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1 Introduction

As first discovered by Shannon [Sha] for the case of encryption, most interesting cryptographic tasks
are impossible to achieve with absolute, information-theoretic security. Thus, modern cryptography
aims to design protocols that are computationally intractable to break. Specifically, following Diffie
and Hellman [DH], this is typically done by showing that breaking the protocol is as hard as some
intractable problem from complexity theory. Unfortunately, proving lower bounds of the sort needed
seems beyond the reach of current techniques in complexity theory, and indeed would require at
least proving P 6= NP.

Given this state of affairs, research in the foundations of cryptography has aimed to design
cryptographic protocols based on complexity assumptions that are as weak and general as possible.
This project was enormously successful in the 1980’s. In a beautiful sequence of works, it was shown
that many cryptographic primitives, such as pseudorandom generators, pseudorandom functions,
private-key encryption and authentication, digital signatures, (computationally hiding) commit-
ment schemes, and (computational) zero-knowledge proofs could be constructed from any one-way
function [HILL, GGM, Rom, Nao, GMW2], and moreover this complexity assumption is minimal
in the sense that each of these primitives (and indeed almost any cryptographic task) implies the
existence of one-way functions [IL, OW]. Moreover, it was shown that many of the remaining
primitives, such as public-key encryption, collision-resistant hashing, and oblivious transfer, could
not be reduced to the existence of one-way functions in a “black-box” manner [IR, Sim].

However, a few important primitives resisted classification into the above categories. That is,
it was only known how to build these primitives from seemingly stronger assumptions than the
existence of one-way functions, yet there was no black-box separation between these primitives and
one-way functions. In this work, we are interested in two such examples — statistically hiding
commitment schemes and statistical zero-knowledge arguments for NP.

1.1 Statistically Hiding Commitments

A commitment scheme defines a two-stage interactive protocol between a sender S and a receiver
R; informally, after the commit stage, S is bound to (at most) one value, which stays hidden
from R, and in the reveal stage R learns this value. The two security properties hinted at in this
informal description are known as binding (namely, that S is bound to at most one value after the
commit stage) and hiding (namely, that R does not learn the value to which S commits before
the reveal stage).

As with most cryptographic primitives, each of these security properties comes in two main fla-
vors — computational security, whereby a polynomial-time adversary cannot violate the prop-
erty except with negligible probability, and the stronger notion of statistical security, whereby
even a computationally unbounded adversary cannot violate the property except with negligible
probability. (An even stronger notion is that of perfect security, in which we do not even allow
a negligible probability of breaking the scheme.) Naturally, statistical security, when achievable, is
preferable to computational security. However, it can be shown that there do not exist commitment
schemes that are simultaneously statistically hiding and statistically binding. Thus, at best we can
hope for one of the two properties to be statistical and the other to be computational.

The complexity of statistically binding commitment schemes has been understood for a long
time; they can be constructed from any one-way function [Nao, HILL] and conversely, one-way
functions are necessary for commitment schemes, even with both security properties computa-
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tional [IL]. In this work, however, we are interested in statistically hiding commitments, which have
some advantages over statistically binding commitments. Specifically, when commitment schemes
are used in constructing larger protocols, one typically needs the binding property to ensure the
integrity of commitments that are opened during the protocol execution itself, and the hiding prop-
erty to ensure that the unopened commitments remain secret even after the protocol execution.
Thus, for the binding property, we need only be concerned with the adversary’s current resources,
and thus it may be safe for this property to be computational. For the hiding property, however,
we need to consider resources that the adversary may gain far into the future, and thus statistical
security is preferable.

Some of the most important examples of cryptographic protocols based on commitments are
the zero-knowledge protocols for proving membership in an arbitrary NP language [GMW2, BCC].
In the protocol of [GMW2], the hiding property of the commitment scheme translates to the
zero-knowledge property of the protocol (i.e. the verifier learns nothing other than the fact that
the assertion being proven is true), and the binding property of the commitment translates to the
soundness property of the protocol, (i.e. the prover cannot convince the verifier of a false assertion).
Thus, the existence of statistically hiding commitments implies that arbitrary NP statements can
be proven with statistical zero knowledge and computational soundness; that is, every language in
NP has a statistical zero-knowledge argument system [BCC, BCY, NOVY].

Using statistically hiding commitments and the resulting statistical zero-knowledge arguments
in known reductions [GMW2, GMW1], one can actually transform any two-party protocol that
provides statistical security for one of the parties against a passive (a.k.a. honest-but-curious)
adversary into one that provides statistical security for the same party against a malicious adversary
(while preserving computational security for the other party).

Perfectly hiding commitment schemes and perfect zero-knowledge arguments for NP were first
shown to exist based on specific number-theoretic assumptions [BCC, BKK, BCY, CDG, Ped] or,
more generally, based on any collection of claw-free permutations [GMR, GK]. The assumption
for statistically hiding commitment schemes and statistical zero-knowledge arguments was reduced
further to collision-resistant hash functions [NY, DPP]. Even though it seems intuitive that the
computational binding property of statistically hiding commitments should be closely related to
collision resistance, the beautiful work of Naor, Ostrovsky, Venkatesan, and Yung [NOVY] showed
that actually any one-way permutation can be used to construct a perfectly hiding commitment
schemes. Recently, Haitner et. al. [HHK+] reduced the assumption further by constructing sta-
tistically hiding commitment based on regular one-way functions with known preimage size, and
more generally on one-way functions where the preimage sizes can be efficiently approximated.
The question of whether an arbitrary, unstructured one-way function implies statistically hiding
commitments or statistical zero-knowledge arguments for NP, however, was left open.

1.2 Our results

In this paper, we resolve the complexity of statistically hiding commitments.

THEOREM 1.1
If one-way functions exist, then statistically hiding commitment schemes exist.

By Impagliazzo and Luby [IL], the existence of commitment schemes implies the existence of
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one-way functions and thus the above result is tight.
As discussed above, combining Theorem 1.1 and standard constructions of zero-knowledge pro-

tocols from commitments (cf., [BCC, BCY, NOVY, OV1]), we obtain our second main result:

THEOREM 1.2
If one-way functions exist,1 then every language in NP has a statistical zero-knowledge argument system.

The assumption that one-way functions exist also seems to be essentially minimal here: Os-
trovsky and Wigderson [Ost, OW] showed that a zero-knowledge argument system for a hard-
on-average problem implies the existence of one-way functions, and it follows from [OV1] that a
zero-knowledge argument system for a language outside of AM ∩ coAM (or even outside SZKP)
implies the existence of “nonuniform” one-way functions, where both the efficiency and security
refer to polynomial-sized circuits (and security holds for infinitely many input lengths).

To avoid a lengthy detour into zero knowledge, we omit the formal definitions and proofs
needed for Theorem 1.2, and instead refer to [OV1], where are our work plays a key role in proving
unconditional results about zero-knowledge arguments.

1.3 Our techniques

We begin by using one-way functions to construct a variant of commitment schemes called two-
phase commitment schemes, recently introduced by Nguyen and Vadhan [NV]. We then use this
two-phase commitment scheme together with universal one-way hash functions (whose existence
is also implied by the existence of one-way functions [Rom]) to construct the desired statistically
hiding commitment scheme.

1.3.1 Two-phase commitments from any one-way function

Two-phase commitment schemes are commitment schemes with two phases, each consisting of a
commit stage and a reveal stage. In the first phase, the sender commits to and reveals one value v1,
and subsequently, in the second phase, the sender commits to and reveals a second value v2. We
say that the two-phase commitment is hiding if both phases are hiding, and say that it is 1-out-
of-2-binding, symbolically written as

(
2
1

)
-binding, if the following holds: with high probability,

the sender will be forced to reveal the correct committed value in at least one of the phases (but
which of the two phases can be determined dynamically by the malicious sender). More specifically,
with high probability after the first-phase commit, there is a single value such that if the sender
decommits to any other value, then the second commitment is guaranteed to be binding (in the
standard sense).

