
CS225: Pseudorandomness Prof. Salil Vadhan

Lecture 8: Random Walks on Expanders

March 1, 2007

Based on scribe notes by Mihai Pǎtraşcu.

1 Rapid Mixing of Random Walks

From the previous lecture, we know that one way of characterizing an expander graph G is by
having a bound λ on their second eigenvalue, and in fact there exist constant-degree expanders
where λ is a constant less than 1. From Lecture 4, we know that this implies that the random walk
on G converges quickly from the uniform distribution. Specifically, a walk of length t started at any
vertex ends at `2 distance at most λt from the uniform distribution. Thus after t = O(log N) steps,
the distribution is very close to uniform (e.g. the probability of every vertex is (1 ± .01)/N . Note
that, if G has constant degree, the number of random bits invested here is O(t) = O(log N), which
is within a constant factor of optimal; clearly log N − O(1) random bits are also necessary sample
an almost uniform vertex. Thus, expander walks give a very good tradeoff between the number of
random bits invested and the ‘randomness’ of the final vertex in the walk. Remarkably, expander
walks give good randomness properties not only for the final vertex in the walk, but also of the
sequence of vertices in the walk. Indeed, in several ways to be formalized below, this sequence of
vertices ‘behaves’ like uniform independent samples of the vertex set.

A canonical application of expander walks is for randomness-efficient error reduction of randomized
algorithms: Suppose we have an algorithm with constant error rate, which uses m random bits. Our
goal is to reduce the error to 2−k, with a minimal penalty in random bits and time. Independent
repetitions of the algorithm suffers just an O(k) penalty in time, but needs O(km) random bits.
We have already seen that with pairwise independence we can use just O(m + k) random bits,
but the time blows up by O(2k). Expander graphs let us have the best of both worlds, using just
m + O(k lg D) random bits, and increasing the time only by O(k). Note that for constant D, the
number of random bits is m + O(k), even better than what pairwise independence gives.

The general approach is to consider an expander graph with vertex set {0, 1}m, where each vertex
is associated with a setting of the random bits. We will choose a uniform random vertex v1 and
then do a random walk on length t − 1, visiting vertices v1, . . . , vt. (Note that unlike the rapid
mixing case, here we start at a uniformly random vertex.) This requires m random bits for the
initial choice, and log D for each of the t− 1 steps. For every vertex vi on the random walk, we will
run the algorithm with the setting of the random coins vi.

First, we consider the special case of RP algorithms. Thus, we accept if at least one execution of
the algorithm accepts, and reject otherwise. If the input is not in the language, the algorithm never
accepts, so we also reject. If the input is in the language, we want our random walk to hit at least
one vertex which makes the algorithm accept. Let B denote the set of “bad” vertices giving bad
coin tosses (which make the algorithm reject). By definition, the density of B is at most a half.
Thus, our aim is to show that the probability that all the vertices in the walk v1, . . . , vt are in B
vanishes exponentially fast in t.

1

The case t = 2 follows from the Expander Mixing Lemma given last time. If we choose a random
edge in a λ spectral expander, the probability that both endpoints are in a set B is at most
µ(B)2 + λ ·µ(B). So if λ � µ(B), then the probability is roughly µ(B)2, just like two independent
random samples. The case of larger t is given by the following theorem.

Theorem 1 (Hitting Property of Expander Walks) If G is a λ spectral expander, then for
any B ⊂ V (G) of density µ, the probability that a random walk (V1, . . . , Vt) of t steps in G starting
in a uniformly random vertex V1 always remains in B is

Pr[V1, . . . , Vt ∈ B] ≤ (µ + λ · (1 − µ))t

.

Equivalently, a random walk ‘hits’ the complement of B with high probability. Thus, if µ and λ
are constants less than 1, then the probability is 2−Ω(t), completing the analysis of the efficient
error-reduction algorithm.

Before proving the theorem, we discuss general approaches to analyzing spectral expanders and
random walks on them. Typically, the first step is to express the quantities of interest linear-
algebraically, involving applications of the random-walk (or adjacency) matrix M to some vectors
v. For example, last time when proving the Expander Mixing Lemma, we expressed the fraction of
edges between sets S and T as χt

SMχT (up to some normalization factor). Then we can proceed
in one of the two following ways:

Vector Decomposition Decompose the input vector v as v = v‖+v⊥, where v‖ = (〈v, u〉/〈u, u〉)u
is the component of v in the direction of the uniform distribution u and v⊥ is the component of
v orthogonal to u. Then this induces a similar orthogonal decomposition of the output vector
Mv into Mv = Mv‖ + Mv⊥ = (Mv)‖ + (Mv)⊥, where Mv‖ = v‖ and ‖Mv⊥‖ ≤ λ · ‖v⊥‖.
Thus, from information about how v’s lengths are divided into the uniform and non-uniform
components, we deduce information about how Mv is divided into the uniform and non-
uniform components. This is the approach we took in the proof of the Expander Mixing
Lemma.

