
The Limits of Two-Party Differential Privacy
Andrew McGregor∗, Ilya Mironov†, Toniann Pitassi‡, Omer Reingold†, Kunal Talwar†, Salil Vadhan§

∗Department of Computer Science University of Massachusetts, Amherst.
†Microsoft Research Silicon Valley.

‡Department of Computer Science University of Toronto.
§School of Engineering and Applied Sciences and Center for Research on Computation and Society

Harvard University.

Abstract—We study differential privacy in a distributed setting
where two parties would like to perform analysis of their joint
data while preserving privacy for both datasets. Our results imply
almost tight lower bounds on the accuracy of such data analyses,
both for specific natural functions (such as Hamming distance)
and in general. Our bounds expose a sharp contrast between the
two-party setting and the simpler client-server setting (where
privacy guarantees are one-sided). In addition, those bounds
demonstrate a dramatic gap between the accuracy that can
be obtained by differentially private data analysis versus the
accuracy obtainable when privacy is relaxed to a computational
variant of differential privacy.

The first proof technique we develop demonstrates a connec-
tion between differential privacy and deterministic extraction
from Santha-Vazirani sources. A second connection we expose
indicates that the ability to approximate a function by a low-error
differentially-private protocol is strongly related to the ability to
approximate it by a low communication protocol. (The connection
goes in both directions.)

I. INTRODUCTION

A common architecture for database access is client-server,
where the server manages the data and answers clients’ queries
according to its access policy. In such an architecture, there
may be two very distinct privacy considerations. The first
has to do with client’s privacy and is highly motivated in
cases where the server’s knowledge of client’s queries may be
harmful, for instance, in patent litigation or market research.
In such cases, without an expectation of privacy, clients may
be discouraged from querying the database in the first place.
Such concerns can be answered using various cryptographic
solutions such as oblivious transfer [1], [2], single-server
private-information retrieval (PIR) [3], and more generally,
secure function evaluation (SFE) [4], which may be used to
restore privacy for the clients.

The focus of this paper has to do with a complementary
privacy concern: what kind of access should a server allow to
the database while preserving the privacy of sensitive data that
it may contain. In other words, the question we study is not
how data analysis can be performed while preserving client’s
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privacy (the cryptographic question) but rather what kind of
data analysis preserves data privacy. While the answer to this
question may be dependent on the nature of the data, a very
powerful general-purpose notion is that of differential privacy
[5], [6]. Informally, a randomized function of a database is
differentially private if its output distribution is insensitive
to the presence or absence of any particular record in the
database. Therefore, if the analyses allowed on a database
are guaranteed to preserve differential privacy, there is little
incentive for an individual to conceal his or her information
from the database (and in this respect the privacy of individual
records is preserved).

Assume that a query to a database is a deterministic real-
valued function. In such a case, differential privacy may be
enforced by adding a small amount of noise, calibrated to the
sensitivity of that function (defined as the largest change in its
output that can be caused by adding or removing a record from
its input). In the basic client-server setting, queries of constant
sensitivity can be answered by adding Laplacian (symmetric
exponential) noise with standard deviation inversely propor-
tional to the privacy parameter [5], and indeed this mechanism
can be shown to be optimal for counting queries as well as
for a large class of clients’ preferences [7].

Two-party differential privacy. In this paper we contrast the
client-server setting with a setting where the database is
distributed between two parties which would like to perform
data analysis on their joint data. In this setting we would like to
guarantee two-sided differential privacy, protecting the data of
both parties. That is, each party’s view of the protocol should
be a differentially private function of the other party’s input.
Differential privacy for distributed databases was first con-
sidered in the seminal work on privacy-preserving distributed
datamining by Dwork and Nissim [8]. More accurately, the
definition of privacy in [8] is a precursor (and indeed a
special case) of the now-standard definition of approximate
differential privacy. Differential privacy in a highly distributed
setting (which is less related to our work), was also considered
in [9].

Although the distributed setting was considered earlier in the
line of research on differential privacy, the state of knowledge
in this setting was very minimal. While there were protocols
given for specific functions (e.g., in [8], [10], [11]), there were
no general results or lower bounds for computing functions



with two-sided differential privacy guarantees (in sharp con-
trast with the case of one-sided differential privacy). The goal
of this paper is to start filling that gap.

The limitations of two-party differential privacy. Motivated by
the work of Dwork and Nissim [8], we start our study with
two related and very natural problems: the Hamming distance
between two binary vectors (in how many locations they differ)
and their scalar product.1 We formulate the following prototyp-
ical problem for privacy-preserving two-party computations:

Question 1. What is the least additive error of any
protocol for computing the Hamming distance be-
tween two binary vectors that is differentially private
for both sides?

Note that the Hamming distance is a function of sensitivity
one (changing one bit can change the function by at most
one). Therefore in the client-server setting this function could
be approximated up to a constant additive error, while ensuring
differential privacy (as discussed above). In this paper we
show that the case of two-sided privacy is very different:
Any protocol for computing the Hamming distance of two n-
bit vectors that is differentially private for both sides incurs
additive error of Ω̃(

√
n) and this is tight up to the a hidden

log factor.
A natural approach to approximating the Hamming distance

by two parties is to use secure function evaluation in order to
emulate a trusted third party, which has access to both parties’
inputs, and operates as in the client-server setting (i.e., evalu-
ates the Hamming distance and adds appropriate Laplacian
noise). Similarly, every function with small sensitivity can
be approximated well using secure-function evaluation. The
“catch” (and the reason this does not contradict our aforemen-
tioned result on the Hamming distance) is that this approach
only achieves a relaxed notion of computational differential
privacy [11]. Loosely, this notion of differential privacy only
holds against computationally-bounded adversaries. In other
words, our result regarding the Hamming distance implies a
separation between (information theoretic) differential privacy
and computational differential privacy. It is natural to ask, if
this separation can be made even stronger:

Question 2. What is the largest gap in accuracy
between optimal differentially-private and computa-
tionally differentially-private protocols?

