
3

Basic Derandomization Techniques

In the previous chapter, we saw some striking examples of the power of randomness for the design
of efficient algorithms:

• Identity Testing in co-RP.
• [×(1 + ε)]-Approx #DNF in prBPP.
• Perfect Matching in RNC.
• Undirected S-T Connectivity in RL.
• Approximating MaxCut in probabilistic polynomial time.

This is of course only a small sample; there are entire texts on randomized algorithms. (See the
notes and references for Chapter 2.)

In the rest of this survey, we will turn towards derandomization — trying to remove the random-
ness from these algorithms. We will achieve this for some of the specific algorithms we studied, and
also attack the larger question of whether all efficient randomized algorithms can be derandomized,
e.g. does BPP = P? RL = L? RNC = NC?

In this chapter, we will introduce a variety of “basic” derandomization techniques. These will
each be deficient in that they are either infeasible (e.g. cannot be carried in polynomial time) or
specialized (e.g. apply only in very specific circumstances). But it will be useful to have these
as tools before we proceed to study more sophisticated tools for derandomization (namely, the
“pseudorandom objects” of Chapters 4+).

3.1 Enumeration

We are interested in quantifying how much savings randomization provides. One way of doing this
is to find the smallest possible upper bound on the deterministic time complexity of languages in
BPP. For example, we would like to know which of the following complexity classes contain BPP:

30

Definition 3.1 (Deterministic Time Classes). 1

DTIME(t(n)) = {L : L can be decided deterministically in time O(t(n))}
P = ∪cDTIME(nc) (“polynomial time”)
P̃ = ∪cDTIME(2(logn)c

) (“quasipolynomial time”)
SUBEXP = ∩εDTIME(2n

ε
) (“subexponential time”)

EXP = ∪cDTIME(2n
c
) (“exponential time”)

The “Time Hierarchy Theorem” of complexity theory implies that all of these classes are dis-
tinct, i.e. P (P̃ (SUBEXP (EXP. More generally, it says that DTIME(o(t(n)/ log t(n))) (
DTIME(t(n)) for any efficiently computable time bound t. (What is difficult in complexity the-
ory is separating classes that involve different computational resources, like deterministic time vs.
nondeterministic time.)

Enumeration is a derandomization technique that enables us to deterministically simulate any
randomized algorithm with an exponential slowdown.

Proposition 3.2. BPP ⊆ EXP.

Proof. If L is in BPP, then there is a probabilistic polynomial-time algorithm A for L running
in time t(n) for some polynomial t. As an upper bound, A uses at most t(n) random bits. Thus
we can view A as a deterministic algorithm on two inputs — its regular input x ∈ {0, 1}n and its
coin tosses r ∈ {0, 1}t(n). (This view of a randomized algorithm is useful throughout the study of
pseudorandomness.) We’ll write A(x; r) for A’s output. Then:

Pr[A(x; r) accepts] =
1

2t(n)

∑
r∈{0,1}t(n)

A(x; r)

We can compute the right-hand side of the above expression in deterministic time 2t(n) · t(n).

We see that the enumeration method is general in that it applies to all BPP algorithms, but
it is infeasible (taking exponential time). However, if the algorithm uses only a small number of
random bits, it becomes feasible:

Proposition 3.3. If L has a probabilistic polynomial-time algorithm that runs in time t(n) and
uses r(n) random bits, then L ∈ DTIME(t(n) · 2r(n)). In particular, if t(n) = poly(n) and r(n) =
O(log n), then L ∈ P.

Thus an approach to proving BPP = P is to show that the number of random bits used by any
BPP algorithm can be reduced to O(log n). We will explore this approach in Chapter ??. However,
to date, Proposition 3.2 remains the best unconditional upper-bound we have on the deterministic
time-complexity of BPP.

1 Often DTIME(·) is written as TIME(·), but we include the D to emphasize the it refers to deterministic rather than

randomized algorithms.

31

Open Problem 3.4. Is BPP “closer” to P or EXP? Is BPP ⊆ P̃? Is BPP ⊆ SUBEXP?

3.2 Nonconstructive/Nonuniform Derandomization

Next we look at a derandomization technique that can be implemented efficiently but requires some
nonconstructive “advice” that depends on the input length.

Proposition 3.5. If A(x; r) is a randomized algorithm for a language L that has error probability
smaller than 2−n on inputs x of length n, then for every n, there exists a fixed sequence of coin
tosses rn such that A(x; rn) is correct for all x ∈ {0, 1}n.

Proof. We use the Probabilistic Method. Consider Rn chosen uniformly at random from {0, 1}r(n),
where r(n) is the number of coin tosses used by A on inputs of length n. Then

Pr[∃x ∈ {0, 1}n s.t. A(x;Rn) incorrect on x] ≤
∑
x

Pr[A(x;Rn) incorrect on x]

< 2n · 2−n = 1

Thus, there exists a fixed value Rn = rn that yields a correct answer for all x ∈ {0, 1}n.

The advantage of this method over enumeration is that once we have the fixed string rn, comput-
ing A(x; rn) can be done in polynomial time. However, the proof that rn exists is nonconstructive;
it is not clear how to find it in less than exponential time.

Note that we know that we can reduce the error probability of any BPP (or RP, RL, RNC,
etc.) algorithm to smaller than 2−n by repetitions, so this proposition is always applicable. However,
we begin by looking at some interesting special cases.