Matrix Decomposition This corresponds to a different decomposition of the output vector Mv
that can be expressed in a way that is independent of the decomposition of the input vector
v. Specifically, we can write

Mv = (1 − λ)v‖ + (λv‖ + Mv⊥) = (1 − λ)Jv + λEv = ((1 − λ)J + λE)v,

where J the matrix that projects onto direction u and the error matrix E satisfies ‖Ev‖ ≤ ‖v‖.
The advantage of this decomposition is that we can apply it even when we have no information
about how v decomposes (only its length), and the fact that M is a convex combination of
J and E means that we can often treat each of these components separately and then just
apply triangle inequality. However, it is less refined than the vector decomposition approach,
and sometimes gives weaker bounds. Indeed, if we use it to prove the Expander Mixing
Lemma (without decomposing χS and χT), we would get a slightly worse error term of
λ
√

µ(S)µ(T) + λµ(S)µ(T).

2

The Matrix Decomposition Approach can be formalized as follows.

Definition 2 The norm of an N × N matrix M is defined to be

‖M‖ = max
x∈RN

‖xM‖
‖x‖

If M is symmetric, then ‖M‖ equals the largest eigenvalue of M .

Some basic properties of the matrix norm are that ‖cA‖ = |c| · ‖A‖, ‖A + B‖ ≤ ‖A‖ + ‖B‖, and
‖A · B‖ ≤ ‖A‖ · ‖B‖ for every two matrices A, B, and c ∈ R. From the discussion above, we have
the following lemma:

Lemma 3 Let G be a regular digraph on N vertices with random-walk matrix M . Then G is a λ
spectral expander iff M = (1 − λ)J + λE, where J is the N × N matrix where every entry is 1/N
(i.e. the random-walk matrix for the complete graph with self-loops) and ‖E‖ ≤ 1.

This lemma has a nice intuition: we can think of a random step on a λ spectral expander as being a
random step on the complete graph with probability 1−λ and “not doing damage” with probability
λ. This intuition would be accurate if E were a stochastic matrix, but it is typically not (e.g. it
may have negative entries). Still, note that the bound given in Theorem 1 exactly matches this
intuition: in every step, the probability of remaining in B is at most (1−λ) ·µ+λ = µ+λ · (1−µ).

Now we can return to the proof of the theorem.

Proof: We need a way to express getting stuck in B linear-algebraically. For that, we define P
to be a diagonal matrix, with Pi,i = 1 if i ∈ B and Pi,i = 0 otherwise. An example of using P
would be to say that the probability a distribution π picks a node in B is |Pπ|1. We use | · |1 for
the `1 norm, |x|1 =

∑ |xi|, which in our case is equal to the sum of the components of the vector
(since all values are positive).

Let M be the random walk matrix of G. The probability distribution for V1 is the vector u. Now
we can state the following crucial fact: the probability that the random walk does not leave B is
precisely |uP (MP)t−1|1. This is an intuitive formula, which can also be shown inductively without
difficulty. To do that, one can show that

(

uP (MP)`
)

i
is the probability that a random walk never

leaves B and ends in node i in the first ` + 1 steps. The base case is ` = 0. If i ∈ B, (uP)i = 1/N ;
if i /∈ B, (uP)i = 0. Now assume the hypothesis holds up to some `. Then

(

uP (MP)`
)

i
is the

probability that the random walk is at i after ` + 2 steps, and never leaves B until possibly the
last step. Multiplying by P , we zero out all components for nodes not in B and leave the others
unchanged. Thus, we obtain the probability that the random walk is at i after ` + 2 steps, and
never leaves B.

To get a bound in terms of λ, we will now switch to the standard, Euclidean `2 norm. The intuition
is that multiplying by M shrinks any component that is perpendicular to u; then multiplying by
P shrink the component parallel to u, because it zeroes out some entries. Thus, we should be
able to show that the norm ‖MP‖ is less than 1. Actually, to get the best bound, we note that
uP (MP)t−1 = uP (PMP)t−1, because P 2 = P , so we instead bound ‖PMP‖.
Thus:

3

Claim 4 ‖PMP‖ ≤ µ + λ · (1 − µ).

Proof of claim:

‖PMP‖ = ‖P ((1 − λ)J + λE)P‖
≤ (1 − λ)‖PJP‖ + λ‖PEP‖
≤ (1 − λ) · ‖PJP‖ + λ

Thus, we only need to analyze the case of J , the random walk on the complete graph.
Given any vector x, let y = xP . Note that ‖y‖ ≤ ‖x‖ and y has at most µN coordinates.
Then

xPJP = yJP = ((
∑

i

yi)u)P = (
∑

i

yi)uP,

so

‖xPJP‖ ≤ |
∑

i

yi‖ · ‖uP‖ ≤
√

µN · ‖y‖ ·
√

µ

N
≤ µ · ‖x‖.

Thus,
‖PMP‖ ≤ (1 − λ)µ + λ = µ + λ · (1 − µ).