Even though we draw upon [NV] for the notion of two-phase commitments, there are many dif-
ferences between the contexts of the two works and their constructions of two-phase commitments.
In [NV], the goal was to prove unconditional results about prover efficiency in zero-knowledge proofs
(specifically, that one can transform zero-knowledge proofs with inefficient provers into ones with
efficient provers). This was done by showing that every problem having a zero-knowledge proof
has an “instance-dependent” two-phase commitment scheme, where the sender and receiver get an

1The standard definitions of zero-knowledge and soundness are nonuniform notions of security, and thus this
theorem requires assuming the existence of one-way functions that are secure even against nonuniform adversaries.
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instance x of the problem as auxiliary input and we only require hiding to hold when x is a “yes
instance” and binding when x is a “no instance.” Here, we are giving conditional results (assuming
the existence of one-way functions) and are obtaining standard (as opposed to instance-dependent)
two-phase commitments. Moreover, the focus in [NV] is on statistically binding two-phase com-
mitments; thus here we need to develop new formulations to work with the computational binding
property.

Our initial construction, which gives a two-phase commitment scheme satisfying a “weak hiding”
property, is inspired by the construction of [NV]. Indeed, the second phase in [NV] was also
introduced to deal with non-regular functions (corresponding to “non-flat distributions” in their
setting), and our construction can be seen as applying the same idea to a variant of the protocol
of [HHK+]. However, in [NV], this construction immediately gives a “strong hiding” property,
whereas much of the technical work in the current paper comes from amplifying the “weak hiding”
property we obtain into a strong one.

1.3.2 From 1-out-of-2-binding commitments to standard commitments

We would like to use a two-phase commitment schemes to construct a (standard) commitment
scheme. A naive attempt would simply have the receiver randomly choose, after the first commit
phase, whether to stick with the first-phase commitment or to use the second-phase as the actual
commitment instead. The intuition is that since the commitment is

(
2
1

)
-binding, the sender cannot

cheat in both phases together and thus the receiver would catch a cheating sender with probability
half (which we can then boost using standard techniques). The problem is, however, that the sender
can decide in which phase he will cheat after knowing the receiver’s choice. Hence, the sender can
cheat successfully in both cases without violating the

(
2
1

)
-binding of the underlying protocol.

Our additional idea is to use a universal one-way hash function in order to force the sender to
decide in which phase it is about to cheat before knowing the receiver’s choice. Universal one-way
hash functions are a relaxation of collision-resistant hash functions that were defined by Naor and
Yung [NY] and shown to be constructible from any one-way function by Rompel [Rom]. (See also
[KK].) We show that the above problem can be solved by having the sender provide a universal one-
way hash of the secret he has committed to in the first phase. This turns out to (computationally)
determine whether the first or second phase will be binding while leaving enough entropy in the
first-phase secret to still achieve hiding.

1.4 Outline

We present the basic notations and definitions in Section 2. As a warm up, we present constructions
of statistically hiding commitments based on one-way permutations in Section 3 and from regular
one-way functions in Section 4. In Section 5, we show how to construct two-phase commitments
from unknown regular one-way function and in Section 6, we extend it to any one-way function.
Finally, In Section 7 we present our transformation from two-phase commitments to (standard)
statistically hiding commitments.
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2 Definitions

2.1 Basic notation

If X is a random variable taking values in a finite set U , then we write x
R←X to indicate that x is

selected according to X. If S is a subset of U , then x
R←S means that x is selected according to the

uniform distribution on S. We adopt the convention that when the same random variable occurs
several times in an expression, all occurrences refer to a single sample. For example, Pr[f(X) = X]
is defined to be the probability that when x

R← X, we have f(x) = x. We write Un to denote
the random variable distributed uniformly over {0, 1}n. The support of a random variable X is
Supp(X) = {x : Pr [X = x] > 0}. A random variable is flat if it is uniform over its support.
If X and Y are random variables, then X ⊗ Y denotes the random variable obtained by taking
independent random samples x

R← X and y
R← Y and outputting the pair (x, y). We write ⊗kX

to denote the random variable consisting of k independent copies of X. For an event E, X|E
denotes the random variable X conditioned on E. The statistical difference (also known as
the variation distance) between random variables X and Y taking values in U is defined to be
∆(X, Y ) = maxS⊂U |Pr [X ∈ S]− Pr [Y ∈ S]|. We say that X and Y are ε-close if ∆(X, Y ) ≤ ε.

A function µ : N → [0, 1] is called negligible if µ(n) = n−ω(1). We let neg(n) denote an
arbitrary negligible function (i.e., when we say that f(n) < neg(n) we mean that there exists a
negligible function µ(n) such that for every n, f(n) < µ(n)). Likewise, poly(n) denotes an arbitrary
function f(n) = nO(1).

For a probabilistic algorithm A, we write A(x; r) to denote the output of A on input x and
coin tosses r. In this case, A(x) is a random variable representing the output of A for uniformly
selected coin tosses. PPT refers to probabilistic algorithms (i.e., Turing machines) that run in
strict polynomial time. A nonuniform PPT algorithm is a pair (A, z̄), where z̄ = z1, z2, . . . is an
infinite sequence of strings in which |zn| = poly(n), and A is a PPT algorithm that receives pairs of
inputs of the form (x, z|x|). (The string zn is called the advice string for A for inputs of length n.)
Nonuniform PPT algorithms are equivalent to (nonuniform) families of polynomial-sized Boolean
circuits.

Two probability ensembles {Xn}n∈N and {Yn}n∈N are computationally indistinguishable if
for every PPT D, there exists a negligible function µ such that for all n ∈ N,

|Pr [D(1n, Xn) = 1]− Pr [D(1n, Yn) = 1]| ≤ µ(|x|).
Similarly, we say that {Xn} and {Yn} are statistically indistinguishable if the above is required
for all functions D (instead of only PPT D’s). Equivalently, {Xn} and {Yn} are statistically
indistinguishable if Xn and Yn are µ(n)-close for some negligible function µ and all n ∈ N.

An interactive protocol (A,B) consists of two algorithms that compute the next-message
functions of the (honest) parties in the protocol. Specifically, A(x, a, α1, . . . , αk; r) denotes the next
message αk+1 sent by party A when the common input is x, A’s auxiliary input is a, A’s coin
tosses are r, and the messages exchanged so far are α1, . . . , αk. There is a special messages, halt,
which immediately halts the interaction, at which time each party can compute one more message,
which is their private output. Sometimes we will refer to protocols with a joint output, which
is required to be a deterministic polynomial-time function of just the common input and transcript
of messages exchanged (and not the parties’ auxiliary inputs or private coin tosses). We say that
party A (resp., B) is probabilistic polynomial time (PPT) if its next-message function can be
computed in polynomial time (in |x|+ |a|+ |α1|+ · · ·+ |αk|).
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For an interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random process
obtained by having A and B interact on common input x, with (private) auxiliary inputs a and b
to A and B, respectively (if any), and with independent random coin tosses for A and B. We call
(A,B) polynomially bounded if there is a polynomial p such that for all x, a, b, the total length
of all messages exchanged in (A(a), B(b))(x) is at most p(|x|) with probability 1. Moreover, if B∗

is any interactive algorithm, then A will immediately halt in (A(a), B∗(b))(x) if the total length of
the messages ever exceeds p(|x|); we have the analogous requirement for B interacting with any A∗.

The number of rounds in an execution of the protocol is the total number of messages exchanged
between A and B, not including the final accept/reject message. We call the protocol (A,B)
public coin for A (resp., B) if all the messages sent by A (resp., B) are simply the output of
its coin tosses (independent of the history), except for the final halt message and A’s (resp., B’s)
private output, which is computed as a deterministic function of the transcript.

