
CS 225 - Pseudorandomness Prof. Salil Vadhan

Take-Home Final

Harvard SEAS - Spring 2015 Due: Wed. May 13, 2015

Your problem set solutions must be typed (in e.g. LATEX) and submitted electronically to
cs225-hw@seas.harvard.edu. There are no late days for this problem set. Please name your
file final-lastname.*.

Collaboration or use of references other than the course materials (the text, problem sets,
solutions, your notes) is not allowed. You may only discuss these problems with course staff. You
may use any result proved in the text, on problem sets, or in section, as long as you state it clearly.
*ed problems are extra credit.

Problem 2.11. (Consequences of Derandomizing prBPP) Even though prBPP is a class
of decision problems, it also captures many other types of problems that can be solved by random-
ized algorithms:

2. (NP Search Problems) An NP search problem is specified by a polynomial-time verifier V and
a polynomial p; the problem is, given an input x ∈ {0, 1}n, find a string y ∈ {0, 1}p(n) such that
V (x, y) = 1. Suppose that such a search problem can be solved in probabilistic polynomial
time, i.e. there is a probabilistic polynomial-time algorithm A such that for every input
x ∈ {0, 1}n, outputs y ∈ {0, 1}p(n) such that V (x, y) = 1 with probability at least 2/3 over
the coin tosses of A. Show that if prBPP = prP, then there is a deterministic polynomial-
time algorithm B such that for every x ∈ {0, 1}n, B(x) always outputs y ∈ {0, 1}p(n) such that
V (x, y) = 1. (Hint: consider a promise problem whose instances include pairs (x, r) where
r is a prefix of the coin tosses of A, and use it to approximate the Method of Conditional
Probabilities.)

4. Use Part 2, the Prime Number Theorem (see Problem 2.4), and the fact that Primality
is in BPP (Problem 2.6) to show that if prBPP = prP, then there is a deterministic
polynomial-time algorithm that given a number N , outputs a prime in the interval [N, 2N)
for all sufficiently large N .

Problem 6.4. (Rényi extractors) Call a function Ext : {0, 1}n × {0, 1}d → {0, 1}m a (k, ε)
Rényi extractor if for every source X on {0, 1}n of Rényi entropy at least k, it holds that Ext(X,Ud)
has Rényi entropy at least m− ε.

1. Prove that a (k, ε) Rényi extractor is also a (k,
√
ε) extractor.

2. Show that for every n, k,m ∈ N with m ≤ n, k ≥ m/2, and ε > 0, there exists a (k, ε)
Rényi extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = min{O(n − k + log(1/ε)),m/2 +
O(log(n/ε))}. (Hint: Problem 3.4 may be useful.)

3. Show that if Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, 1) Rényi extractor, then d ≥ min{n−
k,m/2} −O(1). (Hint: consider a k-source that is uniform over {x : ∃yExt(x, y) ∈ T} for an
appropriately chosen set T of size bM/2D2c.)

1



Problem 7.7. (Better Local Decoding of Reed–Muller Codes) Show that for every con-
stant ε > 0, there is a constant γ > 0 such that there is a local (1/2−ε)-decoding algorithm for the
q-ary Reed-Muller code of degree d and dimension m, provided that d ≤ γq. (Here we are referring
to unique decoding, not list decoding.) The running time of the decoder should be poly(m, q).

Problem 7.8. (Hitting-Set Generators) A set Hm ⊂ {0, 1}m is a (t, ε) hitting set if for every
nonuniform algorithm T running in time t that accepts greater than an ε fraction of m-bit strings,
T accepts at least one element of Hm.

1. Show that if, for every m, we can construct an (m, 1/2) hitting set Hm in time s(m) ≥ m,
then RP ⊂

⋃
c DTIME(s(nc)). In particular, if s(m) = poly(m), then RP = P.

2. Show that if there is a (t, ε) pseudorandom generator Gm : {0, 1}d → {0, 1}m computable in
time s, then there is a (t, ε) hitting set Hm constructible in time 2d · s.

3. (*) Show that if, for every m, we can construct an (m, 1/2) hitting set Hm in time s(m) =
poly(m), then BPP = P. This can be proven in at least two ways: one uses Problem 3.1 and
the other uses a variant of Problem 7.1 together with Corollary 7.64. How do the parameters
for general s(m) compare between these two approaches?

4. Define the notion of a (t, k, ε) black-box construction of hitting set-generators (similar to Def-
inition 7.65), and show that, when t =∞, such constructions are equivalent to constructions
of dispersers (Definition 6.19).

2


