
CS 225 - Pseudorandomness Prof. Salil Vadhan

Problem Set 6

Harvard SEAS - Spring 2015 Due: Fri. May 1, 2015

Your problem set solutions must be typed (in e.g. LATEX) and submitted electronically to
cs225-hw@seas.harvard.edu. You are allowed 12 late days for the semester, of which at most 5
can be used on any individual problem set. (1 late day = 24 hours exactly). Please name your file
PS6-lastname.*.

The problem sets may require a lot of thought, so be sure to start them early. You are encouraged
to discuss the course material and the homework problems with each other in small groups (2-3
people). Identify your collaborators on your submission. Discussion of homework problems may
include brainstorming and verbally walking through possible solutions, but should not include one
person telling the others how to solve the problem. In addition, each person must write up their
solutions independently, and these write-ups should not be checked against each other or passed
around.

Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included to
stimulate your thinking and for your enjoyment, not to overwork you. *ed problems are extra
credit.

Problem 7.1. PRGs imply hard functions Suppose that for every m, there exists a mildly
explicit (m, 1/m) pseudorandom generator Gm : {0, 1}d(m) → {0, 1}m. Show that E has a function
f : {0, 1}` → {0, 1} with nonuniform worst-case hardness t(`) = Ω(d−1(` − 1)). In particular, if
d(m) = O(logm), then t(`) = 2Ω(`) (Hint: look at a prefix of G’s output.)

Problem 7.4. Deterministic Approximate Counting Using the PRG for constant-depth
circuits of Theorem 7.29, give deterministic quasipolynomial-time algorithms for the problems be-
low. (The running time of your algorithms should be 2poly(logn,log(1/ε)), where n is the size of the
circuit/formula given and ε is the accuracy parameter mentioned.)

1. Given a constant-depth circuit C and ε > 0, approximate the fraction of inputs x such that
C(x) = 1 to within an additive error of ε.

2. Given a DNF formula ϕ and ε > 0, approximate the number of assignments x such that
ϕ(x) = 1 to within a multiplicative fraction of (1 + ε). You may restrict your attention to ϕ
in which all clauses contain the same number of literals. (Hint: Study the randomized DNF
counting algorithm of Theorem 2.34.)

Note that these are not decision problems, whereas classes such as BPP and BPAC0 are classes
of decision problems. One of the points of this problem is to show how derandomization can be
used for other types of problems.

Problem 7.6. Private Information Retrieval The goal of private information retrieval is
for a user to be able to retrieve an entry of a remote database in such a way that the server

1



holding the database learns nothing about which database entry was requested. A trivial solution
is for the server to send the user the entire database, in which case the user does not need to
reveal anything about the entry desired. We are interested in solutions that involve much less
communication. One way to achieve this is through replication.1 Formally, in a q-server private
information-retrieval (PIR) scheme, an arbitrary database D ∈ {0, 1}n is duplicated at q non-
communicating servers. On input an index i ∈ [n], the user algorithm U tosses some coins r and
outputs queries (x1, . . . , xq) = U(i, r), and sends xj to the j’th server. The j’th server algorithm
Sj returns an answer yj = Sj(xj , D). The user then computes its output U(i, r, x1, . . . , xq), which
should equal Di, the i’th bit of the database. For privacy, we require that the distribution of each
query xj (over the choice of the random coin tosses r) is the same regardless of the index i being
queried.

It turns out that q-query locally decodable codes and q-server PIR are essentially equivalent.
This equivalence is proven using the notion of smooth codes. A code Enc : {0, 1}n → Σn̂ is a q-query
smooth code if there is a probabilistic oracle algorithm Dec such that for every message x and every
i ∈ [n], we have Pr[DecEnc(x)(i) = xi] = 1 and Dec makes q nonadaptive queries to its oracle, each
of which is uniformly distributed in [n̂]. Note that the oracle in this definition is a valid codeword,
with no corruptions. Below you will show that smooth codes imply locally decodable codes and
PIR schemes; converses are also known (after making some slight relaxations to the definitions).

1. Show that the decoder for a q-query smooth code is also a local (1/3q)-decoder for Enc.

2. Show that every q-query smooth code Enc : {0, 1}n → Σn̂ gives rise to a q-server PIR scheme
in which the user and servers communicate at most q · (log n̂+ log |Σ|) bits for each database
entry requested.

3. Using the Reed-Muller code, show that there is a polylog(n)-server PIR scheme with commu-
nication complexity polylog(n) for n-bit databases. That is, the user and servers communicate
at most polylog(n) bits for each database entry requested. (For constant q, the Reed-Muller
code with an optimal systematic encoding as in Problem 5.4 yields a q-server PIR with com-
munication complexity O(n1/(q−1)).)

Problem 7.13. Hardcore Predicates A hardcore predicate for a one-way function f : {0, 1}` →
{0, 1}` is a poly(`)-time computable function b : {0, 1}` → {0, 1} such that for every constant c,
every nonuniform algorithm A running in time `c, we have:

Pr[A(f(U`)) = b(U`)] ≤
1

2
+

1

`c
,

for all sufficiently large `. Thus, while the one-wayness of f only guarantees that it is hard to
compute all the bits of f ’s input from its output, b specifies a particular bit of information about
the input that is very hard to compute (one can’t do noticeably better than random guessing).

1. Let Enc : {0, 1}` → {0, 1}L̂ be a code such that given x ∈ {0, 1}` and y ∈ [L̂], Enc(x)y can
be computed in time poly(`). Suppose that for every constant c and all sufficiently large `,
Enc has a (1/2 − 1/`c) local list-decoding algorithm (Dec1,Dec2) in which both Dec1 and
Dec2 run in time poly(`). Prove that if f : {0, 1}` → {0, 1}` is a one-way function, then
b(x, y) = Enc(x)y is a hardcore predicate for the one-way function f ′(x, y) = (f(x), y).

1Another way is through computational security, where we only require that it be computationally infeasible for
the database to learn something about the entry requested.

2



2. Show that if b : {0, 1}` → {0, 1}` is a hardcore predicate for a one-way permutation f :
{0, 1}` → {0, 1}`, then for every m = poly(`), the following function G : {0, 1}` → {0, 1}m is
a cryptographic pseudorandom generator:

G(x) = (b(x), b(f(x)), b(f(f(x))), . . . , b(f (m−1)(x))).

(Hint: show that G is “previous-bit unpredictable”.)

3


