
CS 225: Pseudorandomness Prof. Salil Vadhan

Problem Set 5

Assigned: Tue. Apr. 14, 2009 Due: Wed. Apr. 29, 2009(1 PM)

• Recall that your problem set solutions must be typed. You can email your solutions to
cs225-hw@eecs.harvard.edu, or turn in it to MD138. You may write formulas or diagrams
by hand. Aim for clarity and conciseness in your solutions, emphasizing the main ideas over
low-level details.

• If you use LATEX, please submit both the source (.tex) and the compiled file (.ps). Name
your files PS5-yourlastname.

• Starred problems are extra credit.

Problem 6.2. (Concatenated Codes) For codes Enc1 : {1, . . . , N} → Σn1
1 and Enc2 : Σ1 →

Σn2
2 , their concatenation Enc : {1, . . . , N} → Σn1n2

2 is defined by

Enc(m) = Enc2(Enc1(m)1)Enc2(Enc1(m)2) · · ·Enc2(Enc1(m)n1).

This is typically used as a tool for reducing alphabet size, e.g. with Σ2 = {0, 1}.

1. Prove that if Enc1 has minimum distance δ1 and Enc2 has minimum distance δ2, then Enc
has minimum distance at least δ1δ2.

2. Prove that if Enc1 is (1 − ε1, `1) list-decodable and Enc2 is (δ2, `2) list-decodable, then Enc
is ((1− ε1`2) · δ2, `1`2) list-decodable.

3. By concatenating a Reed–Solomon code and a Hadamard code, show that for every n ∈ N
and ε > 0, there is a (fully) explicit code Enc : {0, 1}n → {0, 1}n̂ with blocklength n̂ =
O(n2/ε2) with minimum distance at least 1/2− ε. Furthermore, show that with blocklength
n̂ = poly(n, 1/ε), we can obtain a code that is (1/2−ε,poly(1/ε)) list-decodable in polynomial
time. (Hint: the inner code can be decoded by brute force.)

Problem 6.3. (List Decoding implies Unique Decoding for Random Errors)

1. Suppose that C ⊆ {0, 1}n̂ is a code with minimum distance at least 1/4 and rate at most αε2

for a fixed constant α > 0 be determined below, and we transmit a codeword c ∈ C over a
channel in which each bit is flipped with probability 1/2 − 2ε. Show that if α is sufficiently
small, then with all but exponentially small probability over the errors, c will be the unique
codeword at distance at most 1/2− ε from the received word r.

2. Using Problem 6.2, deduce that for every ε > 0 and n ∈ N, there is an explicit code of
blocklength n̂ = poly(n, 1/ε) that can be uniquely decoded from (1/2− 2ε) random errors as
above in polynomial time.
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3. Suppose that C ⊆ Σn̂ is a code with minimum distance at least 1 − ε, alphabet size |Σ| =
q ≥ 1/(αε2), and rate at most αε for a fixed constant α > 0 be determined below, and we
transmit a codeword c ∈ C over a channel in which each symbol σ is replaced with a uniformly
random symbol from Σ\{σ} with probability 1−3ε. Show that if α is sufficiently small, then
with all but exponentially small probability over the errors, c will be the unique codeword at
distance at most 1− 2ε from the received word r.

Similar to Part 2, this implies that list-decoding algorithms for distance close to 1 yield unique
decoding algorithms for random errors at noise rates close to 1.

Problem 6.4. (List-decoding Reed–Solomon Codes)

1. Show that there is a polynomial-time algorithm for list-decoding the Reed-Solomon codes of
degree d over Fq up to distance 1 −

√
2d/q, improving the 1 − 2

√
d/q bound from lecture.

(Hint: do not use fixed upper bounds on the individual degrees of the interpolating polynomial
Q(X, Y ), but rather allow as many monomials as possible.)

2. (*) Improve the list-decoding radius further to 1 −
√

d/q by using the ‘multiple-roots’ trick
used in Section 6.2.4.

Problem 6.5. (Codes vs. Hashing) Given any code Enc : [N ] → [M ]n̂, we can obtain a family
of hash functions H = {hi : [N ] → [M ]}i∈[n̂] defined by hi(x) = Enc(x)i, and conversely.

1. Show that Enc has minimum distance at least δ iff H has collision probability at most 1− δ.
That is, for all x 6= y ∈ [N ], we have Pri[hi(x) = hi(y)] ≤ 1 − δ. (This is a generalization of
the definition of universal hash functions, which correspond to the case that δ = 1− 1/M .)

2. The Leftover Hash Lemma extends to families of functions with low collision probability;
specifically if a family H with range [M ] has collision probability at most (1 + ε2)/M , then
Ext(x, h) = (h, h(x)) is a (k, ε) extractor for k = m + 2 log(1/ε) + O(1), where m = log M .
Use this to prove the Johnson Bound for small alphabets: if a code Enc : [N ] → [M ]n̂ has
minimum distance at least 1−1/M−γ/M , then it is (1−1/M−√γ,O(M/γ)) list-decodable.

Problem 5. (Limitations on the Seed Length) Prove that a cryptographic pseudorandom
generator cannot have seed length `(n) = O(log n). Note where your proof fails if we only require
that it is an (nd, 1/nd) pseudorandom generator for a fixed constant d.
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