CS225: Pseudorandomness Prof. Salil Vadhan

Lecture 4: Random Walks
February 18, 2007

Based on scribe notes by Dave Troiano and Brian Greenberg.

1 Graph Connectivity

One of the most basic problems in computer science is that of deciding connectivity in graphs, i.e.

S-T CONNECTIVITY: Given a directed graph G and two vertices s and t, is there a path from s
to tin G?

This problem can of course be solved in linear time using breadth-first or depth-first search. How-
ever, these algorithms also require linear space. It turns out that S-T CONNECTIVITY can in fact
be solved using much less workspace. (When measuring the space complexity of algorithms, we do
not count the space for the (read-only) input and (write-only) output.)

Theorem 1 There is an algorithm deciding S-T CONNECTIVITY using space O(log®n) (and time
O(logn))
n .

Proof: The following recursive algorithm IsPath(G,w,v, k) decides whether there is a path of
length at most k from u to v.

IsPath(G, u, v, k):

1. If £ =0, accept if u = v.
2. If k=1, accept if u = v or (u,v) is an edge in G.

3. Otherwise, loop through all vertices w in G and accept if both IsPath(G,u,w, [k/2]) and
IsPath(G,w,v, | k/2]) accept for some w.

We can solve S-T CONNECTIVITY by running IsPath(G, s,t,n), where n is the number of vertices
in the graph. The algorithm has logn levels of recursion and uses logn space per level of recursion
(to store the vertex w), for a total space bound of log? n. Similarly, the algorithm uses polynomial
time per level of recursion, for a total time bound of poly(n)&” = pOUogn), |

It is not known how to improve the space bound in Theorem 1 or to get the running time down to
polynomial while maintaining space n°®) . For undirected graphs, however, we can do much better
using a randomized algorithm. Specifically, we can place it in the following class:

Definition 2 A language L is in RL if there exists a randomized algorithm A that always halts,
uses space at most O(logn) on inputs of length n, and satisfies:

e z € L = Pr[A(z) accepts| > 3

e © ¢ L = Pr[A(z) accepts] =0

Recall that our model of a randomized space-bounded machine is one that has access to a coin-
tossing box (rather than an infinite tape of random bits), and thus must explicitly store in its
workspace any random bits it needs to remember. The requirement that A always halts ensures
that its running time is at most 20Uogn) — poly(n), because otherwise there would be a loop in its
configuration space. Similarly to RL, we can define L (deterministic logspace), co-RL (one-sided
error with errors only on NO instances), and BPL (two-sided error).

Now, we can state the theorem regarding connectivity in undirected graphs.

UNDIRECTED S-T CONNECTIVITY: Given an undirected graph G and two vertices s and t, is
there a path from s to ¢t in G?

Theorem 3 UNDIRECTED S-T CONNECTIVITY is in RL.

Proof: The algorithm simply does a polynomial-length random walk starting at s.

Random-Walk Algorithm for UNDIRECTED S-T CONNECTIVITY.
On input (G, s,t), where G = (V, E) has n vertices:

1. Let v =s.
2. Repeat up to n* times:

(a) If v = ¢, halt and accept.
(b) Else let v < {w : (v,w) € E}.

3. Reject (if we haven’t visited ¢ yet).

Notice that this algorithm only requires space O(logn), to maintain the current vertex v as well as
a counter for the number of steps taken. Clearly, it never accepts when there isn’t a path from s to
t. In the next section, we will prove that if G is a d-regular graph, then a random walk of length
O(d?n?) from s will hit ¢ with high probability. Note that this suffices for the theorem, because
make an arbitrary undirected graph 3-regular while preserving s-t connectivity by replacing each
vertex v with a cycle of length deg(v). In fact, the algorithm actually works as described above for
general undirected graphs and even directed graphs in which each connected component is Eulerian
(indeg(v) = outdeg(v) for every vertex), but we will not prove it here. But it does not work for
arbitrary directed graphs. Indeed, it is not difficult to construct directed graphs in which there is
a path from s to t but a random walk from s takes exponential time to hit . |

This algorithm, dating from the 1970’s, was derandomized only in 2005. We will cover this result in
just a few weeks! However, the general question derandomizing space-bounded algorithms remains
open.