We associate several random variables with the interaction (A(a), B(b))(x). The private output
of A is denoted by outputA(A(a), B(b))(x), and viewA(A(a), B(b))(x) denotes A’s view of the inter-
action, i.e., its values are transcripts (γ1, γ2, . . . , γt; r), where the γi’s are all the messages exchanged
and r is A’s coin tosses. Similarly, outputB(A(a), B(b))(x) and viewB(A(a), B(b)) denote B’s pri-
vate output and view, respectively. The joint output, if any, is denoted by output(A(a), B(b))(x).

2.2 One-way functions

The most basic primitive of modern cryptography is a one-way function, which are functions that
are easy to compute but hard to invert.

DEFINITION 2.1
Let s : N → N be any function. A function f : {0, 1}∗ → {0, 1}∗ is a s(n)-secure one-way
function, or equivalently has security s(n), if f is computable in polynomial time and for every
PPT A,

Pr
y←{0,1}n

[A(1n, f(y)) ∈ f−1(f(y))] < 1/s(n),

for all sufficiently large n. Function f is a one-way function if f is s(n)-secure for every polyno-
mial s. If the above holds also for nonuniform PPT A, we say that f is nonuniformly secure.

One-way function f is a regular one-way function with preimage size g(n) if there exists
a function g : N→ N such that ∀z ∈ Supp(f(Un)), |{y ∈ {0, 1}n : f(y) = z}| = g(n).

Without loss of generality, we can consider only one-way functions (regular or non-regular) that
are length-preserving, that is for all y ∈ {0, 1}∗, |f(y)| = |y|. This is because general one-way
functions can be converted into ones that are length-preserving (cf., [Gol, p. 39]).

2.3 Commitment schemes

Another basic primitive of modern cryptography is a (bit) commitment scheme, which is a
two-stage protocol between a sender and a receiver. In the first stage, called the commit stage,
the sender commits to a private bit b. In the second stage, called the reveal stage, the sender
reveals b and proves that it was the bit to which she committed in the first stage. We require
two properties of commitment schemes. The hiding property says that the receiver learns nothing
about b in the commit stage. The binding property says that after the commit stage, the sender
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is bound to a particular value of b; that is, she cannot successfully open the commitment to two
different bits in the reveal stage.

DEFINITION 2.2
An commitment scheme is an interactive protocol Com = (S, R) with the following properties:

1. Scheme Com proceeds in two stages: a commit stage and a reveal stage. In both stages,
the sender S and the receiver R receive a security parameter 1n as common input.

2. At the beginning of the commit stage, sender S receives a private input b ∈ {0, 1}, which
denotes the bit that S is supposed to commit to. The commitment stage results in a joint
output, which we call the commitment c = output((S(b), R)(1n)), and a private output
for S, which we call the decommitment string d = outputS(S(b), R)(1n). Without loss of
generality, c can be taken to be the full transcript of the interaction between S and R, and d
to be the private coin tosses of S.

3. In the reveal stage, sender S sends the pair (b, d), where d is the decommitment string for bit
b. Receiver R accepts or rejects based on b, d, and c.

4. The sender S and receiver R algorithms are computable in polynomial time in the security
parameter n.

5. R will always accept (with probability 1) if both sender S and receiver R follow their pre-
scribed strategy.

A commitment scheme is public coin if all messages sent by the receiver are independent random
coins.

Next, we define the hiding and binding properties of commitment schemes.

DEFINITION 2.3
Commitment scheme Com = (S,R) is statistically [resp., computationally] hiding if for every
[resp., PPT] R∗, the ensembles {viewR∗(S(0), R∗)(1n)}n∈N and {viewR∗(S(1), R∗)(1n)}n∈N are sta-
tistically [resp., computationally] indistinguishable, where viewR∗(S(b), R∗) denotes the view of R∗

in the commit stage interacting with S(b).

DEFINITION 2.4
Commitment scheme Com = (S, R) is statistically [resp., computationally] binding if for every
[resp., PPT] S∗, there exists a negligible function ε such that the malicious sender S∗ succeeds in
the following game with probability at most ε(n):

On security parameter 1n, S∗ interacts with R in the commit stage obtaining commit-
ment c. Then S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the reveal stage,
R(0, d0, c) = R(1, d1, c) = accept.

If the above holds for every nonuniform PPT S∗, we say that Com is computationally binding
with nonuniform security.
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Constructing commitment schemes based on any one-way function. Naor [Nao] con-
structed commitment schemes that are computationally hiding and statistically binding from any
pseudorandom generator, which in turn can be based on any one-way function [HILL]. The main
result of this paper, Theorem 1.1, shows that commitments schemes that are statistically hiding
and computationally binding commitments can be based on any one-way function.

3 Statistically Hiding Commitments From One-Way Permutations

Consider a one-way permutation f : {0, 1}n → {0, 1}n. Naor, Ostrovsky, Venkatesan, and Yung [NOVY]
obtained a statistically hiding commitment scheme based on f by using a protocol called interactive
hashing as a subroutine. Our agenda for this section is as follows: we will first informally describe
interactive hashing and state the two main properties that we want from it; then, in Section 3.1
we give an informal description of the Naor et al. [NOVY] scheme, henceforth called the NOVY
commitment scheme; and finally, in Section 3.2, we give a formal definition of interactive hashing
and a protocol satisfying that definition.

Interactive hashing is a protocol between a sender SIH and receiver RIH. The sender begins
with a private input z, and at the end both parties outputs z0 and z1 such that z ∈ {z0, z1}.
Informally, an interactive hashing protocol has the following two properties:

1. Hiding : if the sender’s private input z is uniformly random, then every receiver, even computationally-
unbounded malicious ones, does not learn which of z0 or z1 equals to z, and

2. Binding : the sender, including PPT malicious ones, can only control the value of at most one
of the two outputs, and the value of the other output that it does not control is uniformly
distributed.

3.1 The NOVY commitment scheme

Using an interactive hashing protocol as a subroutine, Naor et al. [NOVY] constructed the following
statistically hiding commitment scheme.

1. S chooses a uniform x ← {0, 1}n, and computes z = f(x).

2. S and R engage in an interactive hashing protocol. Let z0 and z1 be the common outputs,
and let z = zd, for some d ∈ {0, 1}, be S’s private output.

3. To commit to bit b, S sends c = b⊕ d to R.

4. To decommit, S sends b, c, d, and x to R. R verifies the decommitment by checking if c = b⊕d
and zd = f(x).

Let us informally argue why the above scheme constitutes a statistically hiding and computationally-
binding commitment. First, we argue its hiding property. We have mentioned that z is uniform in
{0, 1}n because f is a permutation and x is chosen uniformly in {0, 1}n. By the hiding property of
interactive hashing, even a computationally-unbounded malicious receiver does not know if z = z0

or z = z1, or equivalently, it does not know if d = 0 or d = 1. Therefore, the scheme is statistically
hiding. Next, we argue its binding property. By the binding property of interactive hashing, at
least one of the outputs, say zα, is uniform in {0, 1}n and outside the sender’s control. Therefore if
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the sender is able to decommit to both 0 and 1, it must find a preimage of zα. This is equivalent
to finding a preimage of f(Un), and this task is computationally infeasible since f is a one-way
permutation. Hence, the scheme is computationally binding.

3.2 Interactive hashing

Interactive hashing was introduced by Ostrovsky, Venkatesan, and Yung [OVY] in the context of
oblivious transfer protocols. As mentioned above, it was applied to the construction of statistically
hiding commitments by Naor et al. [NOVY], and it will also prove to be a powerful and useful
tool in our result. For our application, we will need the sender to commit to multiple bits in one
execution of interactive hashing. Consequently, we extend the notion of interactive hashing to
allow multiple outputs (instead of just two output strings). Since the number of outputs could be
possibly superpolynomial, we succinctly describe the set of outputs as the image of a polynomial-
sized circuit C : {0, 1}k → {0, 1}q, where k and q are polynomially related to the security parameter.
(We will not actually need superpolynomially many outputs in this paper, but use this more general
formulation because it may be useful in future work.)

