
CS 225: Pseudorandomness Prof. Salil Vadhan

Problem Set 4

Assigned: Sun. Mar. 13, 2011 Due: Fri. Apr. 1, 2011 (1 PM sharp)

• You must type your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs225-hw@seas.harvard.edu. If you use LATEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS4-yourlastname.*.

• Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 5.1. (Limits of List Decoding) Show that if there exists a q-ary code C ⊆ Σn̂ of
rate ρ that is (δ, L) list-decodable, then ρ ≤ 1−Hq(δ, n̂) + (logq L)/n̂

Problem 5.2. (Concatenated Codes) For codes Enc1 : {1, . . . , N} → Σn1
1 and Enc2 : Σ1 →

Σn2
2 , their concatenation Enc : {1, . . . , N} → Σn1n2

2 is defined by

Enc(m) = Enc2(Enc1(m)1)Enc2(Enc1(m)2) · · ·Enc2(Enc1(m)n1).

This is typically used as a tool for reducing alphabet size, e.g. with Σ2 = {0, 1}.

1. Prove that if Enc1 has minimum distance δ1 and Enc2 has minimum distance δ2, then Enc
has minimum distance at least δ1δ2.

2. Prove that if Enc1 is (1 − ε1, `1) list-decodable and Enc2 is (δ2, `2) list-decodable, then Enc
is ((1− ε1`2) · δ2, `1`2) list-decodable.

3. By concatenating a Reed–Solomon code and a Hadamard code, show that for every n ∈ N
and ε > 0, there is a (fully) explicit code Enc : {0, 1}n → {0, 1}n̂ with blocklength n̂ =
O(n2/ε2) with minimum distance at least 1/2− ε. Furthermore, show that with blocklength
n̂ = poly(n, 1/ε), we can obtain a code that is (1/2−ε,poly(1/ε)) list-decodable in polynomial
time. (Hint: the inner code can be decoded by brute force.)

Problem 5.6. (Improved list-decoding of Reed–Solomon Codes)

1. Show that there is a polynomial-time algorithm for list-decoding the Reed-Solomon codes of
degree d over Fq up to distance 1 −

√
2d/q, improving the 1 − 2

√
d/q bound from lecture.

(Hint: do not use fixed upper bounds on the individual degrees of the interpolating polynomial
Q(Y, Z), but rather allow as many monomials as possible.)

1

2. (*) Improve the list-decoding radius further to 1 −
√

d/q by using the following “method of
multiplicities”. First, require the interpolating polynomial Q(Y, Z) to have a zero of multi-
plicity s at each point (y, r(y)) — that is, the polynomial Q(Y + y, Z + r(y)) should have no
monomials of degree smaller than s. Second, use the fact that a univariate polynomial R(Y)
of degree t can have at most t roots, counting multiplicities.

Problem 5.7. (Twenty Questions) In the game of 20 questions, an oracle has an arbitrary
secret s ∈ {0, 1}n and the aim is to determine the secret by asking the oracle as few yes/no questions
about s as possible. It is easy to see that n questions are necessary and sufficient. Here we consider
a variant where the oracle has two secrets s1, s2 ∈ {0, 1}n, and can adversarially decide to answer
each question according to either s1 or s2. That is, for a question f : {0, 1}n → {0, 1}, the oracle
may answer with either f(s1) or f(s2). Here it turns out to be impossible to pin down either of
the secrets with certainty, no matter how many questions we ask, but we can hope to compute a
small list L of secrets such that |L ∩ {s1, s2}| 6= ∅. (In fact, |L| can be made as small as 2.) This
variant of twenty questions apparently was motivated by problems in Internet traffic routing.

1. Let Enc : {0, 1}n → {0, 1}n̂ be a code such that that every two codewords in Enc agree in
at least a 1/2 − ε fraction of positions and that Enc has a polynomial-time (1/4 + ε, `) list-
decoding algorithm. Show how to solve the above problem in polynomial time by asking the
n̂ questions {fi} defined by fi(x) = Enc(x)i.

2. Taking Enc to be the code constructed in Problem 1, deduce that n̂ = poly(n) questions
suffices.

2