Indeed, we show that the gap between accuracy can be as
large as linear. We do so by exhibiting a function on two n-
bit strings with constant sensitivity that cannot be privately
approximated within error o(n). Such a strong separation
between (information-theoretic) differential privacy and com-
putational differential privacy again stands in sharp contrast
with the client-server setting where all of the known positive
results have achieved information-theoretic differential privacy
and there are not even candidates for a separation. In this
respect, differential privacy in the two-party setting is closer

1In [8], a central data-mining problem (detecting correlations between two
binary attributes) was reduced to approximating the scalar product between
two binary vectors.

to cryptography where most interesting tasks can only be
obtained with computational rather than information theoretic
security.

The techniques we develop to address the above questions
rely on intriguing new connections: the first is a connection
between differential privacy in the two-party setting and de-
terministic extractors for Santha-Vazirani sources. The second
connection is with the communication complexity of two-party
protocols. We further develop this latter connection and in
particular demonstrate that the connection works in both direc-
tions. Loosely, and ignoring the relation between the various
parameters, we show that a small-communication protocol for
a function exists if and only if a low-error differentially private
protocol exists. We now discuss our results in more detail and
elaborate on the new connections we discover.

Hamming distance and deterministic extraction. We resolve
the first question discussed above by establishing a connec-
tion between differentially private protocols and deterministic
extractors for Santha-Vazirani sources.

Consider two uniformly distributed n-bit strings x and y
which are the inputs of two parties that would like to ap-
proximate the Hamming distance. For any two-party protocol,
conditioned on the transcript of the protocol, x and y are
independent. Furthermore, if the protocol is differentially-
private then each bit of x has some entropy even conditioned
on all other bits of x (and similarly for y). In other words,
conditioned on the transcript, x and y are two independent
Santha-Vazirani sources. We then generalize a result of Vazi-
rani [12] to argue that the inner product modulo b

√
nc is

a good (deterministic) extractor for such sources (i.e., it is
distributed nearly uniformly over its range). This implies that
no party is able to estimate the inner product (and conse-
quently, the Hamming distance) of the inputs with accuracy
o(
√
n/ log n). This is almost tight, as standard randomized

response [13] allows parties to approximate their Hamming
distance with error Θ(

√
n/ε) (both bounds assume that the

privacy parameter ε is smaller than 1). More formally, the
following theorem answers Question 1 from above:

Theorem 5 (Section III). Let P (x, y) be a randomized proto-
col with ε-differential privacy for inputs x, y ∈ {0, 1}n, and let
δ > 0. Then, with probability at least 1−δ over x, y ← {0, 1}n
and the coin tosses of P , party B’s output differs from 〈x, y〉
by at least ∆ = Ω

( √
n

logn ·
δ
eε

)
.

Communication complexity and differential privacy. Towards
answering the second question posed above, we note that
the method based on deterministic-extraction from Santha-
Vazirani sources is unlikely to yield (at least naı̈vely) a
lower bound on additive error better than O(

√
n) (see Sec-

tion III-C). We therefore develop a different approach based on
a new connection between differentially-private protocols and
communication complexity. We systematically explore these
connections.

We first prove that the information cost (as defined by Bar-
Yossef et al. [14]) and the partition bound (as defined by Jain



and Klauck [15]) of an ε-differentially-private protocol are
both O(εn). Loosely, information cost measures the amount
of information that is shared between the transcript and the
input of both parties. Therefore, the O(εn) bound on the
information cost in particular is quite natural, since differential
privacy condition limits the amount of information learned on
each individual bit of the inputs (and is thus only stronger).
Motivated by applications in direct-sum theorems for commu-
nication complexity, Barak et al. [16] proved that a protocol
over a product distribution can be compressed down to its
information cost (up to a polylogarithmic factor in its original
communication complexity). We can conclude that every ε-
differentially-private protocol can be compressed to a small
(roughly O(εn)) communication protocol (see Theorem 10).

Given the reduction from differential privacy to information
cost, we construct a function with two properties: (1) the
function has sensitivity 1 and range Θ(n); (2) approximating
the function to within o(n) by a 2-party protocol requires
linear (in its input length) information cost. We construct such
a function by taking an arbitrary boolean function with high
information cost, embedding it in the space of codewords and
extending its domain to all inputs in a manner consistent
with the sensitivity condition. Such a function proves that
the answer to Question 2 on the gap between two-party
computational and information-theoretic differential privacy is
linear: On the one hand, by property (1) the function can be
approximated with differential privacy by a trusted third party
(and thus in the computational setting too, by simulating the
third party using SFE) with error proportional to 1/ε. On the
other hand, every (information-theoretic) differentially-private
protocol linear additive error. More precisely, the following
theorem claims these properties of our construction:

Theorem 13 (Section IV-C). There exists an absolute constant
β > 0 such that for every n, there is an efficiently computable
function f : {0, 1}n ×{0, 1}n → R and a distribution D over
its inputs, with the following properties:
(a) for every ε < β/3, every ε-differentially private protocol
P must incur additive error at least βn with probability at
least 1

10 .
(b)for every ε, δ with ε + 1.2(δ/ε) < β/10, every (ε, δ)-
differentially private protocol P must incur additive error at
least βn with probability at least 1

10 .
(c) f has sensitivity 1, i.e., |f(x, y) − f(x′, y′)| ≤ |(x, y) −
(x′, y′)|H for every x, y, x′, y′.

We note that the connection between differential-privacy
and communication complexity can be used to prove lower
bounds on the error in computing specific functions for which
lower bounds on the communication complexity is known.
For the specific example of Hamming distance (see [17]), the
results obtained in this manner are incomparable with those
obtained via deterministic extraction.