In addition to allowing for multiple outputs, our application of interaction hashing also re-
quires a more refined notion of computational binding than the one provided by Naor, Ostrovsky,
Venkatesan, and Yung [NOVY].2 It is for this reason we define the notion of what it means to be
a witness for a given relation W as follows: For a relation W , define the set of witnesses for z
as Wz = {x : W (z, x) = 1}, and we naturally refer to any x ∈ Wz as a witness for z.

DEFINITION 3.1
An interactive hashing protocol with multiple outputs is a polynomial-time protocol (SIH, RIH)
where both parties receive common inputs (1q, 1k) and SIH receives a private input z ∈ {0, 1}q. At
the end of the interaction, the common output is a polynomial-sized circuit C : {0, 1}k → {0, 1}q,
and the private output of SIH is a string d ∈ {0, 1}k. We call q the input length, and k the output
length. The protocol (SIH, RIH) has to satisfy the following security properties.

1. Correctness: for all R∗ and all z ∈ {0, 1}q, it is the case that C(d) = z, where C =
(SIH(z), R∗)(1q, 1k) is the common output, and d = outputSIH

(SIH(z), R∗) is the private
output of SIH.3

2. Hiding : for all R∗, random variables (V, Z) and (V, Uk) are identically distributed, where
the view of receiver R∗ is V = viewR∗(SIH(Uq), R∗), and the private output of SIH is Z =
outputSIH

(SIH(Uq), R∗).

3. Binding : there exists an oracle PPT algorithm A such that for every adversary S∗ and any
relation W , denoting the common output as C = (S∗, RIH)(1q, 1k), and private output of S∗

as ((x0, d0), (x1, d1)) = outputS∗(S∗, RIH), if it is the case that

Pr[x0 ∈ WC(d0) ∧ x1 ∈ WC(d1) ∧ d0 6= d1] > ε ,

2Although the notion of interactive hashing was introduced by Ostrovsky et al. [OVY], it was Naor et al. [NOVY]
who proved a computational binding property of interactive hashing that allows for its application to statistically
hiding commitments based on any one-way permutation.

3The correctness property of protocols is typically defined for honest parties, in our setting this would be SIH and
RIH. Our applications, however, need a stronger correctness property that would hold against malicious receivers R∗.
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where the above probability is over the coins of RIH and S∗, then it is also the case that

Pr
z←{0,1}q

[AS∗(z, 1q, 1k, ε) ∈ Wz] > 2−k · (ε/q)O(1) .

REMARK 3.2
We make three remarks regarding Definition 3.1.

1. The security requirements should hold for computationally unbounded R∗ (for correctness
and hiding) and computationally unbounded S∗. In addition, the relation W need not be
polynomial-time computable.

2. To simplify notation, we often write AS∗(z), or even A(z), to denote AS∗(z, 1q, 1k, ε).

3. Although the private output of the honest sender SIH is always a string d, the private output
of the cheating sender S∗ is arbitrary; hence, we can assume without loss of generality that
S∗ breaks binding by producing two pairs of strings (x0, d0) and (x1, d1).

The interactive hashing protocol given in [OVY, NOVY], henceforth called the NOVY Interac-
tive Hashing, satisfies Definition 3.1 with k = 1. To obtain an interactive hashing protocol with
multiple outputs (i.e., the case when k > 1), we simply end the NOVY Interactive Hashing protocol
k − 1 rounds earlier.

PROTOCOL 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interactive hashing with multiple outputs (SIH, RIH).

Inputs:

1. Input length 1q and output length 1k, both given as common input.

2. String z ∈ {0, 1}q, given as private input to sender SIH.

Protocol:

RIH: Select h0, h1, . . . , hq−k−1 such that each hi is a random vector over GF[2] of the form 0i1{0, 1}q−i−1

(i.e., i number of 0’s followed by a 1, and random choice for the last q − i− 1 positions).

For j = 0, . . . , q − k − 1, do the following:

RIH → SIH: Send hj .
SIH → RIH: Send cj = 〈hj , z〉.

Output:

• Common output is a circuit C : {0, 1}k → {0, 1}q computing an affine transformation whose
image is {z : 〈hj , z〉 = cj ∀j = 0, . . . , q − k − 1}.

• Private output of SIH is a string d ∈ {0, 1}k such that C(d) = z. (In fact, d can be taken to
be the last k bits of z.)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

THEOREM 3.4
There exists an interactive hashing protocol with multiple outputs, namely Protocol 3.3.

The correctness of Protocol 3.3 is easy to see. Hence, we divide the proof of this theorem into
lemmas establishing the hiding and binding properties of Protocol 3.3.

LEMMA 3.5
Protocol 3.3 satisfies the hiding property of Definition 3.1. In other words, letting interactive hashing
(SIH, RIH) be as in Protocol 3.3, we have for all R∗, (V, Z) is distributed identically to (V, Uk), where
V = viewR∗(SIH(Uq), R∗) is the view of receiver R∗, and Z = outputSIH

(SIH(Uq), R∗) is the private
output of SIH.

Proof. The view of any R∗ will be the hash functions h0, h1, · · · , hq−k−1 together with SIH’s re-
sponses c0, c1, . . . , cq−k−1. Given queries h0, h1, · · · , hq−k−1 from R∗, we show that there are 2q−k

possible y’s that would make SIH(y) respond to c0, c1, . . . , cq−k−1.
Consider the matrix H = (h0, h1, · · · , hq−k−1) whose rows are the hi’s, vector c = (c0, c1, . . . , cq−k−1),

and the equation Hy = c. Since hi is of the form 0i1{0, 1}q−i−1, the first q − k columns of the
matrix are linearly independent. Hence, any setting of the last k bits of y, will fully determine the
first q − k bits of it. Since the output of SIH, denoted as z, is the last k bits of its private input y,
any z ∈ {0, 1}k is equally as likely given the view of R∗. ¤

LEMMA 3.6
Protocol 3.3 satisfies the binding property of Definition 3.1. That is, letting interactive hashing
(SIH, RIH) be as in Protocol 3.3, there exists a oracle PPT algorithm A such that:

For every S∗ and any relation W , denoting the common output as C = (S∗, RIH)(1q, 1k),
and private outputs of S∗ as ((x0, y0), (x1, y1)) = outputS∗(S∗, RIH), if it is the case that

Pr[x0 ∈ WC(y0) ∧ x1 ∈ WC(y1) ∧ y0 6= y1 ∈ {0, 1}k] > ε ,

where the above probability is over the coin tosses of RIH and S∗, then it is also the case
that

Pr
z←{0,1}q

[AS∗(y, 1q, 1k, ε) ∈ Wz] = Ω(ε2q−82−k) .

Proof. Note that C(y0) and C(y1) are two distinct elements in {0, 1}q and that both elements are
consistent with the transcript of the protocol, i.e, an honest SIH getting each of this elements as
input would have acted in the same way as S∗ does in the interaction. Thus, we are in the setting
of the recent interactive hashing theorem presented by Haitner and Reingold [HR1] and the proof
follows by [HR1, Theorem 4.2]. ¤
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3.2.1 Information-theoretic bounds

We think of the string d as a k-bit string commitment associated to one of the 2k outputs strings,
namely z = C(d), and a witness x ∈ Wz = WC(d) as a decommitment to d. Intuitively, the
knowledge of x gives the sender the ability to decommit to d. The binding property, read in its
contrapositive, says that if it is hard to find a witness for a uniformly random string z, then it is
hard for a sender to successfully decommit to two different values. Notice that this property holds
even if the set of z’s for which is it hard to find a witness is not fixed in advance, but depends on
the algorithm trying to find a witness for z (namely, an element in Wz). In several places, however,
we will only need the special case of a static set of z’s as captured in the following lemma.

LEMMA 3.7
(Binding for Static Sets.) For any protocol (SIH, RIH) satisfying the binding condition of Defini-
tion 3.1, the following holds: For all S∗ and any set Γ ⊆ {0, 1}q, denoting the common output as
C = (S∗, RIH)(1q, 1k), we have

Pr[∃d0 6= d1 such that C(d0), C(d1) ∈ Γ] < O(q4) · (µ(Γ) · 2k)1/2

where the above probability is taken over the coins of S∗ and RIH.

