CS 225: Pseudorandomness Prof. Salil Vadhan
Problem Set 4

Assigned: Mar. 22, 2007 Due: Apr. 11, 2007 (1 PM)

e Recall that your problem set solutions must be typed. You can email your solutions to
cs225-hw@eecs.harvard.edu, or turn in it to Carol Harlow in MD 343. You may write
formulas or diagrams by hand. Aim for clarity and conciseness in your solutions, emphasizing
the main ideas over low-level details.

e If you use BKTEX, please submit both the source (.tex) and the compiled file (.ps or .pdf).
Name your files PS4-yourlastname.

e Starred problems are extra credit.

Problem 1. (Min-entropy and Statistical Difference)

(a). Prove that for every two random variables X and Y,
1
AX,Y) =max [E[f(X)] - Ef (V)] = 5 - [X = Y1,

where the maximum is over all [0, 1]-valued functions f. (Hint: first identify the functions f
that maximize | E[f(X)] — E[f(Y)]|.)

(b). Suppose that (W, X) are jointly distributed random variables where W takes values in {0, 1}*
and (W, X) is a k-source. Show that for every ¢ > 0, with probability at least 1 — & over

w & W, we have X|w—y, is a (k — £ — log(1/¢))-source.

(c). Suppose that X is an (n — A)-source taking values in {0,1}", and we let X; consist of the
first n1 bits of X and Xs the remaining ny = n —n; bits. Show that for every € > 0, (X1, X»)
is e-close to some (n; — A,ny — A —log(1/¢)) block source.

Problem 2. (Extractors vs. Samplers) One of the problems we have revisited several times
is that of randomness-efficient sampling: Given oracle access to a function f : {0,1}"™ — [0,1],
approximate its average value u(f) to within some small additive error. All of the samplers we
have seen work as follows: they choose some n random bits, use these to decide on some D samples
z1,...,2p € {0,1}", and output the average of f(z1),...,f(zp). We call such a procedure a
(6, ¢)-(averaging) sampler if, for any function f, the probability that the sampler’s output differs
from p(f) by more than € is at most . In this problem, we will see that averaging samplers are
essentially equivalent to extractors.

Given Ext: {0,1}" x{0,1}? — {0,1}™, we obtain a sampler Smp which chooses z <~ {0, 1}", and
uses {Ext(z,y) : y € {0,1}} as its D = 2¢ samples. Conversely, every sampler Smp using n random
bits to produce D = 2¢ samples in {0,1}™ defines a function Ext: {0,1}" x {0,1}¢ — {0, 1}™.



a). Prove that if Ext 1s a (k — 1, ¢)-extractor, then Smp 1s a , €)-averaging sampler.
P hat if Ext is a (k — 1 hen Smp is a (2F/2" i 1
. Prove that if Smp 1s a ,€)-sampler, then Ext i1s a (k 4 log(1l/e), 2¢)-extractor.
b). P hat if Smp is a (2%/2" ler, then Ext is a (k + log(1/e),2

(c). Suppose we are given a constant-error BPP algorithm which uses r = r(n) random bits on
inputs of length n. Show how, using Part (a) and the extractor of Theorem 8 from Lecture
Notes 12, we can reduce its error probability to 27¢ using O(r) + ¢ random bits, for any
polynomial ¢ = ¢(n). (Note that this improves the r + O(¢) given by expander walks for
¢ > r.) Conclude that every problem in BPP has a randomized algorithm which only errs
for 24" choices of its q random bits!

Problem 3. (Encryption and Deterministic Extraction) A (one-time) encryption scheme
with key length n and message length m consists of an encryption function Enc: {0,1}" x {0, 1}"* —
{0,1}* and a decryption function Dec: {0,1}" x {0,1}* — {0,1}™ such that Dec(k, Enc(k,u)) = u
for every k € {0,1}" and u € {0,1}". Let K be a random variable taking values in {0, 1}". We say
that (Enc, Dec) is (statistically) e-secure with respect to K if for every two messages u,v € {0,1}"™,
we have A(Enc(K,u),Enc(K,v)) < e. For example, the one-time pad, where n = m = ¢ and
Enc(k,u) = k ® u = Dec(k,u) is O-secure (aka perfectly secure) with respect to the uniform
distribution K = U,,. For a class C of sources on {0,1}", we say that the encryption scheme
(Enc, Dec) is e-secure with respect to C if Enc is e-secure with respect to every K € C.

(a). Show that if there exists a deterministic e-extractor Ext: {0,1}" — {0, 1} for C, then there
exists an 2e-secure encryption scheme with respect to C.

(b). Conversely, use the following steps to show that if there exists an e-secure encryption scheme
(Enc, Dec) with respect to C, where Enc: {0,1}" x {0,1}™ — {0,1}¢, then there exists a
deterministic 2e-extractor Ext: {0,1}" — {0,1}m~2108(1/2)=0() for ¢, provided m > logn +
2log(1/e) + O(1).

(i) For each fixed key k € {0,1}", define a source X on {0,1}* by X; = Enc(k,U,,), and
let C' be the class of all these sources (i.e., ¢’ = {Xj : k € {0,1}"}). Show that there
exists a deterministic e-extractor Ext’: {0,1}¢ — {0,1}m~2108(1/)=0() for ¢’ provided
m > logn + 2log(1/e) + O(1).

(i) Show that if Ext’ is a deterministic e-extractor for ¢’ and Enc is e-secure with respect
to C, then Ext(k) = Ext/(Enc(k,0™)) is a deterministic 2e-extractor for C.

Thus, a class of sources can be used for secure encryption iff it is deterministically extractable.

Problem 4. (The Building-Block Extractor) Assume the condenser stated in Theorem 7
from Lecture Notes 12. Show that for every constant t > 0 and all positive integers n > k and
all & > 0, there is an explicit (k,e)-extractor Ext:{0,1}" x {0,1}¢ — {0,1}™ with m = k/2
and d = k/t + O(log(n/e)). (Hint: convert the source into a block source with blocks of length
k/O(t) + O(log(n/¢)).)



