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ABSTRACT
We put forth a new computational notion of entropy, which mea-
sures the (in)feasibility of sampling high entropy strings that are
consistent with a given protocol. Specifically, we say that the
i’th round of a protocol (A, B) has accessible entropy at most k,
if no polynomial-time strategy A∗ can generate messages for A
such that the entropy of its message in the i’th round has entropy
greater than k when conditioned both on prior messages of the
protocol and on prior coin tosses of A∗. We say that the protocol
has inaccessible entropy if the total accessible entropy (summed
over the rounds) is noticeably smaller than the real entropy of A’s
messages, conditioned only on prior messages (but not the coin
tosses of A). As applications of this notion, we

• Give a much simpler and more efficient construction of
statistically hiding commitment schemes from arbitrary one-
way functions.

• Prove that constant-round statistically hiding commitments
are necessary for constructing constant-round zero-knowledge
proof systems for NP that remain secure under parallel
composition (assuming the existence of one-way functions).
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1. INTRODUCTION
Computational analogues of information-theoretic notions have

given rise to some of the most interesting phenomena in the
theory of computation. For example, computational indistin-
guishability [11], which is the computational analogue of statistical
distance, enabled bypassing Shannon’s impossibility results on
perfectly secure encryption [28], and provided the basis for the
computational theory of pseudorandomness [3, 29]. A computa-
tional analogue of entropy, known as pseudoentropy, introduced by
Håstad, Impagliazzo, Levin, and Luby [16], was the key to their
fundamental result establishing the equivalence of pseudorandom
generators and one-way functions, and has also now become a basic
concept in complexity theory and cryptography.

In this work, we introduce another computational analogue of
entropy, which we call accessible entropy, and present several
applications of it to the foundations of cryptography. Before
describing accessible entropy (and a complementary notion of
inaccessible entropy), we recall the standard information-theoretic
notion of entropy and the computational notion of pseudoentropy
of Håstad et al.

1.1 Entropy and Pseudoentropy
Recall that the entropy of a random variable X is defined to

be H(X) := E
x

R←X
[log(1/Pr[X = x]), which measures the

number of “bits of randomness” in X (on average). We will
refer to H(X) as the real entropy of X to contrast with the
computational analogues that we study. Håstad et al. [16] say that
a random variable X has pseudoentropy (at least) k if there exists
a random variable Y of entropy (at least) k such that X and Y are
computationally indistinguishable.

The reason that pseudoentropy is interesting and useful is that
there exist random variables X whose pseudoentropy is larger than
their real entropy. For example, the output of a pseudorandom
generator G : {0, 1}` → {0, 1}n on a uniformly random seed has
entropy at most `, but has pseudoentropy n (by definition). Håstad
et al. proved that in fact, from any efficiently samplable distribution
X whose pseudoentropy is noticeably larger than its real entropy, it
is possible to construct a pseudorandom generator. By showing, in
addition, how to construct such a distribution X from any one-way
function, Håstad et al. prove their theorem that the existence of one-
way functions implies the existence of pseudorandom generators.

The notion of pseudoentropy is only useful, however, as a
lower bound on the “computational entropy” in a distribution.
Indeed, it can be shown that every distribution on {0, 1}n is
computationally indistinguishable from a distribution of entropy at



most poly(log n). While several other computational analogues of
entropy have been studied in the literature (cf., [2]), all of these are
also meant to serve as ways of capturing the idea that a distribution
“behaves like” one of higher entropy. In this paper, we explore a
way in which a distribution can “behave like” one of much lower
entropy.

1.2 Accessible Entropy
We motivate the idea of accessible entropy with an example.

Consider the following 3-message protocol between parties (A, B):

1. B selects a random function h : {0, 1}n → {0, 1}m from a
family of collision-resistant hash functions (where m � n)
and sends h to A.

2. A selects a random x
R←{0, 1}n, sets y = h(x), and sends y

to B.

3. A sends x to B.

Now, information-theoretically, A’s third message (namely x)
has entropy at least n −m conditioned on the previous messages
h, y, because y = h(x) reveals on m bits of information about x.
However, the collision-resistance property says that given the state
of A after the second message, there is at most one consistent value
of x that A can reveal with nonnegligible probability. (Otherwise,
A would be able find two distinct messages x 6= x′ such that
h(x) = h(x′).) This holds even if A is replaced by any polynomial-
time cheating strategy A∗. Thus, there is “real entropy” in x
(conditioned on the history) but it is “computationally inaccessible”
to A∗, to whom x effectively has entropy 0.

We generalize this basic idea to allow the upper bound on the
“accessible entropy” to be a parameter k, and to consider both the
real and accessible entropy accumulated over several rounds of a
protocol. In more detail, consider an m-round protocol (A, B),
and let (B1, A1, . . . , Bm, Am) be random variables denoting the
messages sent by A and B in an interaction where their coin tosses
are chosen uniformly at random. We define the real entropy of A
when interacting with B to beX

i

H(Ai|B1, A1, . . . , Bi),

where H(X|Y ) = E
y

R←Y
[H(X|Y =y)] is the standard notion of

conditional entropy.
To define accessible entropy, consider a probabilistic polynomial-

time cheating strategy A∗ that in each round, tosses some fresh
random coins si, computes and sends a message ai, and also
locally outputs a string wi that is supposed to be a “witness” to
the fact that A∗ is behaving consistently with the honest strategy A.
Specifically, for A∗ to “succeed”, each wi should be a sequences
of coin tosses for A that is consistent with all the messages ai

sent so far. For simplicity here in the introduction, we assume
that A∗ always outputs consistent witness strings wi. Now,
let (B1, S1, A1, W1, . . . , Bm, Sm, Am, Wm) be random variables
corresponding to the view of A∗ when interacting with B. Then we
define the accessible entropy achieved by A∗ to beX

i

H(Ai|B1, S1, A1, W1, . . . , Bi).

The key point is that now we compute the entropy conditioned not
just on the previous messages exchanged, but also on everything in
the local state/view of A∗ prior to the i’th round.