The connection between differential privacy and communi-
cation complexity is quite strong and we explore it beyond
our original motivation discussed above. In particular, for
the application above we only cared that differentially-private

protocols can be compressed into protocols that have low
communication but are not necessarily differentially-private.
Our next result demonstrates that every differentially-private
protocol with r rounds can be compressed down to O(εrn)
while keeping it differentially private. Compression is im-
plemented using privacy-preserving consistent sampling [18],
[19] and has a negligible probability of failure (which affects
accuracy, not privacy). The formal theorem is stated as follows:

Theorem 14 (Section IV-D). Let P be an ε-differentially
private protocol with r rounds. Then, for every δ > 0, there
exists an O(rε)-differentially-private protocol P ∗ that has
communication complexity O(r(εn + log log 1

εδ )) and except
with probability rδ, simulates P perfectly.

In our final result we show that the connection between
differential privacy and communication complexity goes the
other way too: a deterministic protocol with r rounds and
communication C can be transformed into an ε-differentially-
private protocol with additive error O(Cr/ε):

Theorem 15 (Section IV-E). Let P be a deterministic protocol
with communication complexity CC(P ) and the number of
rounds r approximating a sensitivity-1 function f : Σn ×
Σn → Z with error bounded by ∆. Then there exists an ε-
differentially-private protocol with the same communication
complexity and number of rounds that computes f with ex-
pected additive error ∆ +O(CC(P )r/ε).

The linear dependency on the communication complexity in
the last theorem is unlikely to be improved due to the lower
bound of Theorem 13.

Other Related Work Recently, Feigenbaum et al. [20] proposed
a notion of approximate privacy for communication protocols.
Their work is rather different from ours in that it only applies
to deterministic protocols for evaluating functions exactly.
Additionally, like in SFE, it is assumed that the function value
itself is non-sensitive and can be revealed. Their notion of
approximate privacy is based on the ratio of the number of
inputs that are consistent with the final answer to the number
of inputs consistent with the transcript (which includes the
final answer). If this ratio is one, then the protocol is deemed
perfectly private (see also, [21], [22]) in the sense that no more
is information about the input is revealed beyond that revealed
by the final answer.

II. DEFINITIONS

Let Σ be a finite alphabet and for strings x, y ∈ Σn, let
|x − y|H = |{i ∈ [n] : xi 6= yi}| denote the Hamming
distance between x and y. We recall the standard definition of
differential privacy for mechanisms defined over strings from
a finite alphabet Σ and generalize it to interactive protocols,
following [9].

Definition 1 (Differential privacy). A mechanism M on Σn

is a family of probability distributions {µx : x ∈ Σn} on R.
The mechanism is ε-differentially private if for every x and x′



such that |x− x′|H = 1 and every measurable subset S ⊂ R
we have

µx(S) ≤ exp(ε)µx′(S).

A common relaxation of ε-differential privacy is the follow-
ing definition of δ-approximate ε-differential privacy, abbrevi-
ated as (ε, δ)-differential privacy:

Definition 2 (Approximate differential privacy). The mech-
anism M satisfies δ-approximate ε-differential privacy if for
every x and x′ such that |x−x′|H = 1 and every measurable
subset S ⊂ R we have

µx(S) ≤ exp(ε)µx′(S) + δ.

The definition of differential privacy naturally extends to
interactive protocols, by requiring that the views of all parties
be differentially private in respect to other parties’ inputs. The
following definition assumes semi-honest parties, i.e., parties
that are guaranteed to follow the protocol. Since the focus
of this work is on establishing lower bounds on accuracy of
differentially-private protocols, its results apply to models with
weaker restrictions on adversarial parties as well.

More concretely, let VIEWA
P (x, y) be the joint probability

distribution over x, the transcript of the protocol P , private
randomness of the party A, where the probability space is
private randomness of both parties. For each x, VIEWA

P (x, y)
is a mechanism over the y’s. Let VIEWB

P (x, y) be similarly
defined view of B whose input is y.

Definition 3 (Differential privacy for two-party protocols).
We say that a protocol P has ε-differential privacy if the
mechanism VIEWA

P (x, y) is ε-differentially private for all
values of x and same holds for VIEWB

P (x, y) and all values
of y.

Approximate differential privacy for interactive protocols is
defined analogously. Without loss of generality, we assume
that the parties do not share any public random bits since one
party can choose those random bits and send them to the other
without violating the privacy condition. Also, note that the
above definition of privacy trivially maintains the privacy of x
and y against a third party who only observes the transcript.
In fact, this notion of privacy will be sufficient to imply many
of the lower bounds we present.

The notion of (global) sensitivity of a function is useful in
designing differentially-private protocol computing this func-
tion:

Definition 4 (Sensitivity). For a real-valued function
f : Σn → R define its sensitivity as the maximal difference
in value on adjacent inputs, i.e., max|x−y|H=1 |f(x)− f(y)|.

The following definition plays a role in Sections III and IV:

Definition 5 (Statistical distance and δ-closeness). Given
random variables X and X ′ taking values in Ω, we say that
X and X ′ are δ-close if the statistical distance between their

distributions is at most δ, i.e.,

‖X −X ′‖SD :=
1
2

∑
x∈Ω

|Pr[X = x]− Pr[X ′ = x]| ≤ δ .

Communication Complexity. Yao [23] introduced the fol-
lowing, by now classical, two-player communication game:
Alice and Bob want to collaboratively compute a function
f : {0, 1}n × {0, 1}n → {0, 1}. Alice gets an n-bit string x
and Bob gets another, called y. The players have unlimited
computational power. They agree on a protocol beforehand,
according to which they take turns in communicating with
each other. At a player’s turn, what that player communicates
is a function of her input and what has been communicated
so far. We call the sequences of messages, the transcript of
the protocol and denote it by Π. The protocol also specifies a
function fA(·, ·) (resp. fB(·, ·)) that define the value computed
by Alice (resp. Bob). Let P be a deterministic communication
protocol. The cost of P , denoted CC(P ), is the total number
of bits that Alice and Bob communicate for the worst input.
The deterministic complexity of f , denoted by D(f), is the
cost of the best deterministic protocol for f that outputs the
correct answer for every input, i.e. fA(x,Π) = fB(y,Π) =
f(x, y). We also consider randomized communication proto-
cols where the players may each flip private coins and we
permit an arbitrarily small constant probability of failure, so
that Pr[fA(x,Π) = f(x, y)] ≥ 1− γ and similarly for B. For
a randomized protocol, the cost of the protocol is defined as
the maximum number of bits communicated over all inputs
and coin flips.

