## CS 225: Pseudorandomness

Prof. Salil Vadhan

Problem Set 4

Assigned: Sun. Mar. 13, 2011 Due: Fri. Apr. 1, 2011 (1 PM sharp)

- You must *type* your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Submit your solutions *via email* to cs225-hw@seas.harvard.edu. If you use LATEX, please submit both the compiled file (.pdf) and the source (.tex). Please name your files PS4-yourlastname.\*.
- Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details. Do not despair if you cannot solve all the problems! Difficult problems are included to stimulate your thinking and for your enjoyment, not to overwork you. \*'ed problems are extra credit.

**Problem 5.1.** (Limits of List Decoding) Show that if there exists a q-ary code  $\mathcal{C} \subseteq \Sigma^{\hat{n}}$  of rate  $\rho$  that is  $(\delta, L)$  list-decodable, then  $\rho \leq 1 - H_q(\delta, \hat{n}) + (\log_q L)/\hat{n}$ 

**Problem 5.2.** (Concatenated Codes) For codes  $\operatorname{Enc}_1:\{1,\ldots,N\}\to\Sigma_1^{n_1} \text{ and } \operatorname{Enc}_2:\Sigma_1\to\Sigma_2^{n_2}, \text{ their } concatenation \ \operatorname{Enc}:\{1,\ldots,N\}\to\Sigma_2^{n_1n_2} \text{ is defined by}$ 

$$\operatorname{Enc}(m) = \operatorname{Enc}_2(\operatorname{Enc}_1(m)_1)\operatorname{Enc}_2(\operatorname{Enc}_1(m)_2)\cdots\operatorname{Enc}_2(\operatorname{Enc}_1(m)_{n_1}).$$

This is typically used as a tool for reducing alphabet size, e.g. with  $\Sigma_2 = \{0, 1\}$ .

- 1. Prove that if Enc<sub>1</sub> has minimum distance  $\delta_1$  and Enc<sub>2</sub> has minimum distance  $\delta_2$ , then Enc has minimum distance at least  $\delta_1\delta_2$ .
- 2. Prove that if Enc<sub>1</sub> is  $(1 \varepsilon_1, \ell_1)$  list-decodable and Enc<sub>2</sub> is  $(\delta_2, \ell_2)$  list-decodable, then Enc is  $((1 \varepsilon_1 \ell_2) \cdot \delta_2, \ell_1 \ell_2)$  list-decodable.
- 3. By concatenating a Reed–Solomon code and a Hadamard code, show that for every  $n \in \mathbb{N}$  and  $\varepsilon > 0$ , there is a (fully) explicit code Enc :  $\{0,1\}^n \to \{0,1\}^{\hat{n}}$  with blocklength  $\hat{n} = O(n^2/\varepsilon^2)$  with minimum distance at least  $1/2 \varepsilon$ . Furthermore, show that with blocklength  $\hat{n} = \text{poly}(n, 1/\varepsilon)$ , we can obtain a code that is  $(1/2 \varepsilon, \text{poly}(1/\varepsilon))$  list-decodable in polynomial time. (Hint: the inner code can be decoded by brute force.)

## Problem 5.6. (Improved list-decoding of Reed-Solomon Codes)

1. Show that there is a polynomial-time algorithm for list-decoding the Reed-Solomon codes of degree d over  $\mathbb{F}_q$  up to distance  $1 - \sqrt{2d/q}$ , improving the  $1 - 2\sqrt{d/q}$  bound from lecture. (Hint: do not use fixed upper bounds on the individual degrees of the interpolating polynomial Q(Y, Z), but rather allow as many monomials as possible.)

2. (\*) Improve the list-decoding radius further to  $1 - \sqrt{d/q}$  by using the following "method of multiplicities". First, require the interpolating polynomial Q(Y, Z) to have a zero of multiplicity s at each point (y, r(y)) — that is, the polynomial Q(Y + y, Z + r(y)) should have no monomials of degree smaller than s. Second, use the fact that a univariate polynomial R(Y) of degree t can have at most t roots, counting multiplicities.

**Problem 5.7.** (Twenty Questions) In the game of 20 questions, an oracle has an arbitrary secret  $s \in \{0,1\}^n$  and the aim is to determine the secret by asking the oracle as few yes/no questions about s as possible. It is easy to see that n questions are necessary and sufficient. Here we consider a variant where the oracle has two secrets  $s_1, s_2 \in \{0,1\}^n$ , and can adversarially decide to answer each question according to either  $s_1$  or  $s_2$ . That is, for a question  $f: \{0,1\}^n \to \{0,1\}$ , the oracle may answer with either  $f(s_1)$  or  $f(s_2)$ . Here it turns out to be impossible to pin down either of the secrets with certainty, no matter how many questions we ask, but we can hope to compute a small list L of secrets such that  $|L \cap \{s_1, s_2\}| \neq \emptyset$ . (In fact, |L| can be made as small as 2.) This variant of twenty questions apparently was motivated by problems in Internet traffic routing.

- 1. Let Enc:  $\{0,1\}^n \to \{0,1\}^{\hat{n}}$  be a code such that that every two codewords in Enc agree in at least a  $1/2 \varepsilon$  fraction of positions and that Enc has a polynomial-time  $(1/4 + \varepsilon, \ell)$  list-decoding algorithm. Show how to solve the above problem in polynomial time by asking the  $\hat{n}$  questions  $\{f_i\}$  defined by  $f_i(x) = \operatorname{Enc}(x)_i$ .
- 2. Taking Enc to be the code constructed in Problem 1, deduce that  $\hat{n} = \text{poly}(n)$  questions suffices.