Open Problem 4 Does RL = L? Does BPL =L¥¢

2 Random Walks on Graphs

Throughout this section, G will be a d-regular directed (multi)graph on n vertices. By d-regular,
we mean that every vertex has indegree d and outdegree d. By multigraph, we mean that we allow
G to have parallel edges and self-loops. To analyze the random-walk algorithm of the previous
section, it suffices to prove a bound on the hitting time of random walks.

Definition 5 hit(G) = max; j{expected number of steps for a random walk started at i to visit j}

Today, we will prove:

Theorem 6 For every connected and regular undirected graph G on n vertices, we have hit(G) =
O(d?n3logn).

Thus, if s and ¢ are in the same connected component C' of G and we do a random walk from s for
n* > 2hit(C) steps (for d = 3), then we will visit ¢ with probability at least 1/2.

There are combinatorial methods for proving the above theorem, but we will prove it using a linear-
algebraic approach, as these methods will be very useful in our study of expander graphs. For a
d-regular digraph G on n vertices, we can define its random-walk transition matriz M, which is
simply the adjacency matrix of G divided by d. That is, M; ; is the probability of going from vertex
1 to vertex j in one step. Notice that for every probability distribution m € R™ on the vertices of
G (written as a row vector), the vector wM is the probability distribution obtained by selecting a
vertex ¢ according to m and then taking one step of the random walk to end at a vertex j. This is
because (1M); = >, miM; ;.

In our application, we start at a probability distribution 7 concentrated at vertex s, and are
interested in the distribution 7M* we get after taking k steps on the graph. Specifically, we’d
like to show that it places nonnegligible mass on vertex ¢t for k = poly(n). We will do this by
showing that it in fact converges to the uniform distribution v = (1/n,1/n,...,1n) € R™ within
a polynomial number of steps. Note that uM = u by the regularity of GG, so convergence to u is
possible (and will be guaranteed given some additional conditions on G).

Will measure the rate of convergence in ¢, norm. For vectors z,y € R", define (x,y) = >, z;y,
and ||z|| = y/(z,z). We write L y to mean that (z,y) = 0. We want to determine how large
k needs to be so that ||[wM* — u| is ‘small’. This is referred to as the mizing time of the random
walk. Mixing time can be defined with respect to various distance measures and the /2 norm is
not the most natural one, but it has the advantage that we will be able to show that the distance
decreases in every step. This is captured by the following quantity.

Definition 7 For a reqular directed graph G with random-walk matriz M, we define

e M — M
NG e T =l e

Al —ull el [l

where the first mazimization is over all probability distributions 7 € [0,1]" and the second is over

all vectors © € R™ such that x L u. We write v(G) Loy AG).

To see that the first definition of A(G) is smaller than or equal to the second, note that for any
probability distribution 7, the vector x = (m — u) is orthogonal to uniform (i.e. the sum of its
entries is zero). For the converse, observe that given any vector z L wu, the vector 7 = u + ax
is a probability distribution for a sufficiently small «. It can be shown that A\(G) € [0,1]. (For
undirected graphs, this follows from Problem Set 2 and the material in the next section.)

The following lemma is immediate from the definition of M.

Lemma 8 Let G be a regular digraph with random-walk matriz M. For every initial probability
distribution ™ on the vertices of G and every k € N, we have

lmME = ull < MG)* - [l —ul| < X&)

Thus a smaller value of \(G) (equivalently, a larger value of v(G)) mean that the random walk
mixes more quickly. Specifically, for k& = In(n/e)/v(G), it follows that every entry of mMP* has
probability mass at least 1/n — (1 — v(G))* > (1 — £)/n. So the mixing time of the random walk
on G is at most O((logn)/~(G)), with respect to any reasonable distance measure. Note that
O(1/v(G)) steps does not suffice, because a distribution with ¢5 distance ¢ from uniform could just
assign equal probability mass to 1/¢2 vertices (and thus be very far from uniform in any intuitive
sense).