III. DIFFERENTIAL PRIVACY AND SANTHA-VAZIRANI
SOURCES

Differential privacy requires that a differentially-private
protocol contains a limited amount of information about the
parties’ inputs. In particular, if the parties’ inputs had a lot
of entropy to begin with, then they still have a lot of entropy
after we condition on the transcript of the protocol. In this
section, we show that they retain much more structure than
merely having high entropy. Specifically, if the parties’ inputs
were initially uniform and independent strings from {0, 1}n,
then conditioned on any transcript of the protocol, the parties’
inputs are unpredictable bit sources (also known as semi-
random sources), as introduced by Santha and Vazirani [24]
and studied in the literature on randomness extractors.

We then generalize a result of Vazirani [12] that shows
that the inner product function has good randomness ex-
traction properties on unpredictable bit sources, and use this
to prove that no differentially-private two-party protocol can
approximate the inner product (or the Hamming distance)
to within additive error o(

√
n/ log n). The extension of the

result to protocols satisfying approximate differential privacy
(Definition 2) appears in the full version.

A. Unpredictable Sources from Differential Privacy

The model of random sources introduced by Santha and
Vazirani [24] is one where each bit is somewhat unpredictable



given the previous ones:

Definition 6 (α-unpredictable bit source2). For α ∈ [0, 1],
random variable X = (X1, . . . , Xn) taking values in {0, 1}n
is an α-unpredictable bit source if for every i ∈ [n], and every
x1, . . . , xi−1 ∈ {0, 1}, we have

α ≤ Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1]
Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1]

≤ 1/α.

Note that when α = 1, the source must be the uniform
distribution, and when α = 0 the source is unconstrained. The
larger α is, the more “randomness” the source is guaranteed
to have. Commonly α ∈ (0, 1) is thought of as being held
constant as n→∞. Note also that under an α-unpredictable
source, no string has probability mass greater than 1/(1 +
α)n. Thus an α-unpredictable source always has min-entropy,
defined as minx log(1/Pr[X = x]), at least βn, where β =
log(1 + α) ≥ α.

A more stringent requirement, previously studied in [25], is
to require that each bit is somewhat unpredictable given all of
the other bits, even the future ones:

Definition 7 (Strongly α-unpredictable bit source). For α ∈
[0, 1], a random variable X = (X1, . . . , Xn) taking values in
{0, 1}n is a strongly α-unpredictable bit source if for every
i ∈ [n], and every x1,. . . ,xi−1, xi+1,. . . ,xn ∈ {0, 1}n, we have

α ≤ Pr[Xi=0|X1=x1,...,Xi−1=xi−1,Xi+1=xi+1,...,Xn=xn]
Pr[Xi=1|X1=x1,...,Xi−1=xi−1,Xi+1=xi+1,...,Xn=xn] ≤ 1/α.

We now prove that conditioned on a differentially-private
transcript, the parties’ inputs not only have a lot of entropy,
but in fact are strongly unpredictable sources (assuming they
were initially uniform):

Lemma 1. Let P be an ε-differentially private randomized
protocol. Let X and Y be independent random variables uni-
formly distributed in {0, 1}n and let random variable Π(X,Y )
denote the transcript of messages exchanged when protocol
P is run on input (X,Y ). Then for every π ∈ Supp(Π),
the random variables corresponding to the inputs conditioned
on transcript π, Xπ and Yπ , are independent, strongly e−ε-
unpredictable bit sources.

Proof: The fact that independent inputs remain indepen-
dent when conditioning on a transcript is a standard fact in
communication complexity, which can be proved by induction
on the number of rounds. (When we condition on the first
message, the two inputs remain independent, and then what
follows is a protocol with fewer rounds.)

To see that Xπ is a strongly unpredictable bit source, we
observe that by Bayes’ Rule and the uniformity of X ,

Pr[Xi=0|X1=x1,...,Xi−1=xi−1,Xi+1=xi+1,...,Xn=xn,Π=π]
Pr[Xi=1|X1=x1,...,Xi−1=xi−1,Xi+1=xi+1,...,Xn=xn,Π=π]

= Pr[Π=π|X1=x1,...,Xi−1=xi−1,Xi=0,Xi+1=xi+1,...,Xn=xn]
Pr[Π=π|X1=x1,...,Xi−1=xi−1,Xi=1,Xi+1=xi+1,...,Xn=xn]

= Pr[Π(x1···xi−10xi+1···xn,Y )=π]
Pr[Π(x1···xi−11xi+1···xn,Y )=π] .

2In the terminology of Santha and Vazirani [24], this is an α/(1 + α)
semi-random source.

By ε-differential privacy, the latter ratio is between e−ε and
eε.

B. Randomness Extraction and Lower Bounds for Inner Prod-
uct

Vazirani [12] showed that the inner product function modulo
2 extracts an almost-uniform bit from any two independent
unpredictable sources (in sharp contrast to the fact that from
one unpredictable source, no function can extract a bit that
is more than α-unpredictable [24]). We generalize this to
show that the inner product function modulo m extracts an
almost-uniform element of Zm, provided that the length n
of the sources is at least roughly m2. We then combine this
with the results of the previous section to show that every
two-party differentially-private protocol for approximating the
inner product function must incur an error of roughly m ≈√
n. Indeed, if a significantly better approximation could be

computed given the transcript (and one party’s input), then
the inner product would be concentrated in an interval of
size significantly smaller than m, contradicting the fact that
it reduces to an almost-uniform element of Zm.

Our extractor is the following:

Theorem 2. There is a universal constant c such that the
following holds. Let X be an α-unpredictable bit source on
{0, 1}n, let Y be a source on {0, 1}n with min-entropy at least
βn (independent from X), and let Z = 〈X,Y 〉 mod m for
some m ∈ N. Then for every δ ∈ [0, 1], the random variable
(Y, Z) is δ-close to (Y,U) where U is uniform on Zm and
independent of Y , provided that

n ≥ c · m
2

αβ
· log

(
m

β

)
· log

(m
δ

)
.