The collision resistance example given earlier shows there are
protocols where the computationally accessible entropy is much

smaller than the real Shannon entropy. Indeed, in that protocol, the
real entropy of A’s messages is n (namely, the total entropy in x),
but the computationally accessible entropy is at most m + neg(n),
where m � n is the output length of the collision-resistant hash
function. (Here we are counting the conditional entropy in all of
A’s messages for simplicity, but the definitions generalize naturally
if we only want to sum the conditional entropies over some subset
of rounds.) Thus, in contrast to pseudoentropy, accessible entropy
is useful for expressing the idea that the “computational entropy”
in a distribution is smaller than its real entropy. We refer to the
difference (real entropy)− (accessible entropy) as the inaccessible
entropy of the protocol.

The above informal definitions are simplified or restricted com-
pared to our actual definitions in several ways. First, we need to
determine how to measure the entropy in case the adversary A∗ fails
to provide a consistent witness wi. Second, in some of our results
it is beneficial to work with real min-entropy and/or accessible
max-entropy rather real and accessible Shannon entropy as defined
above, and formulating conditional versions of these measures is a
bit more delicate. Third, in cryptographic applications, one might
also want a definition of real entropy that holds even if B is replaced
by a cheating strategy B∗. The definitions generalize naturally to
this case, but we do not consider them in this extended abstract
for sake of simplicity. (In our applications below, we handle
cheating strategies by applying a known compiler at the end of our
constructions [13].)

1.3 Applications
Our main applications of accessible entropy are to the construc-

tion of commitment schemes, so we begin by describing those.

Commitment Schemes.
A commitment scheme is the cryptographic analogue of a safe.

It is a 2-party protocol between a sender S and a receiver R that
consists of two stages. The commit stage corresponds to putting
an object in a safe and locking it. In it, the sender “commits” to
a private message m. The reveal stage corresponds to unlocking
and opening the safe. In it, the sender “reveals” the message m and
“proves” that it was the value committed to in the commit stage
(without loss of generality by revealing coin tosses consistent with
m and the transcript of the commit stage).

Commitment schemes have two security properties. The hiding
property informally says that at the end of the commit stage, an
adversarial receiver has learned nothing about the message m,
except with negligible probability. The binding property says
that after the commit stage, an adversarial sender cannot produce
valid openings for two distinct messages, except with negligible
probability. Both of these security properties come in two flavors
— statistical, where we require security even against a computa-
tionally unbounded adversary, and computational, where we only
require security against feasible polynomial-time adversaries.

Statistical security is preferable to computational security, but
it is impossible to have commitment schemes that are both sta-
tistically hiding and statistically binding. So instead we have to
settle for one of the two properties being statistical and the other
being computational. Statistically binding (and computationally
hiding) commitments have been well-understood for a long time.
Indeed, Naor [18] showed how to build a 2-message statistically
binding commitment using any pseudorandom generator; and thus,
in combination with the construction of pseudorandom generators
from any one-way function [16], we obtain 2-message statistically
binding commitments from the minimal assumption that one-way
functions exist.



As we will describe below, our understanding of statistically
hiding commitments has lagged behind. In this paper, we show
that they are closely connected with the notion of inaccessible
entropy, that is, with protocols having a gap between real entropy
and accessible entropy. One direction is easy to see. Consider
a statistically hiding commitment scheme in which the sender
commits to a message of length k, and suppose we run the protocol
with the message m chosen uniformly at random in {0, 1}k. Then,
by the statistical hiding property, the real entropy of the message
m after the commit stage is k − neg(n). On the other hand,
computational binding property says that the accessible entropy of
m after the commit stage is at most neg(n).

Our main technical contribution is a converse to the above
observation.

Theorem 1.1 (inaccessible entropy to commitment, informal). If
there is an efficient protocol (A, B) in which the real entropy of A’s
messages is noticeably larger than their accessible entropy, then
statistically hiding commitment schemes exist.

Actually, since it gives us better parameters in the applications,
we don’t prove the above theorem for accessible Shannon entropy
(as defined above), but prove it for accessible max-entropy (defined
in the body of the paper). Indeed, for accessible max-entropy, we
can preserve the property that the protocol has a constant number
of rounds.

Theorem 1.2 (inaccessible entropy to commitment in constant
rounds, informal). If there is an efficient constant-round protocol
(A, B) in which the real entropy of A’s messages is noticeably
larger than their accessible max-entropy, then constant-round
statistically hiding commitment schemes exist.

Our proof of this theorem proceeds in a few modular steps:

1. (Entropy Equalization) First, using sequential repetition with
a “random offset,” we convert the protocol into one where
we know the real entropy in each round (rather than just
knowing the total entropy), and there remains a noticeable
gap between the real entropy and the accessible (max-
)entropy. This step blows up the number of rounds, so for
constant-round protocols, we use a different approach: we
try “all possibilities” for how the real entropy is divided
among the rounds, and combine the resulting commitment
schemes in a standard way at the end.

2. (Gap Amplification) We repeat the protocol many times
in parallel, which has the effect of (a) converting the real
entropy to real min-entropy, and (b) amplifying the gap
between the real entropy and accessible (max-)entropy.

3. (m-phase Commitment) By applying a constant-round hash-
ing protocol in each round (based on the interactive hashing
protocol of [4] and universal one-way hash functions [20,
27]), we obtain an m-phase commitment scheme. This
consists of m sequentially executed commitment protocols
such that each commit stage is statistically hiding and no
polynomial-time strategy can break the binding in all m
phases. (This definition is inspired by related, but more
complex, notions introduced in [21, 14].)

4. (Standard Commitment) We convert the m-phase commit-
ment to a standard statistically hiding commitment scheme
by running it many times in parallel, and in each execution
having the receiver randomly decide which phase will be
used for the actual commitment. (This is similar to a

construction in [14], except that we show that this conver-
sion can be combined with parallel repetition to obtain full
computational binding in one shot, rather than first obtaining
weak binding and then amplifying by sequential repetition.)

Statistically Hiding Commitments from One-Way Func-
tions.

Recently, it was shown that statistically hiding commitment
schemes can in fact be constructed from any one-way function [14].
However, the construction was very complicated and inefficient.
Here we obtain a much simpler and more efficient construction, by
combining Theorem 1.1 with the following:

Theorem 1.3 (one-way function to entropy gap, informal). Given
any one-way function f : {0, 1}n → {0, 1}n, we can construct an
O(n/ log n)-round protocol (A, B) in which the real entropy of A’s
messages is noticeably larger than their accessible (max-)entropy.