Setting k = 1 in the above lemma gives an information-theoretic bound of the NOVY Interactive
Hashing; information-theoretic bounds on NOVY Interactive Hashing were studied in the context
of memory-bounded oblivious transfer [CCM, DHRS, CS]. Our bound is not tight, but suffices for
our applications. For tighter bounds, we refer the reader to [CCM, CS], or for a constant-round
interactive hashing protocol that is binding for static sets, we refer the reader to [DHRS].

Compare the bound of the Lemma 3.7 to the case where the adversarial sender S∗ had control
of only one output string. This means that the rest of the 2k − 1 outputs strings are distributed
uniformly on {0, 1}q, and hence the bound would be µ(Γ) · (2k − 1). The reason for this is that S∗

will make the string that it controls lie in Γ, and the probability that at least one of the rest of the
2k − 1 strings lie in Γ is at most µ(Γ) · (2k − 1), by a union bound argument. The above bound
is almost as good, and in particular if µ(Γ) is negligible and k logarithmic, both probabilities are
negligible.

Proof of Lemma 3.7. Define the relation W = {(a, b) : a ∈ Γ}, that is W (a, b) = 1 if a ∈ Γ (for all
values of b), and 0 if a /∈ Γ (no matter what the value of b is). Suppose there exists an S∗ that
with probability ε, produces two elements d0 6= d1 such that both C(d0), C(d1) ∈ Γ. Then, by the
binding condition of Definition 3.1, there will be a procedure that is given a random z ← {0, 1}q

makes z ∈ Γ with probability p = Ω(2−k · ε2/q8). Since Γ is a fixed set, it must be the case that
p ≤ µ(Γ). This implies that ε = O(q4) · (µ(Γ) · 2k)1/2. ¤

4 Statistically Hiding Commitments From Regular One-Way Func-
tions with Known Preimage Size

Our first hurdle is to relax the permutation structure of f to just assuming that f is a regular one-
way function with known preimage size of say 2n−t, for some known value of t ∈ {1, 2, . . . , n}. This
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is the setting considered by Haitner et al. [HHK+], and we review ideas from their construction
in this section. To simplify the construction and analysis, we further assume f has a known
superpolynomial security s(n) = nω(1). (Haitner et al. [HHK+] do not make this assumption, and
we will also not need it in our final construction based on an arbitrary one-way function.)

Observe that the statistical hiding property of the NOVY commitment scheme based on one-
way permutation f only rely on the fact that f is a permutation because we require that f(Un) be
uniform. Now if f just a regular function, then f(Un) might no longer be uniform, but instead all
we can say is that f(Un) is a flat distribution with support Supp(f(Un)) of size 2t. We will use
pairwise-independent hash functions, a notion to be discussed next, to obtain an almost-uniform
distribution from f(Un).

4.1 Hashing and randomness extraction

The entropy of a random variable X is

H(X) = E
x←X

[
1

log Pr[X = x]

]
,

where here and throughout all logarithms are of base 2. This notion of entropy corresponds to
Shannon entropy or information entropy in the information theory literature. Intuitively, H(X)
measures the amount of randomness in X on average (in bits). For a worst-case measure of
randomness, the min-entropy of X is most often used, and is defined as

H∞(X) = min
x

[
1

log Pr[X = x]

]
.

In general H∞(X) ≤ H(X), but when X is flat (i.e., uniform on its support), then H(X) =
H∞(X) = log |Supp(X)|.

A family of hash functions H = {h : {0, 1}n → {0, 1}m} is pairwise independent (a.k.a.
strongly 2-universal) if for any two x 6= x′ ∈ {0, 1}n and any two y, y′ ∈ {0, 1}m, when we
randomly choose h ← H, we have Pr[h(x) = y and h(x′) = y′] = 2−2m.

An example of a pairwise-independent family of hash functions for n ≥ m is the family H =
{ha,b : {0, 1}n → {0, 1}m}, where ha,b(x) = (a · x + b)|m, arithmetic is done in the field GF(2n),
and |m denote taking the first m bits. We define `(n,m) to be the number of bits required to
describe an element of the hash function family H. In our example, it takes 2n bits to describe
each hash function ha,b since both a and b are elements of GF(2n); hence, we now know that a
family of pairwise-independent hash functions H mapping n-bit strings to m-bit strings exists with
`(n,m) = 2n. We will use the following property of pairwise-independent hash functions to obtain
an almost-uniform random variable from a random variable with sufficient min-entropy.

LEMMA 4.1
(Leftover Hash Lemma [BBR, ILL].) Let random variable H denote a uniformly random hash function
from a family of pairwise-independent hash functions H mapping n-bit strings to m-bit strings, and let
X be a random variable taking values in {0, 1}n. For any ε > 0, if H∞(X) ≥ m + 2 log(1/ε), and H is
independent from X, then the random variable (H, H(X)) is ε-close in statistical distance to uniform.
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4.2 The commitment scheme

Let us return to our regular one-way function f : {0, 1}n → {0, 1}n with known preimage size
2n−t and known security s(n) = nω(1). Consider a family of pairwise-independent hash functions
H =

{
h : {0, 1}n → {0, 1}t−∆

}
, where t = H(f(Un)) and ∆ = 1

2 log s(n). Let random variable H
represent a random hash function selected from H. By the Leftover Hash Lemma 4.1, random
variable Z = (H, H(f(Un))) is (1/s(n))Ω(1)-close to uniform, which gives statistically indistin-
guishability from uniform because s(n) = nω(1). So if we designate z = (h, h(f(x))) as the sender’s
private input to the interactive hashing protocol (Protocol 3.3), even an all-powerful receiver will
not get more than a negligible advantage to guess which one of the outputs is z. This hints to the
following commitment scheme.

PROTOCOL 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Commitment scheme (S, R) based on a regular one-way function f : {0, 1}n → {0, 1}n with known
preimage size 2n−t and known security s(n) = nω(1).

Commit stage.

1. Let H =
{
h : {0, 1}n → {0, 1}t−∆

}
, where t = H(f(Un)) and ∆ = 1

2 log s(n). S selects a
uniform x ← {0, 1}n and hash function h ← H, and computes y = f(x) and z = (h, h(y)).

2. S and R engage in interactive hashing (Protocol 3.3) with S acting as SIH, R acting
as RIH, parameters k = 1 and q = |z|, and SIH having private input z. Their common
output is a circuit C : {0, 1} → {0, 1}q, and the sender receives a bit d ∈ {0, 1} such that
C(d) = z.

3. To commit to the bit b, S sends c = d⊕ b to R. The commitment of b is represented as
the pair (C, c).

Reveal stage. To decommit, S sends bits b and d, string x, and hash function h to R. R verifies
the decommitment by checking if c = d⊕ b and C(d) = (h, h(f(x))).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As we have argued previously, the sender’s private input z is statistically close to uniform, and
hence by the hiding property of interactive hashing, this implies that the commitment scheme is
statistically hiding. As for the binding property, the one-wayness of f intuitively guarantees that
the set Γ of w’s for which a sender S∗ can compute an element of f−1(w) is of density at most
1/s(n) in the range of f , that is the size of Γ is at most 2H(f(Un))−log s(n). Thus for any fixed h, the
fraction of z = (h, h(w)) such that w ∈ Γ is at most 2H(f(Un))−log s(n)/2t−∆ = s(n)−1/2 = neg(n). By
the binding property of interactive hashing stated in Lemma 3.7, the probability that S∗ can force
both C(0), C(1) ∈ Γ is negligible and hence, the scheme is computationally binding. The complete
argument to prove the binding property is actually more subtle because the set Γ is not actually
fixed in advance, and so we need to employ the stronger binding property given in Definition 3.1.