Notice that for constant α, β, and δ, we can take m as large
as Ω(

√
n/ log n) and satisfy the condition of the theorem. Note

also that the output Z is guaranteed to be close to uniform even
given the source Y . Two-source extractors with this property
have been studied in several papers, starting with [26].

The first step is to reduce proving near-uniformity of the
extractor’s output distribution Z to bounding the magnitude
of its Fourier coefficients E[ωZ ]:

Lemma 3. Let Z be a random variable taking values in
Zm. Then the statistical distance between Z and the uniform
distribution on Zm is at most

1
2

√∑
ω 6=1

|E [ωZ ]|2,

where the sum is over all complex m’th roots of unity ω other
than 1.

Proof: Let U be a uniformly distributed random variable
in Zm. Let pZ(·) and pU (·) denote the probability mass



function of Z and U respectively. We have

‖Z − U‖SD =
1
2
‖pZ − pU‖1 ≤

√
m

2
‖pZ − pU‖2

=
1
2

√√√√m−1∑
k=0

|p̂Z(k)− p̂U (k)|2 .

Plugging in the Fourier coefficients p̂Z(0) and p̂U (·), the claim
follows.

Next, instead of estimating the Fourier coefficients of the
output Z = 〈X,Y 〉 mod m when both sources X and Y are
random, we fix Y = y and argue that there are not many y’s
for which the Fourier coefficients are large. To get a good
bound on the number of y’s, we estimate the 2t’th moment
of the Fourier coefficients. The following lemma is proved in
the full version of the paper.

Lemma 4. Let X be any random variable taking values in
{0, 1}n, ω ∈ C a primitive m’th root of unity, and t ∈ N .
Then∑

y∈Znm

∣∣∣E [ω〈X,y〉]∣∣∣2t ≤ [1 +m exp
(
−Ω

(
αt

m2

))]n
.

We will apply this taking t a bit larger than m2/α, so that
the exp(−Ω(αt/m2)) term is small. We now put the above
pieces together to obtain our extractor:

Proof of Theorem 2: Let X be an α-unpredictable bit
source on {0, 1}n, Y a βn-source on {0, 1}n. For every
complex m’th root of unity ω 6= 1, let

Lω =
{
y ∈ {0, 1}n :

∣∣∣E [ω〈X,y〉]∣∣∣ > δ√
m

}
,

and let L =
⋃
ω Lω . By Lemma 3, it holds that for

every y /∈ L, the statistical distance between Zy =
〈X, y〉 mod m and the uniform distribution on Zm is at
most (1/2)

√
(m− 1) · (δ/

√
m)2 ≤ δ/2. Thus it suffices to

prove that Pr[Y ∈ L] ≤ δ/2, which in turn follows if
Pr[Y ∈ Lω] ≤ δ/2m for each ω 6= 1.

Every m’th root of unity ω 6= 1 is a primitive `’th root of
unity for some `|m. By Lemma 4, we have

|Lω| ≤
∑
y∈Zn`

∣∣E [ω〈X,y〉]∣∣2t
(δ/
√
m)2t

≤
[
1 + ` · exp(−Ω(αt/`2))

]n
(δ2/m)t

≤
[
1 +m · exp(−Ω(αt/m2))

]n
(δ2/m)t

≤ 2βn/2

(δ2/m)t
.

for t = dc0 · (m2/α) · log(m/β)e for a sufficiently large
universal constant c0.

Thus, by the union bound.

Pr[Y ∈ Lω] ≤ 2−βn · |Lω| ≤
2−βn/2

(δ2/m)t
≤ δ

2m
,

provided that n ≥ (2/β) · (t · log(m/δ2) + log(2m/δ)), which
holds by hypothesis.

We now combine the fact that the inner product modulo
m is good extractor for unpredictable sources with the con-
nections between differentially-private protocols and unpre-
dictable sources to show that no differentially-private protocol
can estimate inner product to within error o(

√
n/ log n):

Theorem 5. Let P be a randomized protocol with ε-
differential privacy and let δ > 0. Then with probability at
least 1− δ over the inputs x, y ← {0, 1}n and the coin tosses
of P , party B’s output differs from 〈x, y〉 by at least

∆ = Ω
( √

n

log n
· δ
eε

)
.

Proof: Let X and Y be uniform and independent in
{0, 1}n and Π be the communication transcript. Party B’s
output is a function fB(Y,Π). Let m = 4∆/δ.

By Lemma 1, we know that for every π ∈ Supp(Π), Xπ

and Yπ are independent α-unpredictable sources for α = e−ε.
This implies that Yπ has min-entropy at least βn for β =
log(1 + α) ≥ α. By Theorem 2, (Yπ, 〈Xπ, Yπ〉 mod m) has
statistical distance at most δ/2 from (Yπ, U), provided

n ≥ c0 ·
m2

αβ
· log

(
m

β

)
· log

(m
δ

)
,

for a universal constant c0. Using the fact that m = 4∆/δ and
β ≥ α, this follows if:

n ≥ c1 ·
[

∆ · eε

δ
· log

(
∆ · eε

δ

)]2

,

for some universal constant c1, which in turn follows if

∆ · eε

δ
≤ c2 ·

√
n

log n
,

for a small universal constant c2 > 0.
Consider the set S = {(π, y, z) : (fB(π, y) − z) mod

m ∈ {m−∆, . . . ,m− 1, 0, 1, . . . ,∆}}. Notice that in every
execution where B’s output fB(π, y) differs from 〈x, y〉 by
at most ∆, we have (π, y, 〈x, y〉 mod m) ∈ S. We can
bound the probability of this occurring by using the fact
that (Π, Y, 〈X,Y 〉 mod m) has statistical distance at most δ/2
from (Π, Y, U). Specifically, we have:

Pr[(Π, Y, 〈X,Y 〉 mod m) ∈ S] ≤ Pr[(Π, Y, U) ∈ S] + δ/2
≤ 2∆/m+ δ/2 = δ .

