CS 225: Pseudorandomness

Prof. Salil Vadhan

Problem Set 5

Assigned: Tue. Apr. 14, 2009 Due: Wed. Apr. 29, 2009(1 PM)

- Recall that your problem set solutions must be typed. You can email your solutions to cs225-hw@eecs.harvard.edu, or turn in it to MD138. You may write formulas or diagrams by hand. Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details.
- If you use LATEX, please submit both the source (.tex) and the compiled file (.ps). Name your files PS5-yourlastname.
- Starred problems are extra credit.

Problem 6.2. (Concatenated Codes) For codes $\operatorname{Enc}_1:\{1,\ldots,N\}\to \Sigma_1^{n_1}$ and $\operatorname{Enc}_2:\Sigma_1\to \Sigma_2^{n_2}$, their *concatenation* $\operatorname{Enc}:\{1,\ldots,N\}\to \Sigma_2^{n_1n_2}$ is defined by

$$\operatorname{Enc}(m) = \operatorname{Enc}_2(\operatorname{Enc}_1(m)_1)\operatorname{Enc}_2(\operatorname{Enc}_1(m)_2)\cdots\operatorname{Enc}_2(\operatorname{Enc}_1(m)_{n_1}).$$

This is typically used as a tool for reducing alphabet size, e.g. with $\Sigma_2 = \{0, 1\}$.

- 1. Prove that if Enc₁ has minimum distance δ_1 and Enc₂ has minimum distance δ_2 , then Enc has minimum distance at least $\delta_1\delta_2$.
- 2. Prove that if Enc₁ is $(1 \varepsilon_1, \ell_1)$ list-decodable and Enc₂ is (δ_2, ℓ_2) list-decodable, then Enc is $((1 \varepsilon_1 \ell_2) \cdot \delta_2, \ell_1 \ell_2)$ list-decodable.
- 3. By concatenating a Reed–Solomon code and a Hadamard code, show that for every $n \in \mathbb{N}$ and $\varepsilon > 0$, there is a (fully) explicit code Enc : $\{0,1\}^n \to \{0,1\}^{\hat{n}}$ with blocklength $\hat{n} = O(n^2/\varepsilon^2)$ with minimum distance at least $1/2 \varepsilon$. Furthermore, show that with blocklength $\hat{n} = \text{poly}(n, 1/\varepsilon)$, we can obtain a code that is $(1/2 \varepsilon, \text{poly}(1/\varepsilon))$ list-decodable in *polynomial time*. (Hint: the inner code can be decoded by brute force.)

Problem 6.3. (List Decoding implies Unique Decoding for Random Errors)

- 1. Suppose that $\mathcal{C} \subseteq \{0,1\}^{\hat{n}}$ is a code with minimum distance at least 1/4 and rate at most $\alpha \varepsilon^2$ for a fixed constant $\alpha > 0$ be determined below, and we transmit a codeword $c \in \mathcal{C}$ over a channel in which each bit is flipped with probability $1/2 2\varepsilon$. Show that if α is sufficiently small, then with all but exponentially small probability over the errors, c will be the unique codeword at distance at most $1/2 \varepsilon$ from the received word r.
- 2. Using Problem 6.2, deduce that for every $\varepsilon > 0$ and $n \in \mathbb{N}$, there is an explicit code of blocklength $\hat{n} = \text{poly}(n, 1/\varepsilon)$ that can be uniquely decoded from $(1/2 2\varepsilon)$ random errors as above in polynomial time.

3. Suppose that $\mathcal{C} \subseteq \Sigma^{\hat{n}}$ is a code with minimum distance at least $1 - \varepsilon$, alphabet size $|\Sigma| = q \ge 1/(\alpha \varepsilon^2)$, and rate at most $\alpha \varepsilon$ for a fixed constant $\alpha > 0$ be determined below, and we transmit a codeword $c \in \mathcal{C}$ over a channel in which each symbol σ is replaced with a uniformly random symbol from $\Sigma \setminus \{\sigma\}$ with probability $1 - 3\varepsilon$. Show that if α is sufficiently small, then with all but exponentially small probability over the errors, c will be the unique codeword at distance at most $1 - 2\varepsilon$ from the received word r.

Similar to Part 2, this implies that list-decoding algorithms for distance close to 1 yield unique decoding algorithms for random errors at noise rates close to 1.

Problem 6.4. (List-decoding Reed-Solomon Codes)

- 1. Show that there is a polynomial-time algorithm for list-decoding the Reed-Solomon codes of degree d over \mathbb{F}_q up to distance $1 \sqrt{2d/q}$, improving the $1 2\sqrt{d/q}$ bound from lecture. (Hint: do not use fixed upper bounds on the individual degrees of the interpolating polynomial Q(X,Y), but rather allow as many monomials as possible.)
- 2. (*) Improve the list-decoding radius further to $1 \sqrt{d/q}$ by using the 'multiple-roots' trick used in Section 6.2.4.

Problem 6.5. (Codes vs. Hashing) Given any code $\operatorname{Enc}:[N] \to [M]^{\hat{n}}$, we can obtain a family of hash functions $\mathcal{H} = \{h_i : [N] \to [M]\}_{i \in [\hat{n}]}$ defined by $h_i(x) = \operatorname{Enc}(x)_i$, and conversely.

- 1. Show that Enc has minimum distance at least δ iff \mathcal{H} has collision probability at most 1δ . That is, for all $x \neq y \in [N]$, we have $\Pr_i[h_i(x) = h_i(y)] \leq 1 \delta$. (This is a generalization of the definition of universal hash functions, which correspond to the case that $\delta = 1 1/M$.)
- 2. The Leftover Hash Lemma extends to families of functions with low collision probability; specifically if a family \mathcal{H} with range [M] has collision probability at most $(1+\varepsilon^2)/M$, then $\operatorname{Ext}(x,h)=(h,h(x))$ is a (k,ε) extractor for $k=m+2\log(1/\varepsilon)+O(1)$, where $m=\log M$. Use this to prove the Johnson Bound for small alphabets: if a code $\operatorname{Enc}:[N]\to[M]^{\hat{n}}$ has minimum distance at least $1-1/M-\gamma/M$, then it is $(1-1/M-\sqrt{\gamma},O(M/\gamma))$ list-decodable.

Problem 5. (Limitations on the Seed Length) Prove that a cryptographic pseudorandom generator cannot have seed length $\ell(n) = O(\log n)$. Note where your proof fails if we only require that it is an $(n^d, 1/n^d)$ pseudorandom generator for a fixed constant d.