3. The
running time of the algorithm is poly(m, |F|).

Local δ-Decoder for δ = 1/12. We alter steps 2 and 3 in the above algorithm. In step 2, instead
of querying only d + 1 points, we query over all points in `. In step 3, instead of interpolation, we
use the global 1/3-decoding algorithm for Reed–Solomon codes to decode the univariate polynomial
p|`. (A 1/3-decoder for Reed–Solomon codes follows from the (1−2

√

d/|F|) list-decoding algorithm
we saw in Lecture 15. Since 1/3 ≤ 1 − 2

√

d/|F|, the list-decoder will produce a list containing all
univariate polynomials at distance less than 1/3, and since 1/3 is smaller than half the minimum
distance (1 − d/|F|), there will be only one good decoding.) Formally, the algorithm proceeds as
follows.
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Local δ-Decoder for δ = 1/12. Input : g : F
m → F that is δ-close to a polynomial p of total

degree at most d, and x ∈ F
m

Output : p(x)
Steps :

1. Choose y
R

← F
m. Let ` = `x,y = {x + ty}t∈F

2. Query g at all points on `.

3. Run the 1/3-decoder for Reed–Solomon codes on g|` to obtain the (unique) polynomial q at
distance less than 1/3 from g|` (if one exists).

4. Output q(0).

Analysis : The expected distance ( between g|` and p|`) is small:

E
`
[∆(g|`, p|`)] ≤

1

|F|
+ δ <

1

36
+

1

12
=

1

9

(where the term 1
|F| is due to the fact that the point x is not random). Therefore, by Markov’s

Inequality,
Pr[∆(g|`, p|`) ≥ 1/3] ≤ 1/3

Thus, with probability at least 2/3, we have that p|` is the unique polynomial of degree at most d
at distance less than 1/3 from g|` and thus q must equal p|`.

4 The Encoding

Given f : {0, 1}` → {0, 1}, we want to encode it as a Reed–Muller codeword f̂ : {0, 1}
ˆ̀
→ Σ s.t.:

• The encoding time is 2O(`)

• ˆ̀= O(`)

• The code is systematic in the sense of Definition 2. Informally, this means that f should be
a “restriction” of f̂ .

Note: the usual encoding for Reed–Muller codes, where the message gives the coefficients of the
polynomial does not suffice, since this encoding is not systematic.

4.1 Multilinear Extension

Claim 6 For any f : {0, 1}` → {0, 1} there exists a (unique) polynomial f̂ : F
` → F s.t. f̂|{0,1}` ≡ f

of degree at most 1 in each variable.

4



Proof: We prove the existence of the polynomial f̂ . Define

f̂(x1, ..., x`) =
∑

α∈{0,1}`

f(α)δα(x)

for

δα(x) =

(

∏

i : αi=1

xi

)(

∏

i : αi=0

(1− xi)

)

Note that for x ∈ {0, 1}`, δα(x) = 1 only when α = x, therefore f̂|{0,1}` ≡ f . Uniqueness of f̂ is
derived from counting degrees of freedom. The bound on the total degree is by inspection.

Thinking of f̂ as an encoding of f , let’s inspect the properties of this encoding.

• For the local 1/12-decoding algorithm above, we need |F| ≥ 9`, therefore, we can take |F| =
Θ(`).

• The encoding time is 2O(`), as computing a single point of f̂ requires summing over 2O(`)

elements.

• The code is systematic, since f̂ is an extension of f .

• However, we run into troubles in terms of the input length ˆ̀= ` log |F| = Θ(` log `). This is
slightly too large; we aim for having ˆ̀= O(`).

4.2 Low-Degree Extension

To solve the problem of the input length ˆ̀ in the multi-linear encoding, we reduce the dimension of

the polynomial f̂ by changing the embedding of the domain of f : Instead of interpreting {0, 1}` ⊆ F
ˆ̀

as an embedding of the domain of f in F
ˆ̀
, we map {0, 1}` to H

m for some subfield H ⊆ F, and as
such embed it in F

m.