This theorem implies a similar result for the Hamming
distance, because the inner product between two bitstrings
x, y ∈ {0, 1}n can be expressed as 〈x, y〉 = |x|H + |y|H −
|x−y|H . Thus, a differentially-private protocol for estimating
the Hamming distance |x−y|H can be turned into one for the
inner product by having the parties send differentially-private
estimates of the Hamming weights of their inputs.



C. Limitation of the Extractor Technique

The deterministic extractor approach above depends cru-
cially on the fact that the xi’s are independent, or nearly
independent of each other. We observe that standard measure
concentration techniques imply that such a technique cannot
go beyond

√
n for any function with sensitivity 1.

Theorem 6. Let f : {0, 1}n × {0, 1}n → R be a sensitivity-
1 function. Then for every distribution µ such that for every
input y, the conditional distribution µ(X | Y = y) is a product
distribution Πn

i=1µi(Xi | Y = y), there is function g(y) such
that Pr(x,y)∼µ[|g(y)− f(x, y)| > t] ≤ 2 exp(−t2/2n).

Proof: Standard martingale concentration results (see
e.g. [27]) say that every sensitivity-1 function on a prod-
uct distribution is well concentrated around its expectation.
Specifically, for every h : {0, 1}n → R, and every product
distribution ν on X ,

Pr[|h(x)− Ex∼ν [h(x)]| > t] ≤ 2 exp(−t2/2n).

Applying this result to the function f(X, y) and setting g(y) =
Ex∈µ(X|Y=y)[f(x, y)] yields the result.

In other words, f(x, y) can be computed by Bob up to an
expected additive error of O(

√
n) without any communication,

provided that Alice’s input comes from a product distribution
(conditioned on Bob’s). Since the connection to unpredictable
bit sources (Lemma 1) requires that the inputs come from a
product distribution, we cannot get a lower bound better than
Θ(
√
n) from that approach.

IV. DIFFERENTIAL PRIVACY AND COMMUNICATION
COMPLEXITY

In this section we characterize differentially-private proto-
cols in terms of their communication complexity. Specifically,
we present bounds on the information cost and the parti-
tion bound in terms of the privacy parameter (Section IV-A
and IV-B). We then prove stronger separations between
information-theoretic and computational differential privacy
(Section IV-C). We also note that the message compression
technique of Barak et al. [16], implies that all differentially-
private protocols are compressible.

Furthermore, we show that if there exists a differentially-
private protocol with a constant number of rounds, it can
be compressed while keeping it differentially private (Sec-
tion IV-D). Finally, we show that low-communication proto-
cols can be converted into privacy-preserving ones with some
loss of accuracy (Section IV-E).

A. Differential Privacy and Information Cost

As a first tool of proving feasibility of differentially-private
protocol with certain accuracy, we establish a connection
between differential privacy and the concept of information
cost as defined by Bar-Yossef et al. [14] (based on a earlier
concept introduced by Chakrabarti et al. [28].)

The definition of information cost is based on the following
standard definitions of mutual information and conditional
mutual information:

Definition 8 (Mutual Information). Given two random vari-
ables X and Y over the same probability space, their mutual
information is defined as follows:

I(X;Y ) = H(X)−H(X | Y ),

where H is the entropy. The conditional mutual information
is I(X;Y | Z) = H(X | Z)−H(X | Y Z).

Intuitively, I(X;Y ) captures the amount of information
shared by two variables. For example, if the variables are
identical, their mutual information equals their entropy; if they
are independent, it is zero. Mutual information motivates the
definition of information cost for protocols, which corresponds
to the amount of information that is learnt about the players’
inputs from the messages communicated.

Definition 9 (Information Cost). Given a distribution µ over
inputs X and Y to the two parties of protocol P , we define
information cost of P for distribution µ as

ICostµ(P ) = I(XY ; Π(X,Y )),

where Π(X,Y ) is the random transcript of the protocol on
input (X,Y ).

By the definition of differential privacy, none of the input
bits in a differentially-private protocol are fully revealed to the
other party. This implies the following natural bound on the
information cost of a differentially-private protocol. We defer
the proof to the full version.

Proposition 7. If P (x, y) has ε-differential privacy, where
x, y ∈ Σn for a finite alphabet Σ, then for every distribution µ
on Σn×Σn, the information cost of P is bounded as follows:

ICostµ(P ) ≤ 3εn.

If Σ = {0, 1} and µ is the uniform distribution, then the bound
can be improved to ICostµ(P ) ≤ 1.5ε2n.

The following proposition, also proved in the full version,
extends this result to (ε, δ)-differential privacy.

Proposition 8. If P (x, y) has (ε, δ)-differential privacy, where
x, y ∈ Σn for a finite alphabet Σ and ε < 1, then for every
distribution µ on Σn × Σn, the information cost of P is
bounded as follows:

ICostµ(P ) ≤ (10ε+ 6δ|Σ| · (log |Σ|)/ε)n.

Compressing Differentially-Private Protocols The information
cost of protocol is closely related to the communication com-
plexity since I(XY ; Π(X,Y )) ≤ H(Π(X,Y )) ≤ |Π(X,Y )|
for every distribution on X and Y . Barak et al. recently proved
a bound in the other direction.

Theorem 9 (Barak et al. [16]). For every product distribution
µ, for every protocol randomized P with output out(P ), and
every γ > 0, there exists functions fA, fB , and protocol Q



Min.
∑
z∈Z

∑
R∈R wz,R

subject to∑
R:(x,y)∈R wf(x,y),R ≥ 1− γ ∀(x, y) ∈ Supp(f)∑

R:(x,y)∈R
∑
z∈Z wz,R = 1 ∀(x, y) ∈ X × Y

wz,R ≥ 0 ∀z ∈ Z, R ∈ R

Fig. 1. Linear program for the Partition Bound for a function f .

such that

‖fA(X,Q(X,Y ))− out(P )‖SD < γ ,

Pr[fA(X,Q(X,Y )) 6= fB(Y,Q(X,Y ))] < γ , and

IContentµ(P )γ−1polylog(CC(P )/γ) ≥ CC(Q) ,

where IContentµ(P ) = I(X; Π(X,Y ) | Y ) + I(Y ; Π(X,Y ) |
X) which satisfies IContentµ(P ) = O(ICostµ(P )).