The proof of this theorem uses a simple variant of the inter-
active hashing protocol of [19], which was designed to construct
statistically hiding commitments from one-way permutations. A
(different) variant of the [19] protocol was also used as the first step
in the previous construction of statistically hiding commitments
from one-way functions in [14]. Specifically, it was used to
obtain a “weakly hiding 2-phase commitment scheme” (for a
slightly different notion of 2-phase commitment scheme than
the one we use). The main complications there came from
the process of amplifying the “weak hiding” property of this 2-
phase commitment, which was done through a complex recursive
construction. The main source of our simplification is that the
property of having a gap between real entropy and accessible
entropy is much more well-suited to amplification, and indeed it
can be achieved through just parallel repetition as described above.

In addition to being simpler, our protocol is also more efficient.
Specifically, we obtain an O((n/ log n)2)-round protocol, whereas
the previous construction gave a large unspecified polynomial
number of rounds. Moreover, if we allow the protocol to use
nonuniform advice, we obtain O(n/ log n) rounds, which is op-
timal for “black-box constructions” [12].

This construction also conceptually unifies the construction of
statistically hiding commitments from one-way functions with
the construction of statistically binding commitments from one-
way functions (the latter being due to [16, 18]): the first step
of both constructions is obtain a gap between real entropy and
“computational entropy” (pseudoentropy in the case of statistical
binding and accessible entropy in the case of statistical hiding),
which is then amplified by repetitions and finally combined with
various forms of hashing.

Commitments and Constant-Round Zero Knowledge.
One of the main applications of commitment schemes is to the

construction of zero-knowledge proof systems. (Throughout this
discussion, we refer to zero-knowledge proofs where the soundness
property is statistical, as in the standard definition of interactive
proof systems (as opposed to argument systems), but the zero-
knowledge property is computational.) The basic zero-knowledge
protocol for 3-Coloring and hence all of NP [9] utilizes statistically
binding commitments, and hence the protocol can be implemented
in a constant number of rounds assuming the existence of one-way
functions (since one-way functions imply 2-message statistically
binding commitments [16, 18]). Unfortunately, this protocol has a
large soundness error. It is natural to try to use parallel repetition
to reduce the soundness error, but zero knowledge is not preserved



under parallel repetition in general [5, 8]. However, we do know
how to construct zero-knowledge proofs for NP that remain secure
under parallel composition [7, 6] utilizing statistically hiding
commitments (used for the verifier to commit to its challenges
in advance). Thus, assuming the existence of constant-round
statistically hiding commitment schemes, we obtain constant-round
zero-knowledge proofs for NP that remain zero knowledge under
parallel composition.

It was unknown, however, whether constant-round statistically
hiding commitments are necessary for constant-round zero-knowledge
proofs that remain zero knowledge under parallel composition
(or even just have negligible soundness error), or if such zero-
knowledge proofs could be constructed from weaker assumptions
(such as the existence of one-way functions). We show that that
they are in fact necessary, if we restrict to zero knowledge proven
via “black-box simulation”.

Theorem 1.4 (zero knowledge to commitments in constant rounds,
informal). Suppose that one-way functions exist and that NP
has constant-round interactive proofs that are black-box zero
knowledge under parallel composition. Then there exist constant-
round statistically hiding commitment schemes.

We leave as interesting open questions whether constant-round
statistically hiding commitment schemes are necessary to just
achieve negligible soundness error, and whether the requirement
of black-box simulation can be eliminated.

There have been several other results deducing the existence of
commitment schemes from zero-knowledge proofs. The first is the
result of Ostrovsky and Wigderson [24], which shows that if there is
a zero-knowledge proof for a “hard-on-average” problem, then one-
way functions (and hence commitment schemes) exist. In contrast,
here we are willing to assume the existence of one-way functions,
and are interested in understanding whether certain kinds of zero-
knowledge proofs require stronger primitives (such as constant-
round statistically hiding commitments). More closely related are
the results of Ong and Vadhan [23], which imply that if there is
a statistical zero-knowledge proof for a hard-on-average problem,
then constant-round statistically hiding commitment schemes exist.
Our result is incomparable. On one hand, our result applies even
to computational zero-knowledge proofs. On the other, we assume
the existence of one-way functions and require a zero-knowledge
proof for specific NP language (based on the one-way function)
with many additional properties.1

The proof of this theorem roughly proceeds by showing that
the zero-knowledge protocol has gap between the real entropy of
the verifier’s messages and the accessible entropy of the verifier’s
messages, and then applying the construction of Theorem 1.2.
However, it turns out that we are not quite able to establish an
upper bound on the accessible max-entropy in general, but only
if we restrict attention to adversaries A∗ that “know” when they
have achieved high entropy and for which the high entropy property
holds in an arbitrary context (i.e. when interacting with an arbitrary
strategy B∗, not just the honest B). We refer to this notion as
“context-independent accessible max-entropy,” and it turns out to
suffice for the constructions of Theorems 1.1 and 1.2.

The intuition for the accessible entropy of the verifier’s messages
being small is that an adversary V ∗ achieving high accessible
entropy should be hard to simulate. Indeed, the only advantage
a black-box simulator has over a prover is its ability to “rewind”
1The results of [23] also imply that every statistical zero-
knowledge proof can be converted into one with the additional
properties we require (namely, constant rounds, parallel composi-
tion, black-box simulation, and an efficient prover).

the verifier. But a verifier V ∗ achieving accessible high accessible
entropy can “resample” new messages that are distributed similarly
to the real verifier’s messages every time it is rewound. The
infeasibility of simulating such “resampling” verifiers is shown
following the approach of Goldreich and Krawczyk [8], who
considered 3-round protocols and (constant-round) public-coin
protocols, settings in which perfect resampling is trivial.

Theorem 1.4 can be interpreted either as a negative result about
constructing constant-round parallel zero-knowledge proofs from
one-way functions (since constructing constant-round statistically
hiding commitments from one-way functions has been elusive,
and in fact cannot be done via a black-box construction [12]), or
as a positive result about constructing constant-round statistically
hiding commitments from one-way functions (the use of zero
knowledge for NP makes the construction non-black-box in the
one-way function, and hence may allow bypassing the lower bound
of [12]).

We note that due to space limitations, many constructions and
proofs are omitted in this extended abstract.