Example 3.6 (Perfect Matching). We apply the proposition to Algorithm 2.7. Let G = (V,E)
be a bipartite graph with m vertices on each side, and let AG(x1,1, . . . , xm,m) be the matrix that
has entries AGi,j = xi,j if (i, j) ∈ E, and AGi,j = 0 if (i, j) 6∈ E. Recall that the polynomial det(AG(x))
is nonzero if and only if G has a perfect matching. Let Sm = {0, 1, 2, . . . ,m2m

2}. We argued that,
by the Schwartz–Zippel Lemma, if we choose α R←Sm

2

m at random and evaluate det(AG(α)), we can
determine whether det(AG(x)) is zero with error probability at most m/|S| which is smaller than
2−m

2
. Since a bipartite graph with m vertices per side is specified by a string of length n = m2, by

Proposition 3.5 we know that for every m, there exists an αm ∈ Sm
2

m such that det(AG(α)) 6= 0 if
and only if G has a perfect matching, for every bipartite graph G with m vertices on each side.

Open Problem 3.7. Can we find such an αm ∈ {0, . . . ,m2m
2}m2

explicitly, i.e., deterministically
and efficiently? An NC algorithm (i.e. parallel time polylog(m) with poly(m) processors) would
put Perfect Matching in deterministic NC, but even a subexponential-time algorithm would
be interesting.

32

Example 3.8 (Universal Traversal Sequences). Let G be a connected d-regular undirected
multigraph on n vertices. From the previous lecture, we know that a random walk of poly(n, d)
steps from any start vertex will visit any other vertex with high probability. By increasing the length
of the walk by a polynomial factor, we can ensure that every vertex is visited with probability greater
than 1 − 2−nd logn. By the same reasoning as in the previous example, we conclude that for every
pair (n, d), there exists a universal traversal sequence w ∈ {1, 2, . . . , d}poly(n,d) such that for every
n-vertex, d-regular, connected G and every vertex s in G, if we start from s and follow w then we
will visit the entire graph.

Open Problem 3.9. Can we construct such a universal traversal sequence explicitly (e.g. in poly-
nomial time or even logarithmic space)?

There has been substantial progress towards resolving this question in the positive; see Sec-
tion 4.4.

We now cast the nonconstructive derandomizations provided by Proposition 3.5 in the language
of “nonuniform” complexity classes.

Definition 3.10. Let C be a class of languages, and a : N → N be a function. Then C/a is the
class of languages defined as follows: L ∈ C/a if there exists L′ ∈ C, and α1, α2, . . . ∈ {0, 1}∗ with
|αn| ≤ a(n), such that x ∈ L⇔ (x, α|x|) ∈ L′. The α’s are called the advice strings.

P/poly is the class
⋃
c P/nc, i.e. polynomial time with polynomial advice.

A basic result in complexity theory is that P/poly is exactly the class of languages that can be
decided by polynomial-sized Boolean circuits:

Fact 3.11. L ∈ P/poly iff there is a sequence of Boolean circuits {Cn}n∈N and a polynomial p
such that for all n

(1) Cn : {0, 1}n → {0, 1} decides L ∩ {0, 1}n
(2) |Cn| ≤ p(n).

We refer to P/poly as a “nonuniform” model of computation because it allows for different,
unrelated “programs” for each input length (e.g. the circuits Cn, or the advice αn), in contrast
to classes like P, BPP, and NP, that require a single “program” of constant size specifying how
the computation should behave for inputs of arbitrary length. Although P/poly contains some
undecidable problems,2 people generally believe that NP 6⊆ P/poly, and indeed trying to prove
lower bounds on circuit size is one of the main approaches to proving P 6= NP, since circuits seem
much more concrete and combinatorial than Turing machines. (However this has turned out to be
quite difficult; the best circuit lower bound known for computing an explicit function is roughly
5n.)

Proposition 3.5 directly implies:

2 Consider the unary version of halting problem, the advice string αn is simply a bit that tells us whether the n’th Turing

machine halts or not.

33

Corollary 3.12. BPP ⊆ P/poly.

A more general meta-theorem is that “nonuniformity is more powerful than randomness.”

3.3 Nondeterminism

Although physically unrealistic, nondeterminism has proved be a very useful resource in the study
of computational complexity (e.g. leading to the class NP). Thus it is natural how it compares
in power to randomness. Intuitively, with nondeterminism we should be able to guess a “good”
sequence of coin tosses for a randomized algorithm and then do the computation deterministically.
This intuition does apply directly for randomized algorithms with 1-sided error:

Proposition 3.13. RP ⊆ NP.

Proof. Let L ∈ RP and A be a randomized algorithm that decides it. A poly-time verifiable witness
that x ∈ L is any sequence of coin tosses r such that A(x; r) = accept.

However, for 2-sided error (BPP), containment in NP is not clear. Even if we guess a ‘good’
random string (one that leads to a correct answer), it is not clear how we can verify it in polynomial
time. Indeed, it is consistent with current knowledge that BPP = NEXP! Nevertheless, there is a
sense in which we can show that BPP is no more powerful than NP:

Theorem 3.14. If P = NP, then P = BPP.

Proof. For any language L ∈ BPP, we will show how to express membership in L using two
quantifiers. That is, for some polynomial-time predicate P ,

x ∈ L ⇐⇒ ∃y∀z P (x, y, z) (3.1)

Assuming P = NP, we can replace ∀z P (x, y, z) by a polynomial-time predicate Q(x, y), because
the language {(x, y) : ∀z P (x, y, z)} is in co-NP = P. Then L = {x : ∃y Q(x, y)} ∈ NP = P.