Corollary 9 hit(G) = O(nlogn/~(G)).
Proof: As argued above, a walk of length £ = O(logn/v(G)) has a probability of at least 1/2n
of ending at j. Thus, we expect to hit j within 2n such walks, for a total expected walk length of

2n -k = O(nlogn/v(G)). |

Thus we are left with the task of showing that v(G) > 1/poly(n). You will do this on Problem Set
2, using a connection with eigenvalues described in the next section.

3 Eigenvalues

Recall that v € R™ is an eigenvector of n x n matrix M if vM = Av for some A € R, which is called
the corresponding eigenvalue. A useful feature of symmetric matrices is that they can be described
entirely in terms of their eigenvectors and eigenvalues.

Theorem 10 If M is a symmetric n X n real matriz with distinct eigenvalues p1, . .., g, then the
subspaces W = {x : x is an eigenvector of eigenvalue p;} are orthogonal (i.e. x € Wy, y € W; =
x Ly ifi#j)and span R" (i.e. R" =W +---+ Wy). We refer to the dimension of W; as the
multiplicity of eigenvalue X;. In particular, R™ has a basis consisting of orthogonal eigenvectors
v1,...,Un having respective eigenvalues A1, ..., An, where the number of times p; occurs among the
Aj’s exactly equals the multiplicity of p;.

Notice that if G is an undirected graph, then its random-walk matrix M is symmetric. We know that
uM = u, so the uniform distribution is an eigenvector of eigenvalue 1. Let vo,...,v, and Ao, ..., Ay
be the remaining eigenvectors and eigenvalues, respectively. Given any probability distribution =,
we can write it as m = u 4 cova + - - - + ¢, v,. Then the probability distribution after k steps on the
random walk is

TMF = u+ Nscovo + - + Necpu,,.

On Problem Set 2, you will show that all of the \;’s have absolute value at most 1. Notice that
if they all have have magnitude strictly smaller than 1, then 7M* indeed converges to u. Thus it
is not surprising that our measure of mixing rate, A(G), equals the absolute value of the second
largest eigenvalue.

Lemma 11 Let G be an undirected graph with random-walk matriz M. Let 1 = A\ > |A2| > |A3] >
- > |\ be the eigenvalues of M. Then AN(G) = |zl

Proof: Let u = vi,v9,...,v, be the basis of orthogonal eigenvectors corresponding to the A;’s.
Given any vector z 1 u, we can write x = cove + - - - + ¢, v,. Then:

|lzM|? = |[Xacova+ - + Ancnon|?
= Aol + -+ Anepllonll?
< el (Elloal® + - + e lloal?)
= of?- ||z
Equality is achieved with = = vs. |

Thus, bounding A(G) amounts to bounding the eigenvalues of G. On Problem Set 2, you will prove:
Theorem 12 IfG is a connected, nonbipartite, and reqular undirected graph, then v(G) = Q(1/(dn)?)
Combining Theorem 12 with Corollary 9, we deduce Theorem 6. (The nonbipartite assumption

in Theorem 12 can achieved by adding a self-loop to each vertex, which only increases the hitting
time.) We note that the bounds presented in this lecture are not tight.

4 Markov Chain Monte Carlo

Random walks are a very widely used tool in the design of randomized algorithms. In particular,
they are the heart of the “Markov Chain Monte Carlo” method, which is widely used in statistical

physics and for solving approximate counting problems. In these applications, the goal is generate
a random sample from an exponentially large space, such as an (almost) uniformly random perfect
matching for a given bipartite graph G. (It turns out that this is equivalent to approximately
counting the number of perfect matchings in G.) The approach is to do a random walk on an
appropriate (regular) graph G defined on the state space (e.g. by doing random local changes
on the current perfect matching). Note that G is of size exponential in the input size n = |G]|.
Nevertheless, in many cases it can be proven to have mixing time poly(n) = polylog(|G|) (sometimes
via eigenvalues) so that we can get an almost-uniform sample in polynomial time. These Markov
Chain Monte Carlo methods provide some of the best examples of problems where randomization
yields algorithms that are exponentially faster than all known deterministic algorithms.