2. PRELIMINARIES

2.1 Random Variables
Let X and Y be random variables taking values in a discrete

universe U . We adopt the convention that when the same random
variable appears multiple times in an expression, all occurrences
refer to the same instantiation. For example, Pr[X = X] is
1. For an event E, we write X|E to denote the random variable
X conditioned on E. The support of a random variable X is
Supp(X) := {x : Pr[X = x] > 0}. X is flat if it is uniform on
its support. For an event E, we write I(E) for the corresponding
indicatory random variable, i.e. I(E) is 1 when E occurs and is 0
otherwise.

We write ∆(X, Y ) to denote the statistical difference (a.k.a.
variation distance) between X and Y , i.e.

∆(X, Y ) = max
T⊆U
|Pr[X ∈ T ]− Pr[Y ∈ T ]| .

If ∆(X, Y ) ≤ ε (respectively, ∆(X, Y ) > ε), we say that X and
Y are ε-close (resp., ε-far).

2.2 Entropy Measures
We will refer to several measures of entropy in this work. The

relation and motivation of these measures is best understood by
considering a notion that we will refer to as the sample-entropy:
For a random variable X and x ∈ Supp(X), we define the sample-
entropy of x with respect to X to be the quantity

HX(x) := log(1/Pr[X = x]).

The sample-entropy measures the amount of “randomness” or
“surprise” in the specific sample x, assuming that x has been
generated according to X . Using this notion, we can define the
Shannon entropy H(X) and min-entropy H∞(X) as follows:

H(X) := E
x

R←X

[HX(x)]

H∞(X) := min
x∈Supp(X)

HX(x)

We will also discuss the max-entropy H0(X) := log(1/|Supp(X)|).
The term “max-entropy” and its relation to the sample-entropy will
be made apparent below.

It can be shown that H∞(X) ≤ H(X) ≤ H0(X) with equality
if and only if X is flat. Thus, saying H∞(X) ≥ k is a strong way



of saying that X has “high entropy” and H0(X) ≤ k a strong way
of saying that X as “low entropy”.

Smoothed Entropies.
Shannon entropy is robust in that it is insensitive to small

statistical differences. Specifically, if X and Y are ε-close then
|H(X) − H(Y )| ≤ ε · log |U|. For example, if U = {0, 1}n and
ε = ε(n) is a negligible function of n (i.e., ε = n−ω(1)), then
the difference in Shannon entropies is vanishingly small (indeed,
negligible). In contrast, min-entropy and max-entropy are brittle
and can change dramatically with a small statistical difference.
Thus it is common to work with “smoothed” versions of these
measures, whereby we consider a random variable X to have high
entropy (respectively, low entropy) if X is ε-close to some X ′ with
H∞(X) ≥ k (resp., H0(X) ≤ k) for some parameter k and a
negligible ε.2

These smoothed versions of min-entropy and max-entropy can
be captured quite closely (and more concretely) by requiring that
the sample-entropy is large or small with high probability:

Lemma 2.1. 1. Suppose that with probability at least 1−ε over
x

R←X , we have HX(x) ≥ k. Then X is ε-close to a random
variable X ′ such that H∞(X ′) ≥ k.

2. Suppose that X is ε-close to a random variable X ′ such that
H∞(X ′) ≥ k. Then with probability at least 1 − 2ε over
x

R←X , we have HX(x) ≥ k − log(1/ε).

Lemma 2.2. 1. Suppose that with probability at least 1−ε over
x

R←X , we have HX(x) ≤ k. Then X is ε-close to a random
variable X ′ such that H0(X

′) ≤ k.

2. Suppose that X is ε-close to a random variable X ′ such that
H0(X

′) ≤ k. Then with probability at least 1 − 2ε over
x

R←X , we have HX(x) ≤ k + log(1/ε).

Think of ε as inverse polynomial or a slightly negligible function
in n = log(|U|). The above lemmas show that up to negligible
statistical difference and a slightly superlogarithmic number of
entropy bits, the min-entropy (resp. max-entropy) is captured by
lower (resp. upper) bound on sample-entropy.

2.3 Entropy with Failure
In defining accessible entropy, we will have an adversary A∗

attempting to generate a string x with maximum possible entropy,
and the adversary will also have to “justify” that the sample
generated is consistent with a given “honest” algorithm A. In case
the adversary fails to provide a proof, we would not want x to
contribute to the entropy. To account for this, we consider the
adversary to be generating a random variable X taking values in
U ∪ {⊥}, where ⊥ is used whenever the adversary fails to provide
a justification. Now, we do not simply want to measure the entropy
of X itself, because then an adversary may be able to increase the
entropy by sometimes refusing to provide a proof. For example,
suppose that the string generated by the adversary is always 0n,
but the adversary refuses to provide a justification half of the time.
Then H(X) = 1 but intuitively we should count the entropy as 0
(since the underlying string is always fixed).

To handle this, we consider modified variants of entropy that
treat the “failure” value ⊥ in a special way. In first reading, the
2The term “smoothed entropy” was coined by Renner and Wolf
[26] but the notion of smoothed min-entropy has commonly been
used (without a name) in the literature on randomness extractors
[22].

reader may choose to ignore the issue of entropy with failures
altogether (and simply concentrate on A∗ that always provides valid
justification). Nevertheless, the following definitions may be useful
even beyond our context.

For a random variable X taking values in U ∪ {⊥} and x ∈
U ∪ {⊥}, we define the (modified) sample-entropy to be

H∗X(x) :=

(
log 1

Pr[X=x|X 6=⊥]
= log Pr[X 6=⊥]

Pr[X=x]
if x 6= ⊥

0 if x = ⊥.

We define the (modified) Shannon entropy of X to be

H∗(X) = E
x

R←X

[H∗X(x)]

= H(X|I(X = ⊥)),

where I(X = ⊥) is the indicator random variable for X = ⊥.
This way of measuring entropy with respect to failure behaves as
we would expect, in that it agrees with Shannon entropy when there
is no failure, and entropy cannot be increased by failing more often.

Lemma 2.3. 1. If Pr[X = ⊥] = 0, then H∗(X) = H(X).

2. If X, X ′ are jointly distributed random variables taking
values in U ∪ {⊥} such that Pr[X ′ = X ∨ X ′ = ⊥] = 1,
then H∗(X ′) ≤ H∗(X).