To obtain the two-quantifier expression (3.1), consider a randomized algorithm A for L, and
assume, w.l.o.g., that its error probability is smaller than 2−n and that it uses m = poly(n) coin
tosses. Let Zx ⊂ {0, 1}m be the set of coin tosses r for which A(x; r) = 0. We will show that if
x is in L, there exist m points in {0, 1}m such that no “shift” (or “translation”) of Zx covers all
the points. (Notice that this is a ∃∀ statement.) Intuitively, this should be possible because Zx is
an exponentially small fraction of {0, 1}m. On the other hand if x /∈ L, then for any m points in
{0, 1}m, we will show that there is a “shift” of Zx that covers all the points. Intuitively, this should
be possible because Zx covers all but an exponentially small fraction of {0, 1}m.

Formally, by a “shift of Zx” we mean a set of the form Zx ⊕ s = {r ⊕ s : r ∈ Zx} for some
s ∈ {0, 1}m; note that |Zx ⊕ s| = |Zx|. We will show

x ∈ L ⇒ ∃r1, r2, . . . , rm ∈ {0, 1}m∀s ∈ {0, 1}m ¬
m∧
i=1

(ri ∈ Zx ⊕ s)

⇔ ∃r1, r2, . . . , rm ∈ {0, 1}m ∀s ∈ {0, 1}m ¬
m∧
i=1

(A(x; ri ⊕ s) = 0) ;

34

x /∈ L ⇒ ∀r1, r2, . . . , rm ∈ {0, 1}m ∃s ∈ {0, 1}m
m∧
i=1

(ri ∈ Zx ⊕ s)

⇔ ∀r1, r2, . . . , rm ∈ {0, 1}m ∃s ∈ {0, 1}m
m∧
i=1

(A(x; ri ⊕ s) = 0) .

We prove both parts by the Probabilistic Method.

x ∈ L: Choose R1, R2, . . . , Rm
R←{0, 1}m. Then, for every fixed s, Zx and hence Zx ⊕ s contains

less than a 2−n fraction of points in {0, 1}m, so:

∀i Pr[Ri ∈ Zx ⊕ s] < 2−n

⇒ Pr

[∧
i

(Ri ∈ Zx ⊕ s)

]
< 2−nm.

⇒ Pr

[
∃s
∧
i

(Ri ∈ Zx ⊕ s)

]
< 2m · 2−nm < 1.

Thus there exist r1, . . . , rm such that ∀s¬
∧
i(ri ∈ Zx ⊕ s), as desired.

x /∈ L: Let r1, r2, . . . , rm be arbitrary, and choose S R← {0, 1}m at random. Now Zx and hence
Zx ⊕ ri contains more than a 1− 2−n fraction of points, so:

∀i Pr[ri /∈ Zx ⊕ S] = Pr[S /∈ Zx ⊕ ri] < 2−n

⇒ Pr

[∨
i

(ri /∈ Zx ⊕ S)

]
< m · 2−n < 1.

Thus, for every r1, . . . , rm, there exists s such that
∧
i(ri ∈ Zx ⊕ s), as desired.

Readers familiar with complexity theory will recognize the above proof as showing that BPP
is contained in the 2nd level of the polynomial-time hierarchy (PH). In general, the k’th level of
the PH contains all languages that satisfy a k-quantifier expression analogous to (3.1).

3.4 The Method of Conditional Expectations

In the previous sections, we saw several derandomization techniques (enumeration, nonuniformity,
nondeterminism) that are general in the sense that they apply to all of BPP, but are infeasible
in the sense that they cannot be implemented by efficient deterministic algorithms. In this section
and the next one, we will see two derandomization techniques that sometimes can be implemented
efficiently, but do not apply to all randomized algorithms.

3.4.1 The general approach

Consider a randomized algorithm that uses m random bits. We can view all its sequences of coin
tosses as corresponding to a binary tree of depth m. We know that most paths (from the root to
the leaf) are “good,” i.e., give a correct answer. A natural idea is to try and find such a path by

35

walking down from the root and making “good” choices at each step. Equivalently, we try to find
a good sequence of coin tosses “bit-by-bit”.

To make this precise, fix a randomized algorithm A and an input x, and let m be the number of
random bits used by A on input x. For 1 ≤ i ≤ m and r1, r2, . . . , ri ∈ {0, 1}, define P (r1, r2, . . . , ri) to
be the fraction of continuations that are good sequences of coin tosses. More precisely, if R1, . . . , Rm
are uniform and independent random bits, then

P (r1, r2, . . . , ri)
def= Pr

R1,R2,...,Rm

[A(x;R1, R2, . . . , Rm) is correct |R1 = r1, R2 = r2, . . . , Ri = ri]

= E
Ri+1

[P (r1, r2, . . . , ri, Ri+1)].

(See Figure 3.4.1.) By averaging, there exists an ri+1 ∈ {0, 1} such that P (r1, r2, . . . , ri, ri+1) ≥

P(0,1)=7/8

0
 1

0
 1
 0
 1

o
 o
 x
 o
 o
 o
 o
o

Fig. 3.1 An example of P (r1, r2), where “o” at the leaf denotes a good path.

P (r1, r2, . . . , ri). So at node (r1, r2, . . . , ri), we simply pick ri+1 that maximizes P (r1, r2, . . . , ri, ri+1).
At the end we have r1, r2, . . . , rm, and

P (r1, r2, . . . , rm) ≥ P (r1, r2, . . . , rm−1) ≥ · · · ≥ P (r1) ≥ P (Λ) ≥ 2/3

where P (Λ) denotes the fraction of good paths from the root. Then P (r1, r2, . . . , rm) = 1, since it
is either 1 or 0.