5 1-out-of-2-Binding Commitments from One-Way Functions with
Unknown Preimage Size

Our next hurdle is to remove to the constraint on knowing (i.e., being able to efficiently compute)
the preimage size. For this setting, let us consider a regular one-way function f : {0, 1}n → {0, 1}n

16



with preimage size 2n−t, for an unknown4 value of t ∈ {1, 2, . . . , n}, but with known security
s(n) = nω(1).5 Constructing statistically hiding commitments even in this setting was still an open
problem prior to our work.

Let us examine why we need to know the correct value of t in the previous scheme of Protocol 4.2.
If the value of t is too high, that is t À H(f(Un)), then the scheme is no longer hiding (but would
be binding). This is because the Leftover Hash Lemma 4.1 no longer applies, since in this case the
min-entropy H(f(Un)) is too small relative to t. On the other hand, if the value of t is too low, that
is t ¿ H(f(Un)), then the scheme is no longer binding (but would be hiding). To see this, at least
intuitively, observe that when t is very small, we are hashing f(Un) to a very small set {0, 1}t−∆; in
other words, h collapses too many elements in f(Un). As a consequence, inverting h(f(Un)) could
be easy (even though inverting f(Un) is hard), and this allows us to break the binding property of
our scheme.

All hope, however, is not lost. We can still use Protocol 4.2, trying all values of t ∈ {1, 2, . . . , n},
to do our first phase commitments. And to overcome the difficulty of ensuring both hiding and
binding, we will introduce a second phase that will be binding when t <∼ H(f(Un)), and hiding when
t >∼ H(f(Un)); this is obtained by the sender using a hash of the preimage x as an input to another
execution of interactive hashing. This means that for the right value of t = H(f(Un)), both phases
will be hiding, but for any value of t, at least one phase is binding. What we are describing here is
a 2-phase commitment scheme with a 1-out-of-2 binding property, notions that we formally
define in the next section.

5.1 2-phase commitment schemes

As mentioned previously, we will work with 2-phase commitment schemes, an alternate variant of
commitments introduced by Nguyen and Vadhan [NV]. These are commitment schemes with two
sequential and related stages such that in each stage, the sender commits to and reveals a value.

DEFINITION 5.1
A 2-phase commitment scheme (S, R), with security parameter n and message lengths (k1(n), k2(n)),
consists of four interactive protocols: the first commitment stage (S1

c , R1
c), the first reveal stage

(S1
r , R1

r), the second commitment stage (S2
c , R2

c), and the second reveal stage (S2
r , R2

r). For us, both
reveal phases will always be noninteractive, consisting of a single message from the sender to the
receiver.

1. In the first commitment stage, S1
c receives a private input σ(1) ∈ {0, 1}k1 and coin tosses rS .

At the end of the interaction, both S1
c and R1

c output a commitment c(1). (Without loss of
generality, we can assume that c(1) is the transcript of the first commitment stage.)

2. In the first (noninteractive) reveal stage, both S1
r and R1

r receive as common inputs the
commitment c(1), and S1

r receives as private input its previous coin tosses rS . S1
r sends R1

r

a pair (σ(1), γ(1)) with γ(1) interpreted as a decommitment for σ(1) ∈ {0, 1}k1 . R1
r accepts or

rejects based on c(1), σ(1), and γ(1). After that, both S1
r and R1

r outputs a string τ . (Without
4What we mean by unknown is that we are not able to compute the preimage size efficiently.
5Like in Section 4, we consider only length-preserving functions, that is |f(x)| = |x| for all x ∈ {0, 1}∗, to avoid

introducing new parameters. Our construction can nevertheless be easily generalized to regular one-way functions
that are not length preserving.
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loss of generality, we can assume that τ is the transcript of the first commitment stage and
the first reveal stage and includes R1

r ’s decision to accept or reject.)

3. In the second commitment stage, both S2
c and R2

c receive as common input the string τ , and
S2

c receives a private input σ(2) ∈ {0, 1}k2 and its previous coin tosses rS . At the end of
the interaction, both S2

c and R2
c output a commitment c(2). (Without loss of generality, we

can assume that c(2) is the concatenation of τ and the transcript of the second commitment
stage.)

4. In the second (noninteractive) reveal stage, both S2
r and R2

r receive as common input the
commitment c(2), and S2

r receives as private input its previous coin tosses rS . S2
r sends R2

r

a pair (σ(2), γ(2)) with γ(2) interpreted as a decommitment for σ(2) ∈ {0, 1}k2 . R2
r accepts or

rejects based on c(2), σ(2), and γ(2).

• We insist that scheme (S, R) have perfect completeness. That is to say, if both sender S
and receiver R follow their prescribed strategy, then R will always accept (with probability
1).

• The sender and receiver’s algorithms, denoted by S = (S1, S2) = ((S1
c , S1

r ), (S2
c , S2

r )) and
R = (R1, R2) = ((R1

c , R
1
r), (R

2
c , R

2
r)) respectively, are computable in polynomial time.

• Scheme (S, R) is public coin if all messages sent by R to S are independent random coins.

REMARK 5.2
We make several remarks regarding Definition 5.1.

1. We generally consider schemes that have the same message length for both phases. When
this is the case, namely k = k1 = k2, we say our 2-phase commitment scheme has message
length k. It is only in Section 7 that we will use this feature of different message lengths.

2. Instead of providing sender S with decommitment values as private outputs of the com-
mitment phases, we simply provide it with the same coin tosses rS throughout (so it can
recompute any private state from the transcripts of the previous phases). The receiver R,
however, operates using independent coin tosses in each phase as it does not need to keep
private states.

3. The 2-phase commitment schemes that we construct will be public coin scheme where the
receiver R strategy is just to send random coins in each round.

Hiding for 2-phase commitment schemes. As for standard commitment schemes, we define
the security of the sender in terms of a hiding property. Stated informally, the hiding property for
a 2-phase commitment scheme says that both commitment phases are hiding. Note that since the
phases are run sequentially, the hiding property for the second commitment stage is required to
hold even given the receiver’s view of the first stage.

DEFINITION 5.3
2-phase commitment scheme (S, R), with security parameter n and message lengths (k1(n), k2(n)),
is statistically hiding if for all adversarial receiver R∗,
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1. The views of R∗ when interacting with the sender in the first phase on any two messages
are statistically indistinguishable. Namely, for all σ(1), σ̃(1) ∈ {0, 1}k1 , the probability en-
sembles

{
viewR∗(S1

c (σ(1)), R∗)(1n)
}

n∈N and
{
viewR∗(S1

c (σ̃(1)), R∗)(1n)
}

n∈N are statistically
indistinguishable.

2. The views of R∗ when interacting with the sender in the second phase are statistically indis-
tinguishable no matter what the sender committed to in the first phase. Namely, for all σ(1) ∈
{0, 1}k1 , and all σ(2), σ̃(2) ∈ {0, 1}k2 , the probability ensembles

{
viewR∗(S2

c (σ(2)), R∗)(T, 1n)
}

n∈N
and

{
viewR∗(S2

c (σ̃(2)), R∗)(T, 1n)
}

n∈N, where T = transcript(S1(σ(1)), R∗)(1n), are statisti-
cally indistinguishable.

We stress that the second condition of the above hiding definition (Definition 5.3) requires that
the view of receiver in the second phase be indistinguishable for any two messages even given the
transcript of the first phase, T = transcript(S1(σ(1)), R∗)(1n).

1-out-of-2 binding for 2-phase commitment schemes. The 1-out-of-2 binding property,
informally stated, says that at least one of the two commitment phases is binding. In other words,
for every PPT malicious sender S∗, at most one of the two phases is bad in that S∗ can decommit
a given commitment to two different messages in that phase. We allow this bad phase to be
determined dynamically by S∗. Moreover, we require that the second phase be statistically binding
if the sender breaks the first phase. Our construction achieves this stronger property, and using it
simplifies some of our proofs.