It follows that differentially private protocols can be com-
pressed.

Theorem 10. Let P be an ε-differentially private protocol
P with output out(P ) where the input (X,Y ) is distributed
according to an arbitrary product distribution µ. Then for
every γ > 0, there exists functions fA, fB , and a pro-
tocol Q such that ‖fA(X,Q(X,Y )) − out(P )‖SD < γ,
Pr[fA(X,Q(X,Y )) 6= fB(Y,Q(X,Y ))] < γ and CC(Q) ≤
3εγ−1n · polylog(CC(P )/γ).

B. Differential Privacy and the Partition Bound

Jain and Klauck [15] define the partition bound for a partial
function f : X × Y → Z . This bound is given by the linear
program in Figure 1. Here R = 2X × 2Y is the set of all
rectangles in X ×Y . Denoting by prtγ(f) the optimum of this
linear program, Jain and Klauck show that every randomized
γ-error public coin protocol computing f has communica-
tion complexity at least log prtγ(f). Moreover, they showed
that this lower bound dominates most other lower bounding
techniques in randomized communication complexity such as
(smooth) rectangle bound and (smooth) discrepancy bound
(see [15] for precise definitions of these bounds).

In this subsection, we show that for any differentially
private protocol computing a partial function f , the value
of the partition bound is small. Thus a proof that f has
large communication complexity using the partition bound also
shows that f has no ε-differentially private protocol for some
ε. Since the definition of the partition bound assumes that
the transcript determines the output of the protocol (this is
without loss of generality in communication protocols, but not
necessarily so in private communication protocols), we assume
that this is the case for the private protocol. A similar result
can be proved without this assumption for an appropriately
modified linear program.

We also note that considering partial functions allows us
to also capture protocols that compute approximations (as is
typically the case for differentially private protocols). For ex-
ample, a differentially private protocol that computes function
g to within additive error α whp yields, for any threshold

t, a differentially private protocol that computes the partial
function f whp, where f(x, y) = 1 when g(x, y) > t+α and
f(x, y) = 0 when g(x, y) < t− α.

The proof of the following result is deferred to the full
version.

Theorem 11. Suppose that an ε-differentially private protocol
P computes a partial function f : {0, 1}n×{0, 1}n → Z with
error probability at most γ. Then log prtγ(f) ≤ 3εn.

C. A Stronger Separation

In this section, we show that for worst case error, the gap
between computational and information-theoretic differential
privacy is essentially as large as possible. We first argue
that there are low sensitivity functions such that any protocol
approximating the function to a additive linear error must incur
linear information cost.

Theorem 12. There exists an absolute constant β > 0 such
that for every m, there is an efficiently computable function
f : {0, 1}m×{0, 1}m → R and distribution D over {0, 1}m×
{0, 1}m with the following properties:
(a) every protocol that outputs a βm additive approximation
to f with probability at least 9

10 over inputs from D must have
information cost at least βm.
(b) f has sensitivity 1, i.e., |f(x, y) − f(x′, y′)| ≤ |(x, y) −
(x′, y′)|H for every x, y, x′, y′.

Proof: We show that given a predicate function
g : {0, 1}n × {0, 1}n → {0, 1} and distribution Dg over
its inputs, we can transform it to a a sensitivity-1 function
fg : {0, 1}m × {0, 1}m → R, and a distribution D over its
inputs, for m

n constant. This transformation has the property
that every protocol approximating fg within error cm (for
some constant c > 0 to be determined) with probability (1−γ)
over D has information cost at least ICostDg,γ(g). Plugging
in a function g and distribution Dg with large information cost
would then imply the result.

We embed a large multiple of g in a low-sensitivity function
fg . We do so by first defining fg on the set of well-separated
points C ⊆ {0, 1}n, where C is the set of codewords of a
code with linear distance. Low sensitivity is then ensured by
interpolating the value of fg appropriately.

Let Enc : {0, 1}n → {0, 1}m be an encoding algorithm for
a linear-rate error-correcting code C with a decoding algorithm
Dec : {0, 1}m → {0, 1}n that works up to decoding radius δm
for some constant δ. Such codes exist with n = rm for some
constant r = r(δ) > 0. Let d(x,C) be the distance from x to
the closest codeword in C. We then define fg(x, y) ={
g(Dec(x),Dec(y)) · (δm− d((x, y), C)) if d((x, y), C) ≤ δm,

0 otherwise,

where we have used d((x, y), C) as shorthand for d(x,C) +
d(y, C). Note that when x and y are both codewords, fg(x, y)
is exactly δm · g(Dec(x),Dec(y)). As we move away from
C, fg(x, y) smoothly decays to 0. Moreover, since C has de-
coding radius δm, the function is well-defined and efficiently
computable: if any of Dec(x) or Dec(y) fails to decode, it



means that d(x,C) + d(y, C) > δm and the function is zero
by definition.

The distribution D is concentrated on the codewords with
pD(Enc(x),Enc(y)) = pDg (x, y).

We first argue that any communication protocol Pfg approx-
imating fg to within error less than δm/2 = δn/(2r) (with
probability (1 − γ) over D) yields a γ-error communication
protocol Pg for g on distribution Dg , with the same commu-
nication complexity. This is done in the natural way: in Pg ,
Alice and Bob on input (x, y) simply run the protocol Pfg on
inputs x′ = Enc(x) and y′ = Enc(y), and Alice outputs 0 if
her output fA(x′,ΠPfg

) in protocol Pfg is smaller than δm/2,
and 1 otherwise. Since fg(x′, y′) is equal to δm · g(x, y), if
Pfg has error less than δm/2 on (x′, y′), then∣∣∣fA(x′,ΠPfg

)− fg(x′, y′)
∣∣∣ < δm

2
,

in which case Alice’s output of Pg on (x, y) is exactly g(x, y).
A similar claim holds for Bob. From the definition of D it
follows that the failure probability of Pg is the same as that
of Pfg .