Note that to implement this method, we need to compute P (r1, r2, . . . , ri) deterministically, and
this may be infeasible. However, there are nontrivial algorithms where this method does work, often
for search problems rather than decision problems, and where we measure not a boolean outcome
(eg whether A is correct as above) but some other measure of quality of the output. Below we see
one such example, where it turns out to yield a natural “greedy algorithm”.

3.4.2 Derandomized MaxCut Approximation

Recall the MaxCut problem:

36

Computational Problem 3.15 (Computational Problem 2.38, rephrased). MaxCut:
Given a graph G = (V,E), find a partition S, T of V (i.e. S ∪ T = V , S ∩ T = ∅) maximizing the
size of the set cut(S, T) = {{u, v} ∈ E : u ∈ S, v ∈ T}.

We saw a simple randomized algorithm that finds a cut of (expected) size at least |E|/2, which
we now phrase in a way suitable for derandomization.

Algorithm 3.16 (randomized MaxCut, rephrased).
Input: a graph G = ([n], E)

Flip n coins r1, r2, . . . , rn, put vertex i in S if ri = 1 and in T if ri = 0. Output (S, T).

To derandomize this algorithm using the Method of Conditional Expectations, define the con-
ditional expectation

e(r1, r2, . . . , ri)
def= E

R1,R2,...,Rn

[
|cut(S, T)|

∣∣∣R1 = r1, R2 = r2, . . . , Ri = ri

]
to be the expected cut size when the random choices for the first i coins are fixed to r1, r2, . . . , ri.

We know that when no random bits are fixed, e[Λ] ≥ |E|/2 (because each edge is cut with
probability 1/2), and all we need to calculate is e(r1, r2, . . . , ri) for 1 ≤ i ≤ n. For this particular
algorithm it turns out that the quantity is not hard to compute. Let Si

def= {j : j ≤ i, rj = 1} (resp.

Ti
def= {j : j ≤ i, rj = 0}) be the set of vertices in S (resp. T) after we determine r1, . . . , ri, and

Ui
def= {i+ 1, i+ 2, . . . , n} be the “undecided” vertices that have not been put into S or T . Then

e(r1, r2, . . . , ri) = |cut(Si, Ti)|+ 1/2 (|cut(Si, Ui)|+ |cut(Ti, Ui)|+ |cut(Ui, Ui)|) . (3.2)

Note that cut(Ui, Ui) is the set of unordered edges in the subgraph Ui. Now we can deterministically
select a value for ri+1, by computing and comparing e(r1, r2, . . . , ri, 0) and e(r1, r2, . . . , ri, 1).

In fact, the decision on Ri+1 can be made even simpler than computing (3.2) in its entirety.
Observe, in (3.2), that whether Ri+1 equals 0 or 1 does not affect the change of the quantity in the
parenthesis. That is,

(|cut(Si+1, Ui+1)|+ |cut(Ti+1, Ui+1)|+ |cut(Ui+1, Ui+1)|)−(|cut(Si, Ui)|+ |cut(Ti, Ui)|+ |cut(Ui, Ui)|)

is the same regardless of whether ri+1 = 0 or ri+1 = 1. To see this, note that the only relevant
edges are those having vertex i+ 1 as one endpoint. Of those edges, the ones whose other endpoint
is also in Ui are removed from from the cut(U,U) term but added to either the cut(S,U) or
cut(T,U) term depending on whether i + 1 is put in S or T , respectively. (See Figure 3.4.2.) The
edges with one endpoint being i + 1 and the other being in Si ∪ Ti will be removed from the
|cut(S,U)|+ |cut(T,U)| terms regardless of whether i+ 1 is put in S or T . Therefore, to maximize
e(r1, r2 . . . , ri, ri+1), it is enough to choose ri+1 that maximizes the |cut(S, T)| term. This term
increases by either |cut({i+ 1}, Ti)| or |cut({i+ 1}, Si)| depending on whether we place vertex i+ 1
in S or T , respectively. To summarize, we have

e(r1, . . . , ri, 0)− e(r1, . . . , ri, 1) = |cut({i+ 1}, Ti)| − |cut({i+ 1}, Si)|.

This gives rise to the following deterministic algorithm, which is guaranteed to always find a cut of
size at least |E|/2:

37

S
i
 T
i

.
i+1

 U
 i

S
i+1
 T
i+1

.
i+1

 U
i+1

*

*

Fig. 3.2 Marked edges are subtracted in cut(U,U) but added back in cut(T, U). The total change is the unmarked edges.

Algorithm 3.17 (deterministic MaxCut approximation).
Input: A graph G = ([n], E)

On input G = ([n], E),

(1) Set S = ∅, T = ∅
(2) For i = 0, . . . , n− 1:

(a) If |cut({i+ 1}, S)| > |cut({i+ 1}, T)|, set T ← T ∪ {i+ 1},
(b) Else set S ← S ∪ {i+ 1}.

Note that this is the natural “greedy” algorithm for this problem. In other cases, the Method
of Conditional Expectations yields algorithms that, while still arguably ‘greedy’, would have been
much less easy to find directly. Thus, designing a randomized algorithm and then trying to deran-
domize it can be a useful paradigm for the design of deterministic algorithms even if the random-
ization does not provide gains in efficiency.