�

So the probability of never leaving B in a t-step random walk is

|uP (MP)t−1|1 ≤
√

µN · ‖uP (MP)t−1‖,
≤

√

µN · ‖uP‖ · ‖PMP‖t−1

≤
√

µN ·
√

µ

N
· (µ + λ · (1 − µ))t−1

≤ (µ + λ · (1 − µ))t

The hitting properties described above suffice for reducing the error of RP algorithms. What about
BPP? This is handled by the following.

Theorem 5 (Chernoff Bound for Expander Walks) Let G be a λ spectral expander on N
vertices, and let f : [N] → [0, 1] be any function. Consider a random walk V1, . . . , Vt in G from a
uniform start vertex V1. Then for any ε > 0

Pr

[∣

∣

∣

∣

∣

1

t

∑

i

f(Vi) − µ(f)

∣

∣

∣

∣

∣

> λ + ε

]

≤ 2e−Ω(ε2t).

Note that this is just like the standard Chernoff Bound, except that our additive approximation
error increases by λ. Thus, unlike the Hitting Property we proved above, this bound is only useful
when λ is sufficiently small (as opposed to bounded away from 1). This can be achieved by taking an
appropriate power of the initial expander. However, there is a better Chernoff Bound for Expander
Walks, where λ does not appear in the approximation error, but the exponent in the probability of
error is Ω((1 − λ)ε2t) instead of Ω(ε2t). The bound above will suffice for our purposes (where ε is
typically a constant, as in error reduction for BPP.)

4

Proof: Let Xi be the random variable f(Vi), and X =
∑

i Xi. Just like in the standard proof of
the Chernoff Bound, we show that the expectation of the moment generating function erX =

∏

i e
rXi

is not much larger than er E[X] and apply Markov’s Inequality, for a suitable choice of r. However,
here the factors erXi are not independent, so the expectation does not commute with the product.
Instead, we express E[erX] linear-algebraically as follows. Define a diagonal matrix P whose (i, i)’th
entry is erf(i). Then, similarly to the hitting proof above, we observe that

E[erX] =
∣

∣uP (MP)t−1
∣

∣

1
=
∣

∣u(MP)t
∣

∣

1
≤

√
N · ‖u|| · ‖MP‖t ≤ ‖MP‖t.

To see this, we simply note that each cross-term in the matrix product uP (MP)t−1 corresponds to
exactly one expander walk v1, . . . , vt, with a coefficient equal to the probability of this walk times
∏

i e
f(vi). Again, we bound

‖MP‖ ≤ (1 − λ) · ‖JP‖ + λ · ‖EP‖.

Since J simply projects onto the uniform direction, we have

‖JP‖2 ≤ ‖uP‖2

‖u‖2

=

∑

v(e
r·f(v)/N)2

∑

v(1/N)2

=
1

N

(

∑

v

e2rf(v)

)

≤ 1

N

(

∑

v

1 + 2rf(v) + O(r2)

)

= 1 + 2rµ + O(r2)

for r ≤ 1, and thus
‖JP‖ ≤

√

1 + 2rµ + O(r2) ≤ 1 + rµ + O(r2)

For the error term, we have

‖EP‖ ≤ ‖P‖ ≤ er = 1 + r + O(r2).

Thus,

‖MP‖ ≤ (1 − λ)(1 + rµ + O(r2)) + λ · (1 + r + O(r2)) = 1 + (µ + λ)r + O(r2),

and we have

E[erX] ≤ (1 + (µ + λ)r + O(r2))t ≤ e(µ+λ)rt+O(r2t).

By Markov’s Inequality,

Pr[X ≥ (µ + λ + ε)t] ≤ e−εrt+O(r2t) = e−Ω(ε2t),

if we set r = ε/c for a large enough constant c.

5

We now summarize the properties that expander walks give us for randomness-efficient error re-
duction and sampling.

For reducing the error of a BPP algorithm from 1/3 to 2−k, we have:

Number of Repetitions Number of Random Bits

Independent Repetitions O(k) O(km)

Pairwise Independent Repetitions O(2k) O(k + m)

Expander Walks O(k) m + O(k)

For Sampling, where we are given an oracle to a function f : {0, 1}m → [0, 1], we want to
approximate µ(f) to within an additive error of ε, we have:

Number of Samples Number of Random Bits

Truly Random Sample O(1
ε2

log 1
δ
) O(m

ε2
log 1

δ
)

Pairwise Independent Samples O(1
ε2δ

) O(m + log 1
ε

+ log 1
δ
)

Expander Walks O(1
ε2) m + (log 1

δ
) · (log 1

ε
)/ε2

The log(1/ε) factor in the number of random bits used by expander walks is actually not nec-
essary and comes from the slightly weaker Chernoff Bound we proved. In any case, note that
expander walks have a much better dependence on δ in the number of samples (as compared to
pairwise independence), but have a worse dependence on ε in the number of random bits.

Before we end, we make an important remark: we have not actually given an algorithm for
randomness-efficient error reduction! Our algorithm assumes an expander graph of size 2m, i.e.
exponential. Generating such a graph at random would use far too many coins. Even somehow
generating it deterministically will not work, since we would have to write down an exponential-
size object. In the next lectures, we will look at ways to implicitly construct an expander (without
writing it down), and do random walks in such a graph.

6