Next we bound the sensitivity of fg . Let (x1, y1) and
(x2, y2) be neighboring inputs and assume without loss of
generality that y1 = y2. The main observation is that
fg(·, y1) is zero except for small neighborhoods around certain
codewords, i.e., except for ∪x:g(x,Dec(y1))=1B(Enc(x), δm−
d(y1, C)). It is easily seen to have sensitivity 1 within each
ball, since d(x,C) has sensitivity 1. Since the decoding radius
of C is δm, these balls are disjoint. As fg is zero on the
boundary of these balls, the sensitivity is at most 1 everywhere.

Finally, plugging in any function g which has Ω(n) infor-
mation cost, e.g., the inner product function [14], we get the
desired result.

Combining this result with Proposition 7, we conclude

Theorem 13. There exists an absolute constant β > 0 such
that for every n, there is an efficiently computable function
f : {0, 1}n×{0, 1}n → R and a distribution D over its inputs,
with the following properties:
(a) for every ε < β/3, every ε-differentially private protocol
P must incur additive error at least βn with probability at
least 1

10 .
(b) for every ε, δ with ε + 1.2(δ/ε) < β/10, every (ε, δ)-
differentially private protocol P must incur additive error at
least βn with probability at least 1

10 .
(c) f has sensitivity 1, i.e., |f(x, y) − f(x′, y′)| ≤ |(x, y) −
(x′, y′)|H for every x, y, x′, y′.

D. Private Message Compression

In this section, we argue that for protocols with a constant
number of rounds, compression can be done while maintaining
differential privacy. The basic idea is for Alice (resp. Bob) to
use consistent sampling (dart throwing) [18], [19] from the
distribution µx (resp. µy) to pick a message to be sent. Instead
of sending the message itself which may be arbitrarily long,
Alice and Bob use shared randomness to pick the darts, so
that it suffices to send the index of the dart picked. We argue

that this can be done privately with small communication. We
defer the proof to the full version.

Theorem 14. Let P be an ε-differentially private protocol
with r rounds. Then for every δ > 0, there exists an O(rε)-
differentially-private protocol P ∗ that has communication
complexity O(r(εn+ log log 1

εδ )) and except with probability
rδ, simulates P perfectly. In other words, there exist functions
πx, πy such that Pr[πx(VIEWA

P∗(x, y)) = VIEWA
P (x, y)] ≥

1− rδ, and similarly for B.

E. From Low Communication to Privacy

The previous sections show that, loosely speaking, differ-
ential privacy implies low communication complexity. In this
section we demonstrate the converse: if there exists a protocol
for computing a sensitivity-1 function, the function can be
approximated in a differentially-private manner with error
proportional to the communication and round complexity of
the original protocol. The lower bound proven in Section IV-C
suggests that the linear dependency on the communication
complexity is best possible, at least without further restrictions
on the functionality, as there are sensitivity-1 functions that can
be computed exactly using communication C but cannot be
approximated by any differentially-private protocol with error
better than Ω(C).

Given a deterministic protocol for computing the sensitivity-
1 function f(x, y) we construct an ε-differentially-private
protocol by sampling messages of the new protocol using the
exponential mechanism [29]. The following result is proven
in the full version of the paper.

Theorem 15. Let P be a deterministic protocol with com-
munication complexity CC(P ) approximating a sensitivity-1
function f : Σn × Σn → Z with error bounded by ∆. Then
there exists an ε-differentially-private protocol with the same
communication complexity and the number of rounds which
computes f with expected additive error ∆ +O(CC(P )r/ε).

V. CONCLUSIONS AND OPEN PROBLEMS

We have investigated the limitations of two-party differential
privacy and exposed interesting connections to deterministic
extractors for Santha-Vazirani sources, as well as to communi-
cation complexity. In our first result we prove a lower bound on
accuracy of approximating the Hamming distance between two
vectors—the classical problem in two-party computations—
with two-sided guarantees of differential privacy. The lower
bound on the additive error, which is tight up to a loga-
rithmic factor, is proportional to Ω̃(

√
n) and matches the

recently obtained bound on accuracy of sublinear commu-
nication protocols [17]. The connection between differential
privacy and communication complexity seems to be a genuine
phenomenon, exemplified by the following results:
— We present bounds on the information cost and the

partition bound in terms of the privacy parameter. The
information cost bound, in combination with the message
compression technique of Barak et al. [16], implies
that all differentially-private protocols are compressible.



Furthermore, using existing bounds on the information
cost of specific communication problems allows us to
construct a function that exhibits the largest possible gap
between accuracy of optimal differentially-private and
computationally differentially-private protocols.

— Any deterministic protocol can be converted into a
differentially-private one with accuracy proportional to its
communication complexity and the number of rounds.

This work raises many new questions. There are connections
between two-party differential privacy and pan-privacy [30].
A pan-private algorithm requires not only that its output be
differentially private, but also that the internal state be differ-
entially private as well. In other words, the algorithm must
be privacy-preserving both inside and out. Such algorithms
can be viewed as one-pass streaming algorithms, where the
internal state is privacy-preserving at each point in time. (For
streaming purposes the size of the internal state should also
be kept small.) In [30], many important and natural statistics,
such as density estimation, were shown to be computable pan-
privately and with reasonable accuracy.

Our lower bound on the two-party complexity of the Ham-
ming distance function implies a lower bound on multi-pass
pan-private algorithms for density estimation, as well as for
other natural statistics. (While not defined in [30], it is also
natural to consider multi-pass pan-private algorithms.) Indeed,
by a straightforward reduction, a pan-private algorithm for
density estimation implies a two-party protocol for estimating
the Hamming distance of two binary strings, with similar error.
What further limitations for pan-privacy can be obtained?

Finally, we would like to strengthen Theorems 14 and 15
to be independent of the number of rounds of communication,
and extend Theorem 15 to randomized protocols.
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