3.5 Pairwise Independence

3.5.1 An Example

As our first motivating example, we give another way of derandomizing the MaxCut approximation
algorithm discussed above. Recall the analysis of the randomized algorithm:

E[|cut(S)|] =
∑

(i,j)∈E

Pr[Ri 6= Rj] = |E|/2,

where R1, . . . , Rn are the random bits of the algorithm. The key observation is that this analysis
applies for any distribution on (R1, . . . , Rn) satisfying Pr[Ri 6= Rj] = 1/2 for each i 6= j. Thus,
they do not need to be completely independent random variables; it suffices for them to be pairwise
independent. That is, each Ri is an unbiased random bit, and for each i 6= j, Ri is independent
from Rj .

This leads to the question: Can we generate N pairwise independent bits using less than N

truly random bits? The answer turns out to be yes, as illustrated by the following construction.

38

Construction 3.18 (pairwise independent bits). Let B1, . . . , Bk be k independent unbiased
random bits. For each nonempty S ⊆ [k], let RS be the random variable ⊕i∈SBi.

Proposition 3.19. The 2k−1 random variables RS in Construction 3.18 are pairwise independent
unbiased random bits.

Proof. It is evident that each RS is unbiased. For pairwise independence, consider any two nonempty
sets S 6= T ⊆ [k]. Then:

RS = RS∩T ⊕RS\T
RT = RS∩T ⊕RT\S .

Note that RS∩T , RS\T and RT\S are independent as they depend on disjoint subsets of the Bi’s,
and at least two of these subsets are nonempty. This implies that (RS , RT) takes each value in
{0, 1}2 with probability 1/4.

Note that this gives us a way to generate N pairwise independent bits from dlog(N + 1)e
independent random bits. Thus, we can reduce the randomness required by the MaxCut algorithm
to logarithmic, and then we can obtain a deterministic algorithm by enumeration.

Algorithm 3.20 (deterministic MaxCut algorithm II). For all sequences of bits
b1, b2, . . . , bdlog(n+1)e, run the randomized MaxCut algorithm using coin tosses (rS = ⊕i∈Sbi)S 6=∅
and choose the largest cut thus obtained.

Since there are at most 2(n+1) sequences of bi’s, the derandomized algorithm still runs in poly(n)
time. It is slower than the greedy algorithm obtained by the Method of Conditional Expectations,
but it has the advantage of using only O(log n) workspace and being parallelizable.

3.5.2 Pairwise Independent Hash Functions

Some applications require pairwise independent random variables that take values from a larger
range, e.g. we want N = 2n pairwise independent random variables, each of which is uniformly
distributed in {0, 1}m = [M]. The näıve approach is to repeat the above algorithm for the individual
bits m times. This uses (logM)(logN) bits to start with, which is no longer logarithmic in N if M
is nonconstant. Below we will see that we can do much better. But first some definitions.

A sequences of N random variables each taking a value in [M] can be viewed as a distribution on
sequences in [M]N . Another interpretation of such a sequence is as a mapping f : [N]→ [M]. The
latter interpretation turns out to be more useful when discussing the computational complexity of
the constructions.

Definition 3.21 (Pairwise Independent Hash Functions). A family (i.e. multiset) of func-
tions H = {h : [N] → [M]} is pairwise independent if the following two conditions hold when
H

R←H is a function chosen uniformly at random from H:

39

(1) ∀x ∈ [N], the random variable H(x) is uniformly distributed in [M].
(2) ∀x1 6= x2 ∈ [N], the random variables H(x1) and H(x2) are independent.

Equivalently, we can combine the two conditions and require that

∀x1 6= x2 ∈ [N], ∀y1, y2 ∈ [M], Pr
H

R←H
[H(x1) = y1 ∧H(x2) = y2] =

1
M2

.

Note that the probability above is over the random choice of a function from the family H. This is
why we talk about a family of functions rather than a single function. The description in terms of
functions makes it natural to impose a strong efficiency requirement:

Definition 3.22. A family of functions H = {h : [N]→ [M]} is explicit if given the description of
h and x ∈ [N], the value h(x) can be computed in time poly(logN, logM).

Pairwise independent hash functions are sometimes referred to as strongly 2-universal hash
functions, to contrast with the weaker notion of 2-universal hash functions, which requires only
that Pr[H(x1) = H(x2)] ≤ 1/M for all x1 6= x2. (Note that this property is all we needed for the
deterministic MaxCut algorithm, and it allows for a small savings in that we can also include
S = ∅ in Construction 3.18.)

Below we present another construction of a pairwise independent family.

Construction 3.23 (pairwise independent hash functions from linear maps). Let F be a
finite field. Define the family of functions H = { ha,b : F→ F}a,b∈F where ha,b(x) = ax+ b.

Proposition 3.24. The family of functions H in Construction 3.23 is pairwise independent.

Proof. Notice that the graph of the function ha,b(x) is the line with slope a and y-intercept b. Given
x1 6= x2 and y1, y2, there is exactly one such line containing the points (x1, y1) and (x2, y2) (namely,
the line with slope a = (y1 − y2)/(x1 − x2) and y-intercept b = y1 − ax1). Thus, the probability
over a, b that ha,b(x1) = y1 and ha,b(x2) = y2 equals the reciprocal of the number of lines, namely
1/|F|2.

This construction uses 2 log |F| random bits, since we have to choose a and b at random from
F to get a function ha,b

R←H. Compare this to |F| log |F| bits required to choose a truly random
function, and (log |F|)2 bits for repeating the construction of Proposition 3.19 for each output bit.