More precisely, we fix a subfield H ⊆ F of size (roughly) |H| =
√

|F| . Choose m = `
log|H| , and fix

some efficient one-to-one mapping from {0, 1}` into H
m. With this mapping, view f as a polynomial

f : H
m → F.

Analogously to before, we have the following theorem.

Theorem 7 There exists a (unique) f̂ : F
m → F of degree at most |H| − 1 in each variable s.t.

f̂ |Hm ≡ f .

The total degree of f̂ is m(|H| − 1) ≤ m |H| ≤ `
√

|F|. So we can 1
12 -decode, as long as |F| ≥ 81`2

(recall that our decoding algorithm requires that the degree is at most |F| /9). Let’s inspecting the
properties of f̂ as an encoding of f :

• The input length is m log |F| = `
log|H| log |F| = 2`. Namely, ˆ̀= O(`) as desired.

• The code is systematic as long as our mapping from {0, 1}` to H
m is efficient.
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5 Implications for Worst-Case/Average-Case Connections

Plugging the local decoding algorithm for Reed–Muller codes given above into the general result
from last time, we obtain the following

Theorem 8 If there exists f : {0, 1}` → {0, 1} in E that is worst-case hard against (non-uniform)
time t(`), then there exists f̂ : {0, 1}O(`) → {0, 1}O(log `) in E that is 1/12 average-case hard against
(non-uniform) time t(`)/poly(`).

This differs from our original goal in two ways: f̂ is not Boolean, and we only get hardness
1/12 (instead of 1/2 − ε). These can be remedied by concatenating the Reed–Muller code with a
Hadamard code. Note that the Hadamard code is for message space F, so it can be 1/4-decoded by
brute-force in time poly(|F|) (which is the amount of time already taken by our decoder).1 Using
this, we obtain:

Theorem 9 If there exists f : {0, 1}` → {0, 1} in E that is worst-case hard against (non-uniform)
time t(`), then there exists f̂ : {0, 1}O(`) → {0, 1} in E that is 1/48 average-case hard against
(non-uniform) time t(`)/poly(`).

Hardness Amplification. Now our goal is to boost this constant hardness 1/48 to 1/2 − ε.
There are some generic techniques for doing this, known as Direct Product Theorems or Yao’s
XOR lemma (for Boolean functions). In those methods we use independent copies of the function
at hand. For example, it Yao’s XOR lemma, we let f ′ consist of k independent copies of f̂ ,

f ′(x1, ..., xk) = (f̂(x1), ..., f̂ (xk)).

Intuitively, if f̂ is 1/12 average-case hard, then f ′ should (1 − ( 11
12 )k)-average case hard. Similarly,

if we take the XOR of k independent copies of a Boolean function, the hardness should approach
1/2 exponentially fast. These statements are (basically) true, though proving them turns out to be
harder than one might expect.

The main disadvantage of this approach (for our purposes) is that the input length is k` while we
aim for input length of O(`). To overcome this problem, it is possible to use derandomization,
namely, evaluate f̂ on dependent inputs instead of independent ones.

In the next lecture, we will take a different approach, namely to generalize our notion and algorithms
for locally decodable codes to locally list-decodable codes. (In fact, the aforementioned results on
hardness amplification can be interpreted in a coding-theoretic language as well.)

6 Other Connections

As you will see on PS6, locally decodable codes are closely related to protocols for private in-
formation retrieval. Another connection, and actually the setting in which these local decoding

1This concatenation step is equivalent to applying the Goldreich–Levin hardcore predicate to f̂ , for those familiar
with it. However, for the parameters we are using (where the message space is small and we are doing unique
decoding), we do not need the sophisticated Goldreich–Levin algorithm (which can be interpreted as a “local list-
decoding algorithm,” a notion we will define next time).
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algorithms were first discovered, is to program self-correctors. Suppose you have a program for
computing a function, such as the determinant, which happens to be a codeword in a locally de-
codable code (e.g. the determinant is a low-degree multivariate polynomial). Then, even if this
program has some bugs and gives the wrong answer on some small fraction of inputs, you can use
the local decoding algorithm to obtain the correct answer on all inputs with high probability.
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