Max-Entropy with Failures.
We will also consider a version of max-entropy that handles

failure. Here we will simply require that with probability at least
1− ε over x

R←X , we have H∗X(x) ≤ k. For this notion, it can be
shown that failing more often cannot increase entropy by much:

Lemma 2.4. Let X, X ′ be jointly distributed random variables
taking values in U ∪ {⊥} such that Pr[X ′ = X ∨X ′ = ⊥] = 1,

1. For every ε > 0, with probability at least 1−ε over x
R←X ′,

H∗X′(x) ≤ H∗X(x) + log(1/ε).

2. Suppose that with probability at least 1− ε over x
R←X , we

have H∗X(x) ≤ k. Then with probability at least 1− 2ε over
x

R←X ′, we have H∗X′(x) ≤ k + log(1/ε).

3. REAL VS. ACCESSIBLE ENTROPY OF
PROTOCOLS

In this section we formalize the notions of real and accessible
entropies of a protocol. As discussed in the introduction, these
entropies and the gap between them (i.e., the inaccessible entropy
of a protocol) play a pivotal role in our work. In addition, we will
give tools for manipulating accessible and real entropies.

Let us briefly recall the intuition behind these notions of entropy.
Let (A, B)(1n) be an m-round interactive protocol in which B
sends the first message. The common input 1n is the security
parameter, which we will often omit from the notation. Let
(B1, A1, . . . , Bm, Am) be a random variable denoting the tran-
script of the messages exchanged between A and B when both
parties’ coin tosses are chosen uniformly at random. Intuitively,
the real entropy of A with respect to (A, B) is the entropy in
A’s messages, where for each message Ai we take its entropy
conditioned on the partial transcript (B1, A1, . . . , Bi).

Consider now an adversary A∗ which interacts with B. At each
round, we ask what is the entropy of the next message of A∗

conditioned not only on the partial transcript of previous messages
but also on the entire view of A∗ (including previous coin flips).



A∗ is allowed to flip fresh random coins to generate its next
message and this is indeed the source of entropy in the message
(everything else in the view of A∗ is fixed). We call this quantity
the “accessible" entropy of A∗ with respect to (A, B). So that
the definition is meaningful, we insist that the messages of A∗

will be consistent with A and furthermore that A∗ will be able to
demonstrate this consistency. This is achieved by having A∗ locally
output (at each round) a string w such that when w is the random
input of A the messages A would have sent are identical to those
A∗ did send so far.

It is interesting to note that if we put no computational restric-
tions on A∗ then the entropy accessible to A∗ can always be as
high as the real entropy of (A, B). Simply, at each round A∗ can
sample a new string w that is consistent with its messages so far
and send a next message that is also consistent with w (i.e., send
the string that A would have sent given the partial transcript if its
random input was set to w). This strategy is not always possible
for a computationally bounded A∗, and indeed the interesting
protocols from the point of view of this work are protocols where
a computationally bounded A∗ can only access part of the real
entropy (i.e., there is non-negligible inaccessible entropy).

Note that in the above informal definitions (which we formalize
below), we only refer to an honest B. While we do so in
this preliminary version for simplicity, natural analogues of these
definitions for cheating B∗ can be given as well.

3.1 Real Entropy
In this paper we will be interested in lower bounds on the real

entropy. We will therefore define two variants — real Shannon
entropy and real min-entropy (which is particularly suited for lower
bounds on entropy). As we did in Section 2.2, we connect these two
notions through the notion of real sample-entropy. In other words,
for a fixed transcript we ask how surprising were the messages
sent by A in this particular transcript. We then get real Shannon
entropy by taking the expectation of this quantity over a random
transcript and the min-entropy by taking the minimum (up to
negligible statistical distance). An alternative approach would be
to define the notions through sum of conditional entropies (as we
do in the intuitive description in the introduction). This approach
would yield closely related definitions, and in fact exactly the same
definition in the case of Shannon entropy (see Lemma 3.3).

We say that a partial transcript t = (b1, a1, · · · , bj , aj) and a
sequence w of coin tosses is A-consistent if A would answer with
a1, . . . , aj if its coins were w and it received messages b1, . . . , bj .
We say that t is A-consistent if there exists a w such that t and w
are A-consistent.

Definition 3.1 (real sample-entropy). For an interactive algorithm
A and an A-consistent partial transcript t = (b1, a1, . . . , bi), de-
fine random variables Wi(t) and Ai(t) as follows. Let Wi(t) be se-
lected uniformly at random from the set {w : t and w are A-consistent},
and let Ai(t) = A(t; Wi(t)). For a fixed message ai ∈ Supp(Ai)
we define the real sample-entropy of ai given t to be

RealHA(ai|t) := HAi(t)(ai).

For a full transcript t = (b1, a1, . . . , bm, am) and a subset I ⊆
[m] of rounds, we define the real sample-entropy of t in the rounds
of I to be

RealHI
A(t) =

X
i∈I

RealHA(ai|b1, a1, . . . , bi).

Definition 3.2 (real entropy). For an interactive protocol (A, B)
as above and a subset I ⊆ [m] of rounds, we say that A has real

Shannon entropy at least k in the rounds of I with respect to (A, B),
if

E
t

R←(A,B)

h
RealHI

A(t)
i
≥ k.

In the case that I = [m], we omit it from the above (and the
following) notation.

We say that A has real min-entropy at least k in the rounds of I
with respect to (A, B), if there is a negligible function ε = n−ω(1)

(where n is the security parameter) such that

Pr
t

R←(A,B)

h
RealHI

A(t) ≥ k
i
≥ 1− ε(n).

We observe that the real Shannon entropy simply amounts to
measuring standard conditional Shannon entropy of A’s messages
when interacting with B.

Lemma 3.3. For an m-round interactive protocol (A, B), let
(B1, A1, . . . , Bm, Am) be a random variable denoting the tran-
script of the messages exchanged between A and B when both
parties’ coin tosses are chosen uniformly at random. Then

E
t

R←(A,B)

h
RealHI

A(t)
i

=
X
i∈I

H(Ai|B1, A1, . . . , Bi).

The next claim follows readily from [1, 25, 10]:

Lemma 3.4. Let A be an interactive algorithm that uses a random
tape of length k, which it always sends as its last message. Then for
every A-consistent transcript t, RealHA(t) = k. In particular, for
every interactive algorithm B the algorithm A achives real entropy
at least k with respect to (A, B).