Note that evaluating the functions of Construction 3.23 requires a description of the field F that
enables us to perform addition and multiplication of field elements. Recall that there is a (unique)
finite field GF(pt) of size pt for every prime p and t ∈ N. It is known how to deterministically
construct a description of such a field (i.e. an irreducible polynomial of degree t over GF(p) = Zp)
in time poly(p, t). This satisfies our definition of explicitness when the prime p (the characteristic
of the field) is small, in particular when p = 2. Thus, we have an explicit construction of pairwise
independent hash functions Hn,n = {h : {0, 1}n → {0, 1}n} for every n.

40

What if we want a family Hn,m of pairwise independent hash functions where the input length
n and output length m are not equal? For n < m, we can take hash functions h from Hm,m and
restrict their domain to {0, 1}m by defining h′(x) = h(x ◦ 0m−n). In the case that m < n, we can
take h from Hn,n and throw away n−m bits of the output. That is, define h′(x) = h(x)|m, where
h(x)|m denotes the first m bits of h(x).

In both cases, we use 2 max{n,m} random bits. This is the best possible when m ≥ n. When
m < n, it can be reduced to m+n random bits (which turns out to be optimal) by using (ax)|m+ b

where b ∈ {0, 1}m instead of (ax+ b)|m. Summarizing:

Theorem 3.25. For every n,m ∈ N, there is an explicit family of pairwise independent func-
tions Hn,m = {h : {0, 1}n → {0, 1}m} where a random function from Hn,m can be selected using
max{m,n}+m random bits.

3.5.3 Hash Tables

The original motivating application for pairwise independent functions was for hash tables. Suppose
we want to store a set S ⊆ [N] of values and answer queries of the form “Is x ∈ S?” efficiently (or,
more generally, acquire some piece of data associated with key x in case x ∈ S). A simple solution
is to have a table T such that T [x] = 1 if and only if x ∈ S. But this requires N bits of storage,
which is inefficient if |S| � N .

A better solution is to use hashing. Assume that we have a hash function from h : [N]→ [M] for
some M to be determined later. Let the table T be of size M . For each x ∈ [N], we let T [h(x)] = x

if x ∈ S. So to test whether a given y ∈ S, we compute h(y) and check if T [h(y)] = y. In order for
this construction to be well-defined, we need h to be one-to-one on the set S. Suppose we choose
a random function H from [N] to [M]. Then, for any set S, the probability that there are any
collisions is

Pr[∃ x 6= y s.t. H(x) = H(y)] ≤
∑

x 6=y∈S
Pr[H(x) = H(y)] =

(
|S|
2

)
· 1
M

< ε

for M = |S|2/ε. Notice that the above analysis does not require H to be a completely random
function; it suffices that H be pairwise independent (or even 2-universal). Thus using Theorem 3.25,
we can generate and store H using O(logN) random bits. The storage required for the table T
is O(M logN) = O(|S|2 logN). The space complexity can be improved to O(|S| logN), which is
nearly optimal for small S, by taking M = O(|S|) and using additional hash functions to separate
the (few) collisions that will occur.

Often, when people analyze applications of hashing in computer science, they model the hash
function as a truly random function. However, the domain of the hash function is often exponentially
large, and thus it is infeasible to even write down a truly random hash function. Thus, it would be
preferable to show that some explicit family of hash function works for the application with similar
performance. In many cases (such as the one above), it can be shown that pairwise independence
(or k-wise independence, as discussed below) suffices.

41

3.5.4 Randomness-Efficient Error Reduction and Sampling

Suppose we have a BPP algorithm for a language L that has a constant error probability. We want
to reduce the error to 2−k. We have already seen that this can be done using O(k) independent
repetitions (by a Chernoff Bound). If the algorithm originally used m random bits, then we need
O(km) random bits after error reduction. Here we will see how to reduce the number of random
bits required for error reduction by doing only pairwise independent repetitions.

To analyze this, we will need an analogue of the Chernoff Bound that applies to averages of
pairwise independent random variables. This will follow from Chebychev’s Inequality, which bounds
the deviations of a random variable X from its mean µ in terms its variance Var[X] = E[(X−µ)2] =
E[X2]− µ2.

Lemma 3.26 (Chebyshev’s Inequality). If X is a random variable with expectation µ, then

Pr[|X − µ| ≥ ε] ≤ Var[X]
ε2

Proof. Applying Markov’s Inequality (Lemma 2.20) to the random variable Y = (X−µ)2, we have:

Pr[|X − µ| ≥ ε] = Pr
[
(X − µ)2 ≥ ε2

]
≤ E

[
(X − µ)2

]
ε2

=
Var[X]
ε2

.

We now use this to show that sums of pairwise independent random variables are concentrated
around their expectation.

Proposition 3.27 (Pairwise-Independent Tail Inequality). Let X1, . . . , Xt be pairwise inde-
pendent random variables taking values in the interval [0, 1], let X = (

∑
iXi)/t, and µ = E[X].

Then
Pr[|X − µ| ≥ ε] ≤ 1

tε2
.

Proof. Let µi = E[Xi]. Then

Var[X] = E
[
(X − µ)2

]
=

1
t2
· E

(∑
i

(Xi − µi)

)2


=
1
t2
·
∑
i,j

E [(Xi − µi)(Xj − µj)]

=
1
t2
·
∑
i

E
[
(Xi − µi)2

]
(by pairwise independence)

=
1
t2
·
∑
i

Var [Xi]

≤ 1
t

Now apply Chebychev’s Inequality.

42

While this requires less independence than the Chernoff Bound, notice that the error probability
decreases only linearly rather than exponentially with the number t of samples.