DEFINITION 5.4
2-phase commitment scheme (S, R), with security parameter n and message lengths (k1(n), k2(n)),
is computationally 1-out-of-2 binding if there exists a set B of first phase transcripts such that
for every function ε(n) = 1/poly(n), the following holds:

1. For all PPT adversary S∗, S∗ succeeds in the following game with probability at most ε(n)
for all sufficiently large n:

(a) S∗ and R1
c interact and output a first-phase commitment c(1).

(b) S∗ outputs two full transcripts λ = (τ, κ) and λ̃ = (τ̃ , κ̃) of both phases with the following
three properties:

• Transcripts λ and λ̃ both start with prefix c(1).
• Transcript λ contains a successful opening of c(1) to the value σ(1) ∈ {0, 1}k1 using

a first-phase transcript τ not in B, and R1
r and R2

r both accept in λ.
• Transcript λ̃ contains a successful opening of c(1) to the value σ̃(1) ∈ {0, 1}k1 using

a first-phase transcript τ̃ not in B, and R1
r and R2

r both accept in λ̃.

(c) S∗ succeeds if all of the above conditions hold and σ(1) 6= σ̃(1).

2. For every (even computationally unbounded) sender S∗, the first-phase transcripts in B make
the second phase statistically binding. In other words, for all S∗, all τ ∈ B, and all sufficiently
large n, with probability at least 1− ε(n) over c(2) = (S∗, R2

c)(τ), there is at most one value
σ(2) ∈ {0, 1}k2 such that outputR(S∗, R2

r)(c
(2), σ(2)) = accept.
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REMARK 5.5
Note that we require that Condition 1 to hold against PPT adversaries, but Condition 2 must hold
against all, even computationally unbounded adversaries.

5.2 Our 2-phase commitment scheme

We now describe our 2-phase commitment scheme for general functions f : {0, 1}n → {0, 1}n, not
necessarily regular nor one-way—as we shall later see, it is the regularity condition that gives the
hiding property, and the one-wayness of the function that gives the binding property of our scheme.
Let H = {h : {0, 1}n → {0, 1}m} be a family of pairwise-independent hash functions. As shown
in Section 4.1, we have a family whose description of each element takes `(n,m) = 2n bits. It
will be convenient to make `(n,m) + m = q(n), for some fixed polynomial q(n), so that for every
y ∈ {0, 1}n, |h, h(y)| = q(n). This can be done by padding random bits to the description of h.

In addition, it will be convenient to work with protocols where the sender has no input σ(j) to
be committed to, but rather privately receives an output d(j) at the end of each phase j ∈ {1, 2}
of the commitment. If we can ensure that d(j) is close to uniform given the receiver’s view, such a
protocol can be easily tuned into a commitment scheme: the sender can commit to an σ(j) of its
choice by sending d(j) ⊕ σ(j) at the end of the commit stage.

PROTOCOL 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-phase commitment scheme (S, R) based on f : {0, 1}n → {0, 1}n.

Parameters: Integers t ∈ {1, 2, . . . , n}, k1 = k2 = k ∈ {1, 2, . . . , n}, ∆1 ∈ {0, 1, . . . , t}, and
∆2 ∈ {0, 1, . . . , n− t}.

Sender’s private input: String x ∈ {0, 1}n. (Note that this is not the value to which the sender
is committing, but is rather part of its coins, which will be chosen uniformly at random by S
unless otherwise specified.)

First phase commit:
1. S1

c sets y = f(x).

2. LetH1 = {h1 : {0, 1}n → {0, 1}t−∆1} be a family of pairwise-independent hash functions.
S1

c chooses a random hash h1 ← H1, and computes v = (h1, h1(y)) ∈ {0, 1}q.

3. (S1
c , R1

c) run the interactive hashing protocol (SIH(v), RIH)(1q, 1k), given by Protocol 3.3,
with S1

c and R1
c acting as SIH and RIH respectively.

Let circuit C(1) : {0, 1}k → {0, 1}q be the common output and d(1) ∈ {0, 1}k be SIH’s
private output in (SIH(v), RIH)(1q, 1k).

First phase sender’s private output: String d(1) ∈ {0, 1}k.

First phase reveal:
S1

r sends the tuple γ(1) = (d(1), y, h1).

Receiver R1
r accepts if and only if C(1)(d(1)) = (h1, h1(y)).

Second phase commit:
Second phase common input: First-phase transcript τ = transcript(S1(x), R1), which in par-
ticular includes the string y.
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1. Let H2 = {h2 : {0, 1}n → {0, 1}n−t−∆2} be a family of pairwise-independent hash func-
tions. S2

c chooses a random hash h2 ← H2, and computes w = (h2, h2(x)) ∈ {0, 1}q.

2. (S2
c , R2

c) run the interactive hashing protocol (SIH(w), RIH)(1q, 1k), given by Protocol 3.3,
with S2

c and R2
c acting as SIH and RIH respectively.

Let circuit C(2) : {0, 1}k → {0, 1}q be the common output and d(2) ∈ {0, 1}k be SIH’s
private output in (SIH(v), RIH)(1q, 1k).

Second phase sender’s private output: String d(2) ∈ {0, 1}k.

Second phase reveal:
S2

r sends the tuple γ(2) = (d(2), x, h2).

Receiver R2
r accepts if and only if f(x) = y and C(2)(d(2)) = (h2, h2(x)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

THEOREM 5.7
Suppose f : {0, 1}n → {0, 1}n is a regular one-way function with (known) security s(n) = nω(1).
Then Protocol 5.6, with setting of parameters t ∈ [H(f(Un)), H(f(Un)) + 1), k = O(log n), and
∆1 = ∆2 = 1

4 log s, is a 2-phase commitment scheme that is statistically hiding and computationally
1-out-of-2 binding. Moreover the computational 1-out-of-2 binding property holds regardless of the
setting of t.

Because we do not know how to efficiently compute the correct value of t = H(f(Un)), we are
forced to try out all values of t = 1, 2, . . . , n to get a collection of commitment schemes, as stated
in the next corollary. While having a collection of schemes instead of a single scheme may seem
inconvenient, in Section 7 we will show how to convert such a collection of 2-phase commitments
into a single commitment scheme that is statistically hiding and computationally binding (in the
standard sense of binding).

COROLLARY 5.8
Given a regular one-way function f : {0, 1}n → {0, 1}n with (known) security s(n) = nω(1), we can
construct in time polynomial in n a collection of public-coin 2-phase commitment schemes COM =
{Com1, · · · ,Comn}, such that:

• there exists an index i ∈ {1, 2, . . . , n} such that scheme Comi is statistically hiding, and

• for every index i ∈ {1, 2, . . . , n}, scheme Comi is computationally 1-out-of-2 binding.

For notational convenience and generality, the above corollary and some of our subsequent
results are stated in terms of finite functions f : {0, 1}n → {0, 1}n for a fixed value n of the
security parameter. When we say that the function f is ‘given’, this can be interpreted as being
given the boolean circuit computing f (or, more generally, given f as an oracle), and ‘constructing’
the commitment schemes Comi can be interpreted as constructing the boolean circuits (or, more
generally, circuits with oracle gates for evaluating f) that compute the next-message functions of
the protocol.
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We divide the proof of Theorem 5.7 into Lemma 5.9 and Lemma 5.10 that establish the statistical
hiding and computational 1-out-of-2 binding properties of Protocol 5.6, respectively.

LEMMA 5.9
If f : {0, 1}n → {0, 1}n is a regular function, then Protocol 5.6, with setting of parameters t ∈
[H(f(Un)), H(f(Un)) + 1), k < q(n), and ∆1 = ∆2 = ω(log n), is statistically hiding in the sense of
Definition 5.3.

Proof. Since t ≤ H(f(Un)) + 1, the Leftover Hash Lemma (Lemma 4.1) tells us that random
variable Z = (H1,H1(f(Un))) is 2−Ω(∆1)-close to the uniform. Then by the hiding property of
interactive hashing (Definition 3.1), the first commitment phase is 2−Ω(∆1)-hiding, which suffices
because ∆1 = ω(log n).