3.2 Accessible Entropy
In this paper we will be interested in upper bounds on the ac-

cessible entropy. We will therefore define two variants - accessible
Shannon entropy and accessible max-entropy (which is particularly
suited for upper bounds on entropy). As in the case of real entropy,
we connect these two notions through the notion of accessible
sample-entropy. In other words, for a fixed view of the adversary
A∗ we ask how surprising were the messages sent by A∗. We
then get accessible Shannon entropy by taking the expectation of
this quantity over a random view and the max-entropy by taking
the maximum (up to negligible statistical distance). Here too, the
definitions obtained are closely related to the definitions one would
obtain by considering a sum of conditional entropies (as we do
in the intuitive description above). For the Shannon entropy, the
definitions would in fact be identical (See Lemma 3.7).

Consider an adversarial strategy A∗ that tosses its own fresh
random coins si in each round before sending ai, and then locally
outputs a sequence wi of coins for A as a “witness’ to the fact
that it is behaving consistently with A. So a partial view of
A∗ when interacting with B can be written in the form v =
(s0, b1, s1, a1, w1, . . . , bi, si, ai, wi). (Note that we also allow A∗

some additional random coins s0 at the start of the protocol.) For
such a partial view v and a round j ≤ i, define ΓA

j (v) to equal
aj if (b1, a1, . . . , bj , aj) is A-consistent with wj and to equal ⊥
otherwise. That is, we replace a message aj sent by A∗ with
the failure symbol ⊥ if it is not accompanied with a consistent
justification string wj . Recall that in Section 2.3, we formalized
notions that measure entropy (denoted H∗) in a way that discounts
entropy that may come from failing.3

3At a first reading of the following definition may be easiest to
parse when considering A∗ that never fails to supply a consistent
witness. In such a case, AccHA,A∗(ai|v) := HAi(ai).



Definition 3.5 (accessible sample-entropy). Let A∗ be an interac-
tive algorithm and let
v = (s0, b1, s1, a1, w1, . . . , bi) be an A∗-consistent partial view.
Define random variables (Si, Ai, Wi) by choosing Si uniformly at
random, and setting

(Ai, Wi) = A∗(s0, b1, s1, a1, w1, . . . , bi, Si).

For a fixed value ai ∈ Supp(Ai) ∪ {⊥}, we define the accessible
sample-entropy of ai given v as

AccHA,A∗(ai|v) := H∗ΓA
i (v,Si,Ai,Wi)

(ai).

For a view v = (s0, b1, s1, a1, w1, . . . , bm, sm, am, wm) and a
subset of rounds I ⊆ [m], we define the accessible sample-entropy
of v in the rounds of I to be

AccHI
A,A∗(v) :=

X
i∈I

AccHA,A∗(ΓA
i (v)|s0, b1, s1, a1, w1, . . . , bi).

Definition 3.6 (accessible entropy). For an m-round interactive
protocol (A, B) and I ⊆ [m], we say that A has accessible entropy
at most k in the rounds of I with respect to (A, B), if for every
PPT A∗,

E
v

R←viewA∗ (A∗,B)

[AccHI
A,A∗(v)] ≤ k

We say that A has accessible max-entropy at most k in the rounds
of I with respect to (A, B), if for every PPT A∗, there is a negligible
function ε = ε(n) such that

Pr
v

R←viewA∗ (A∗,B)
[AccHI

A,A∗(v) ≤ k] ≥ 1− ε(n).

Accessible entropy can also be expressed in terms of standard
conditional Shannon entropy.

Lemma 3.7. Let (A, B) be an m-round interactive protocol,
and let A∗ be an adversarial strategy as above. Define random
variables (S0, B1, S1, A1, W1, . . . , Bm, Sm, Am, Wm) denoting
the view of A∗ when interacting with B. Then

E
v

R←viewA∗ (A∗,B)

[AccHI
A,A∗(v)]

=
X
i∈I

H∗(ΓA
i (V )|S0, B1, S1, A1, W1, . . . , Wi−1, Bi).

PROOF. Similar to the proof of Lemma 3.3.

3.3 Manipulating Accessible and Real Entropy
In this section, we state two results on manipulating accessible

and real entropy. The first tool, given by Proposition 3.8 below,
deals with the affect of parallel repetition of a protocol on its
real (Shannon) entropy and accessible (max) entropy. One effect
of a t-fold parallel repetition (At, Bt) is that (for certain settings
of parameters) the gap between real and accessible entropy can
increase. The reason is that the real entropy is not much smaller
than t times the real entropy of (A, B) and the accessible entropy
is not much larger than t times the accessible entropy of (A, B).
Therefore, the difference between the quantities increases. A
second useful effect of parallel repetition is in turning real Shannon
entropy into real min-entropy. Note that the slight decrease in real
entropy is due to this move from Shannon entropy to min-entropy
(rather than from the parallel repetition itself).

Proposition 3.8 (gap amplification via parallel repetition). Let n
be a security parameter and π = (A, B) an m-round protocol. For
t ∈ poly(n) ∩ ω(log3 n), let πt = (At, Bt) be the t-fold parallel
repetition of π. Then, πt satisfies the following properties:

real entropy: For all i ∈ [m], if the real Shannon entropy of A
in round i with respect to π is at least kREAL, then the real
min-entropy of At in round i with respect to πt is at least
t · kREAL − ut2/3, where u is an upper bound on the length of
messages sent by A in π.

accessible max-entropy For any I ⊆ [m] and any s = ω(log n),
if A has accessible max-entropy at most kACC in the rounds
of I with respect to π, then At has accessible max-entropy at
most t · kACC + s ·m in the rounds of I with respect to πt .

The second tool, given by Proposition 3.9 shows how to turn
a protocol π = (A, B) for which a lower bound kREAL on its
real Shannon entropy is known to a different protocol (A, B) for
which a lower bound kREAL/m is known on the real Shannon
entropy of (almost all of the) individual messages. The price of
this transformation is in an increased round complexity (indeed
the transformation essentially consists of sequential repetition of
the original protocol). Since lower bounds for specific rounds
are needed for our transformation of inaccessible entropy to sta-
tistically hiding commitments, Proposition 3.9 will indeed come
useful. In cases where we will not want to pay the price of
increased round complexity we will instead employ non-uniform
advice (consisting of the individual bounds).