Error Reduction. Proposition 3.27 tells us that if we use t = O(2k) pairwise independent
repetitions, we can reduce the error probability of a BPP algorithm from 1/3 to 2−k. If the original
BPP algorithm uses m random bits, then we can do this by choosing h : {0, 1}k+O(1) → {0, 1}m
at random from a pairwise independent family, and running the algorithm using coin tosses h(x)
for all x ∈ {0, 1}k+O(1) This requires m+ max{m, k +O(1)} = O(m+ k) random bits.

Number of Repetitions Number of Random Bits
Independent Repetitions O(k) O(km)
Pairwise Independent Repetitions O(2k) O(m+ k)

Note that we have saved substantially on the number of random bits, but paid a lot in the
number of repetitions needed. To maintain a polynomial-time algorithm, we can only afford
k = O(log n). This setting implies that if we have a BPP algorithm with a constant error that
uses m random bits, we have another BPP algorithm that uses O(m+ log n) = O(m) random bits
and has an error of 1/poly(n). That is, we can go from constant to inverse-polynomial error only
paying a constant factor in randomness. (In fact, it turns out there is a way to achieve this with
no penalty in randomness; see Problem 4.7.)

Sampling. Recall the Sampling problem: Given an oracle to a function f : {0, 1}m → [0, 1], we
want to approximate µ(f) to within an additive error of ε.

In Section 2.3.1, we saw that we can solve this problem with probability 1− δ by outputting the
average of f on a random sample of t = O(log(1/δ)/ε2) points in {0, 1}m, where the correctness
follows from the Chernoff Bound. To reduce the number of truly random bits used, we can use a
pairwise independent sample instead. Specifically, taking t = 1/(ε2δ) pairwise independent points,
we get an error probability of at most δ. To generate t pairwise independent samples of m bits
each, we need O(m+ log t) = O(m+ log(1/ε) + log(1/δ)) truly random bits.

Number of Samples Number of Random Bits
Truly Random Sample O((1/ε2) · log(1/δ)) O(m · (1/ε2) · log(1/δ))
Pairwise Independent Repetitions O(1/(ε2δ)) O(m+ log(1/ε) + log(1/δ))

3.5.5 k-wise Independence

Our definition and construction of pairwise independent functions generalize naturally to k-wise
independence for any k.

Definition 3.28 (k-wise independent hash functions). For k ∈ N, a family of functions H =
{h : [N]→ [M]} is k-wise independent if for all distinct x1, x2, . . . , xk ∈ [N], the random variables
H(x1), . . . ,H(xk) are independent and uniformly distributed in [M] when H

R←H.

43

Construction 3.29 (k-wise independence from polynomials). Let F be a finite field. Define
the family of functions H = {ha0,a1,...,ak

: F→ F} where each ha0,a1,...,ak−1
(x) = a0 + a1x+ a2x

2 +
· · ·+ ak−1x

k−1 for a, b ∈ F.

Proposition 3.30. The family H given in Construction 3.29 is k-wise independent.

Proof. Similarly to the proof of Proposition 3.24, it suffices to prove that for all distinct x1, . . . , xk ∈
F and all y1, . . . , yk ∈ F, there is exactly one polynomial h of degree at most k−1 such that h(xi) = yi
for all i. To show that such a polynomial exists, we can use the LaGrange Interpolation Formula:

h(x) =
k∑
i=1

yi ·
∏
j 6=i

x− xj
xi − xj

.

To show uniqueness, suppose we have two polynomials h and g of degree at most k − 1 such that
h(xi) = g(xi) for i = 1, . . . , k. Then h−g has at least k roots, and thus must be the zero polynomial.

Corollary 3.31. For every n,m, k ∈ N, there is a family of k-wise independent functions H = {h :
{0, 1}n → {0, 1}m} such that choosing a random function from H takes k ·max{n,m} random bits,
and evaluating a function from H takes time poly(n,m, k).

k-wise independent hash functions have applications similar to those that pairwise independent
hash functions have. The increased independence is crucial in derandomizing some algorithms. k-
wise independent random variables also satisfy a tail bound similar to Proposition 3.27, with the
key improvement being that the error probability vanishes linearly in tk/2 rather than t.

3.6 Exercises

Problem 3.1. (Derandomizing RP versus BPP) Show that prRP = prP implies that prBPP =
prP, and thus also that BPP = P. (Hint: Look at the proof that NP = P⇒ BPP = P.)

Problem 3.2. (Designs) Designs (also known as packings) are collections of sets that are nearly
disjoint. In Chapter ??, we will see how they are useful in the construction of pseudorandom
generators. Formally, a collection of sets S1, S2, . . . , Sm ⊆ [d] is called an (`, a)-design if

• For all i, |Si| = `.
• For all i 6= j, |Si ∩ Sj | < a.

For given `, we’d like m to be large, a to be small, and d to be small. That is, we’d like to pack
many sets into a small universe with small intersections.

44

(1) Prove that if m <
(
d
a

)
/
(
`
a

)2
, then there exists an (`, a)-design S1, . . . , Sm ⊆ [d].

Hint: Use the Probabilistic Method. Specifically, show that if the sets are chosen randomly,
then for every S1, . . . , Si−1,

E
Si

[#{j < i : |Si ∩ Sj | ≥ a}] < 1.

(2) Conclude that for every ε > 0, there is a constant cε such that for all `, there is a
design with a ≤ ε`, m ≥ 2ε`, and d ≤ cε`. That is, in a universe of size O(`), we can
fit exponentially many sets of size ` whose intersections are an arbitrarily small constant
fraction of `.

(3) Using the Method of Conditional Expectations, show how to construct designs as in
Part 1 and deterministically in time poly(m, d).

Problem 3.3. (Frequency Moments of Data Streams) Given one pass through a huge ‘stream’ of
data items (a1, a2, . . . , ak), where each ai ∈ {0, 1}n, we want to compute statistics on the distribution
of items occurring in the stream while using small space (not enough to store all the items or
maintain a histogram). In this problem, you will see how to compute the 2nd frequency moment
f2 =

∑
am

2
a, where ma = #{i : ai = a}.

The algorithm works as follows: Before receiving any items, it chooses t random 4-wise indepen-
dent hash functions H1, . . . ,Ht : {0, 1}n → {+1,−1}, and sets counters X1 = X2 = · · · = Xt = 0.
Upon receiving the i’th item ai, it adds Hj(ai) to counter Xj . At the end of the stream, it outputs
Y = (X2

1 + · · ·+X2
t)/t.

Notice that the algorithm only needs space O(t · n) to store the hash functions Hj and space
O(t · log k) to maintain the counters Xj (compared to space k · n to store the entire stream, and
space 2n · log k to maintain a histogram).

(1) Show that for every data stream (a1, . . . , ak) and each j, we have E[X2
j] = f2, where the

expectation is over the choice of the hash function Hj .
(2) Show that Var[X2

j] ≤ 2f2
2 .

(3) Conclude that for a sufficiently large constant t (independent of n and k), the output Y
is within 1% of f2 with probability at least .99.

Problem 3.4. (Pairwise Independent Families)

(1) (matrix-vector family) For an n × m {0, 1}-matrix A and b ∈ {0, 1}n, define a func-
tion hA,b : {0, 1}m → {0, 1}n by hA,b(x) = (Ax + b) mod 2. (The “mod 2” is applied
componentwise.) Show that Hm,n = {hA,b} is a pairwise independent family. Compare
the number of random bits needed to generate a random function in Hm,n to Construc-
tion 3.23.

45

(2) (Toeplitz matrices) A is a Toeplitz matrix if it is constant on diagonals, i.e. Ai+1,j+1 = Ai,j
for all i, j. Show that even if we restrict the family Hm,n in Part 1 to only include hA,b
for Toeplitz matrices A, we still get a pairwise independent family. How many random
bits are needed now?

3.7 Chapter Notes and References

The Time Hierarchy Theorem was proven by Hartmanis and Stearns [HS]; proofs can be found in
any standard text on complexity theory, e.g. [Sip2, Gol6, AB]. Adleman [Adl] showed that every
language in RP has polynomial-sized circuits (cf., Corollary 3.12), and Pippenger [Pip] showed
the equivalence between having polynomial-sized circuits and P/poly (Fact 3.11). The general
definition of complexity classes with advice (Definition 3.10) is due to Karp and Lipton [KL], who
explored the relationship between nonuniform lower bounds and uniform lower bounds. A 5n−o(n)
circuit-size lower bound for an explicit function (in P) was given by Iwama et al. [LR, IM].

The existence of universal traversal sequences (Example 3.8) was proven by Aleliunas et
al. [AKL+], who suggested finding an explicit construction (Open Problem 3.9) as an approach
to derandomizing the logspace algorithm for Undirected S-T Connectivity. For the state of
the art on these problems, see Section 4.4.

Theorem 3.14 is due to Sipser [Sip1], who proved that BPP is the 4th level of the polynomial-
time hierarchy; this was improved to the 2nd level by Gács. Our proof of Theorem 3.14 is due to
Lautemann [Lau]. Problem 3.1 is due to Buhrman and Fortnow [BF]. For more on nondeterministic
computation and nonuniform complexity, see textbooks on computational complexity, such as [Sip2,
Gol6, AB].

The Method of Conditional Probabilities was formalized and popularized as an algorithmic tool
in the work of Spencer [Spe] and Raghavan [Rag]. Its use in Algorithm 3.17 for approximating
MaxCut is implicit in Luby [Lub2]. For more on this method, see the textbooks [MR, AS].

A more detailed treatment of pairwise independence (along with a variety of other topics in
pseudorandomness and derandomization) can be found in the survey by Luby and Wigderson [LW].
The use of pairwise independence in computer science originates with the seminal papers of Carter
and Wegman [CW, WC], which introduced the notions of universal and strongly universal families
of hash functions. The pairwise independent and k-wise independent sample spaces of Construc-
tions 3.18, 3.23, and 3.29 date back to the work of Lancaster [Lan] and Joffe [Jof1, Jof2] in the
probability literature, and were rediscovered several times in the computer science literature. . The
constructions of pairwise independent hash functions from Problem 3.4 are due to Carter and Weg-
man [CW]. The application to hash tables from Section 3.5.3 is due to Carter and Wegman [CW],
and the method mentioned for improving the space complexity to O(|S| logN) is due to Fredman,
Komlós, and Szemerédi [FKS]. The problem of randomness-efficient error reduction (sometimes
called “deterministic amplification”) was first studied by Karp, Pippenger, and Sipser [KPS], and
the method using pairwise independence given in Section 3.5.4 was proposed by Chor and Gol-
dreich [CG]. The use of pairwise independence for derandomizing algorithms was pioneered by
Luby [Lub1]; Algorithm 3.20 for MaxCut is implicit in [Lub2]. Tail bounds for k-wise independent
random variables can be found in the papers [CG, BR, SSS].

Problem 3.2 on designs is from [EFF], with the derandomization of Part 3 being from [NW, LW].

46

Problem 3.3 on the frequency moments of data streams is due to Alon, Mathias, and Szegedy [AMS].
For more on data stream algorithms, we refer to the survey by Muthukrishnan [Mut].

47