Proposition 3.9 (equalizing real entropy via sequential repetition).
Let n be a security parameter, π = (A, B) an m-round protocol.
For every t ∈ poly(n), there is a (t + 1) ·m-round protocol π′ =
(A, B) satisfying the following properties:

real entropy: Let I ′ = {m + 1, . . . , tm}. Suppose the real
Shannon entropy of A with respect to π is at least kREAL.
Then, for all i ∈ I ′, the real Shannon entropy of A in round
i with respect to π′ is at least kREAL/m.

accessible max-entropy If A has accessible max-entropy at most
kACC with respect to π, then A has accessible max-entropy at
most t · kACC with respect to π′.

In the protocol π′ = (A, B), B starts by picking a random offset
and then runs t − 1 sequential repetitions of π. Now, if we know
that kACC < (1 − 1/p) · kREAL for some polynomial p, then setting
t = 2p, we obtain π′′ = (A′, B′) where (1) for all i ∈ I ′, the real
Shannon entropy in round i w.r.t. π′′ is at least kREAL/m, and (2)
the accessible max-entropy of A′ w.r.t. π′′ is at most t · kACC <
t · kREAL − 2kREAL = kREAL

′− kREAL, where kREAL
′ = |I ′| · kREAL/m.

4. ENTROPY GAP TO COMMITMENT
In this section we present the main technical contribution of this

paper, showing how any protocol with a noticeable gap between its
real and accessible entropies can be converted into a statistically
hiding and computationally binding commitment scheme. First we
recall the definition of the latter:4

Definition 4.1. A (bit) commitment scheme (S, R) is an efficient
two-party protocol consisting of two stages. Throughout, both
parties receive the security parameter 1n as input.

COMMIT. The sender S has a private input b ∈ {0, 1}, which
she wishes to commit to the receiver R, and a sequence of coin
tosses σ. At the end of this stage, both parties receive as common
output a commitment z.
4We present the definition for bit commitment. To commit to
multiple bits, we may simply run a bit commitment scheme in
parallel.



REVEAL. Both parties receive as input a commitment z. S also
receives the private input b and coin tosses σ used in the commit
stage. This stage is non-interactive: S sends a single message to R,
and R either outputs a bit (and accepts) or rejects.

Definition 4.2. A commitment scheme (S, R) is statistically hiding
if

COMPLETENESS. If both parties are honest, then for any bit
b ∈ {0, 1} that S gets as private input, R accepts and outputs b at
the end of the reveal stage.

STATISTICAL HIDING. For every unbounded strategy R∗, the
distributions viewR∗(S(0), R∗) and viewR∗(S(1), R∗) are statisti-
cally indistinguishable.

COMPUTATIONAL BINDING. For every PPT S∗, S∗ succeeds
in the following game (breaks the commitment) with negligible
probability in n:

• S∗ interacts with an honest R in the commit stage, which
yields a commitment z.

• S∗ outputs two messages τ0, τ1 such that for both b = 0 and
b = 1, R on input (z, τb) accepts and outputs b.

The main theorem of this section is as follows:

Theorem 4.3 (restatement of Theorems 1.1, 1.2). Assume that one-
way functions exist. Then there exists an efficient transformation
that takes as input a security parameter 1n, an (efficient) m-
round interactive protocol5 π = (A, B), and unary parameters
1m, 1k and 1p, and outputs a O(mp)-round protocol Com with
the following guarantee: if the real Shannon entropy of A with
respect to π is at least k and the accessible max-entropy of A with
respect to π is at most (1−1/p)k, then Com is a statistically hiding
and computationally binding commitment scheme. Alternatively if
m = O(1), then Com can also be made to have O(1) rounds.6

The heart of the proof lies in following Lemma.

Lemma 4.4. Assume that one-way functions exist. Then there
exists an efficient transformation that takes as input a security
parameter 1n, an (efficient) m-round interactive protocol π =
(A, B), a set of indices I ⊆ [m] and a set of integers {`i}i∈I where
`i ≥ 3n for all i ∈ I , and outputs an O(m)-round commitment
scheme Com = (S, R) with the following properties:

hiding: If for all i ∈ I the real min-entropy with respect to π in
the i’th round is at least `i, then Com is statistically hiding.

binding: If the accessible max-entropy of A in the rounds of I
with respect to π is at most

P
i∈I `i − 3n |I|, then Com is

computationally binding.

Informally, Lemma 4.4 is used to prove Theorem 4.3 as follows:
we start by applying the “equalizing real entropy transformation"
(Proposition 3.9) on π to get an O(pm)-round protocol π′ for
which the entropy gap still exists and (almost) all of π′’s rounds
have the same known value of real entropy. Then we apply the
gap amplification transformation (Proposition 3.8) on π′ to get a
protocol π′′ where (almost) all of its rounds have large known value
of min-entropy, and the accessible max-entropy of the protocol is
5Given as a pair of circuits.
6By equipping the transformation with nonuniform advice, the
number of rounds of Com can be reduced to O(m) also in the
general case.

much smaller than the sum of the rounds’ min-entropy. Finally, we
apply Lemma 4.4 on π′′ to get an O(mp)-round statistically hiding
commitment.

In the case of a constant m, we skip the first “entropy equalizing”
step and rather apply Proposition 3.8 directly on π, to get a protocol
as π′′ above, but for which we have no handle of the value of the
(possibly different) min-entropies of each round. Since π and thus
π′′ is a constant round protocol, by applying Lemma 4.4 on π′′

for polynomially many possible values for the min-entropies whose
sum is “large enough” (this value is induced by the value of k), we
get polynomially many commitments that are all binding and at
least one of them is hiding. These commitment can be combined
in a standard way to get a single scheme that is statistically hiding
and computationally binding.

5. STATISTICALLY HIDING COMMITMENTS
FROM ONE-WAY FUNCTIONS

Theorem 5.1 (restatement of Theorem 1.3). Let f : {0, 1}n 7→
{0, 1}n be a one-way function, then there exists an efficient
O(n/ log n)-round protocol π = (A, B) for which the following
holds:

1. (A, B) has real Shannon entropy n with respect to π.

2. A has accessible max-entropy at most n − ω(log n) with
respect to π.

3. B is public coin.

As an immediate corollary of Theorem 5.1 above and Theo-
rem 4.3 we get an alternative and more round efficient construction
to the one-way function based statistically hiding commitment of
[14].

Corollary 5.2. Let f : {0, 1}n 7→ {0, 1}n be a one-way function,
then there exists an O(n2/ log2 n)-round statistically hiding and
computationally binding commitment scheme.

PROOF. (of Theorem 5.1) We assume for simplicity that n/ log n ∈
N, and let (SCIH, RCIH) be an instantiation of the computational
interactive hashing protocol given by [15, Protocol 3.6] (building
on [19]) described next.

Protocol 5.3 (computational interactive hashing protocol).
(SCIH, RCIH).

Common input: H - a family pairwise independent hash functions
from {0, 1}n to {0, 1}log n .

SCIH’s input: y ∈ {0, 1}n.
For i = 1 to n/ log n:

1. RCIH selects uniformly at random hi ∈ H and sends its
description to SCIH.

2. SCIH sends hi(y) back to RCIH.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We use the following fact about Protocol (SCIH, RCIH), which can
be deduced from [15, Theorem 4.1].

Proposition 5.4. Let f : {0, 1}n 7→ {0, 1}n be a one-way
function, and for j ∈ [n] let

Tj :=
n

y ∈ {0, 1}n : 2j−1 ≤
˛̨
f−1(y)

˛̨
< 2j

o
.

Then the following has negligible probability for every efficient
S∗CIH, j ∈ [n] and a constant c > 0: after n−j

log n
− c rounds, S∗CIH

outputs x0, x1 ∈ {0, 1}n such that f(x0) 6= f(x1) and both f(x0)
and f(x1) are in Tj and consistent with the protocol.



We let π be the following m = ( n
log n

+ 2)-round protocol:

Protocol 5.5. (A, B).
Common input: 1n.

1. A selects a random x ∈ {0, 1}n and set y = f(x).

2. The two parties run (SCIH(y), RCIH), with A and B acting
SCIH and RCIH respectively.

3. B sends a dummy message to A.

4. A sends y to B.

5. B sends a dummy message to A.

6. A sends x to B.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since the only random-coins of A are x, Lemma 3.4 yields
that A has real Shannon entropy n with respect to π. In or-
der to prove the Theorem, we need to show that the accessi-
ble max-entropy of A with respect to π is bounded by n −
ω(log n). Assume that a cheating A∗ outputs y ∈ Tj :=˘
y ∈ {0, 1}n : 2j−1 ≤

˛̨
f−1(y)

˛̨
< 2j

¯
. Proposition 5.4 yields

that for any c > 0, the values of the last (n − j)/ log n − c prior
to last messages of A∗ are determined given the first messages, and
thus their accessible entropy is negligble. We conclude the proof
by showing that the other messages do not contribute too much
accessible entropy to cover this loss.

6. STATISTICALLY HIDING COMMITMENTS
FROM CZKP

In this section, we establish that constant-round statistically
hiding commitments are necessary for constructing constant-round
zero-knowledge proof systems for NP that remain secure under
parallel composition (assuming the existence of one-way func-
tions):

Theorem 6.1 (restatement of Theorem 1.4). Suppose that nonuni-
formly secure one-way functions exist and that NP has constant-
round (computational) zero-knowledge proofs that are black-box
zero knowledge under parallel composition and that have an
efficient prover. Then, there exist constant-round statistically
hiding commitment schemes (with computational binding against
nonuniform adversaries).

We note that the converse is true, namely that constant-round sta-
tistically hiding commitment schemes imply constant-round black-
box zero-knowledge proofs for NP that remain zero-knowledge
under parallel composition [7, 6] as well as the existence of one-
way functions.

6.1 Proof overview
The proof of this theorem roughly proceeds by showing that

the zero-knowledge protocol has gap between the real entropy of
the verifier’s messages and the accessible entropy of the verifier’s
messages, and then applying the construction of Theorem 4.3. The
intuition for the accessible entropy of the verifier’s messages being
small is that an adversary V∗ achieving high accessible entropy
should be hard to simulate. Indeed, the only advantage a black-
box simulator has over a prover is its ability to “rewind” the
verifier. But a verifier V∗ achieving accessible high accessible
entropy can “resample” new messages that are distributed similarly
to the real verifier’s messages every time it is rewound. Following

Goldreich and Krawczyk [8], a simulator that successfully simu-
lates accepting transcripts against such a “resampling” verifier can
be turned into a prover strategy that convinces the real verifier to
accept, which by soundness is possible only when x ∈ L. This
enables us to distinguish YES and NO instances, contradicting
the hardness of the language under consideration. We note that
in [8] (as well as more recent applications of the approach [17]),
V∗ samples messages that are distributed identically to the real
verifier’s messages. Here we argue instead need to argue that
high accessible entropy implies that V∗’s messages are distributed
“similarly” to the real verifier’s messages; our analysis is inspired
by [1, 25, 10].

We now describe our approach in more detail:

Establishing an entropy gap.
We want to make an argument of the following kind: if V∗

achieves high accessible max-entropy while interacting with the
honest prover, then it also achieves high accessible max-entropy
while interacting with the black-box simulator. Once we prove
such a statement, we may proceed as in [17, 8] to construct a
computationally unbounded “simulation-based cheating prover” to
derive a contradiction to the soundness guarantee of the underlying
proof system. However, formalizing such an argument presents two
technical difficulties:

• First, “achieving high accessible max-entropy” is not an
efficiently verifiable property, so it is not clear a-priori that
the property is preserved under zero-knowledge simulation.

• Next, “achieving high accessible max-entropy” is an “on-
line” property, whereas the black-box simulator does not
interact with V∗ in an online manner.

For these reasons, we will work with a weaker notion of accessible
max-entropy, where we restrict attention to adversaries A∗ that
“know” when they have achieved high entropy as measured by
some predicate success that is applied to its view, and for which
the high entropy property holds in an arbitrary context (i.e. when
interacting with an arbitrary strategy B∗, not just the honest B).
We refer to this notion as “context-independent accessible max-
entropy.” The predicate success will be the efficiently verifiable
property used to address the first technical difficulty, and we will
reason about whether V∗ achieves high entropy while interacting
with the “simulation-based cheating prover,” which will play the
role of the afore-mentioned B∗. Unfortunately, we do not know
how to achieve gap amplification (Proposition 3.8) for context-
independent accessible max-entropy and as such, we are only able
to construct commitment schemes starting from zero-knowledge
proofs that remain secure under parallel composition.

From entropy gap to commitment scheme.
Next, we show that an upper bound on context-independent

accessible max-entropy is already sufficient to obtain a statistically
hiding commitment via the transformation in Section 4; that is, we
show that the transformation in Section 4 can start with a weaker
security guarantee and end with the same conclusion.
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