Let τ be the transcript of the first phase and y the string sent in the first reveal phase. Let
random variable X represent selecting at random a string from the set f−1(y). Since X is a flat
source with entropy n−H(f(Un)) ≥ n− t, and h2 maps to strings of length n− t−∆2, we apply the
Leftover Hash Lemma once more to conclude that random variable W = (H2,H2(X)) is 2−Ω(∆2)-
close to the uniform, even given τ . By the hiding property of interactive hashing, the second
commitment phase is 2−Ω(∆2)-hiding, which in turn is statistically hiding since ∆2 = ω(log n). ¤

LEMMA 5.10
If f : {0, 1}n → {0, 1}n is a s(n)-secure one-way function (not necessarily regular), then for any value
of t ∈ {1, 2, . . . , n}, Protocol 5.6, with setting of parameters k = O(log n), ∆1 = ∆2 ≤ 1

4 log(s(n)), is
computationally 1-out-of-2 binding in the sense of Definition 5.4.

The proof of Lemma 5.10 will be broken into Claim 5.11 and 5.12 that establish the binding
property for the first and second phase, respectively. Before stating the claims, we define the
binding set B as follows:

For every t ∈ {1, 2, . . . , n}, define the set of light strings to be Lt = {y ∈ {0, 1}n :
Pr[f(Un) = y] ≤ 2−t−∆3}, for a parameter ∆3 that we will set at the end of the proof.
Define the binding set B to be the set of transcripts where the sender reveals y ∈ Lt.

CLAIM 5.11
For the binding set B defined above, if there exists a PPT S∗ that succeeds with probability ε = ε(n)
in the game in Condition 1 of Definition 5.4, then there exists a PPT B that can invert f with success
probability at least

εO(1) · 1/ poly(n) · 2−(k+∆1+∆3) .

Proof. We define a relation W as follows:

W = {(v, x) : ∃h1 such that both v = (h1, h1(f(x))) and f(x) /∈ Lt} .

Suppose we have a PPT S∗ that succeeds with probability greater than ε in the game of
in Condition 1 of Definition 5.4. In particular, this means that S∗ after interacting with RIH
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will, with probability greater than ε, produce pairs (d(1)
0 , x0) and (d(1)

1 , x1) such that d
(1)
0 6= d

(1)
1 ,

(C(1)(d0), x0) ∈ W , and (C(1)(d1), x1) ∈ W . By the binding property of interactive hashing (Con-
dition 3 of Definition 3.1), there exists a PPT A such that

Pr
v←{0,1}q

[A(v) ∈ Wv] > 2−k ·
(

ε

q

)O(1)

, (1)

where the above probability is taken over the coin tosses of A and v ← {0, 1}q.
Consider an algorithm B that on input y, picks a random hash function h1 ← H1, and outputs

A(h1, h1(y)). We let η = h1(y), and compute the probability that B inverts f as follows:

Pr[B(f(Un)) ∈ f−1(f(Un))]

= E
h1←H1

[
Pr[A(h1, h1(f(Un))) ∈ f−1(f(Un))]

]

= E
h1←H1


 ∑

η,x s.t. η=h1(f(x))

Pr[f(Un) = x] · Pr[A(h1, η) = x]




≥ E
h1←H1


 ∑

η,x s.t. x∈W(h1,η)

Pr[f(Un) = x] · Pr[A(h1, η) = x]




≥ E
h1←H1


 ∑

η,x s.t. x∈W(h1,η)

2−t−∆3 · Pr[A(h1, η) = x]


 (x ∈ W(h1,η) ⇒ f(x) /∈ Lt)

= 2−t−∆3 · 2t−∆1 · Pr
(h1,η)←H1×{0,1}t−∆1

[A(h1, η) ∈ W(h1,η)]

> 2−(∆1+∆3) · 2−k ·
(

ε

q

)O(1)

(by (1))

= εO(1) · 1/ poly(n) · 2−(k+∆1+∆3) (since q = poly(n)) . ¤

CLAIM 5.12
For the binding set B defined above, Condition 2 of Definition 5.4 is satisfied with ε = poly(n) ·
2−Ω(∆3−∆2) .

Proof. Let y ∈ Lt be the string sent in the first reveal phase. This means that Pr[f(Un) = y] ≤
2−t−∆3 , or equivalently

∣∣f−1(y)
∣∣ ≤ 2n−t−∆3 . Define set Γ = {(h2, h2(x)) : h2 ∈ H2, x ∈ f−1(y)},

and let µ(Γ) denote the density of the subset Γ. Since h2 maps {0, 1}n to {0, 1}n−t−∆2 , we have

µ(Γ) ≤
∣∣f−1(y)

∣∣
2n−t−∆2

≤ 2n−t−∆3

2n−t−∆2
= 2(∆2−∆3) .

Applying Lemma 3.7, we have

Pr [(w0, w1) = output(S∗, RIH) satisfies w0, w1 ∈ Γ] < 2−Ω(∆3−∆2) · poly(q) ,

which then concludes our proof since q is a fixed polynomial in n. ¤
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Proof of Lemma 5.10. Set ∆3 = 1
2 log s(n), and we are given that k = O(log n), and ∆1 = ∆2 ≤

1
4 log(s(n)). With this setting, Claim 5.12 shows that Condition 2 in Definition 5.4 is satisfied with
ε(n) = poly(n) · 2−Ω(log s(n)) = neg(n), since s(n) = nω(1). Condition 1 of Definition 5.4 is also
satisfied with negligible probability ε(n) because otherwise f can be inverted with probability

εO(1) · 1/poly(n) · 2−(k+∆1+∆3) ≥ εO(1) · 1/poly(n) · 2−(O(log n)+(3/4)·(log s(n)))

= εO(1) · 1/poly(n) · s(n)−3/4 ,

which is greater than 1/s(n) if ε is nonnegligible. ¤

6 1-out-of-2-Binding Commitments From Any One-Way Function

Our next hurdle is to remove the regularity assumption. It turns out that this is the most techni-
cally challenging step. Similar to our construction from regular one-way functions (with unknown
preimage size) in Section 5, our construction based on any one-way function yields a collection
two-phase commitments, as stated below.

THEOREM 6.1
Given a one-way function f : {0, 1}n → {0, 1}n, we can construct in time polynomial in n a collection
of m = poly(n) public-coin 2-phase commitment schemes COM = {Com1, · · · ,Comm} with message
lengths (k1, k2) = (n, n), such that:

• there exists an index i ∈ {1, 2, . . . , m} such that scheme Comi is statistically hiding, and

• for every index i ∈ {1, 2, . . . , m}, scheme Comi is computationally 1-out-of-2 binding.

Note that this theorem provides 2-phase commitment schemes for long messages, specifically
ones with length equal to the input length n of the one-way function f . Essentially the same proof
can provide schemes with message length k(n) for any desired polynomial k. Alternatively, we
can apply the above theorem to the function f ′(x1, . . . , xk) = (f(x1), . . . , f(xk)), which has input
length n′ = k · n and is one-way if f is.

A collection of two-phase commitment schemes as above turns out to suffice for obtaining
statistical zero-knowledge arguments for all of NP (see [NV, NOV]). Hence, Theorem 6.1 suffices
to establish Theorem 1.2, which states that statistical zero-knowledge arguments for all of NP can
be based on any one-way function. However, in Section 7, we will show how to transform the
above collection of two-phase commitment schemes and into a single commitment scheme that is
statistically hiding and computationally binding (in the standard sense of binding). This proves
Theorem 1.1, the main theorem of this paper, and and gives a more modular proof of Theorem 1.2
(simply by plugging the commitments into [GMW2]).

We prove Theorem 6.1 in Sections 6.1 through 6.3.

6.1 Overview

We now present an overview of how we generalize our construction for regular one-way func-
tions with unknown preimage size (Protocol 5.6) to arbitrary one-way functions. As shown in
Lemma 5.10, this protocol already achieves 1-out-of-2 binding when f is any one-way function (for

24



every value of t). Thus the challenge is the hiding property. (Another issue is that Protocol 5.6
requires a one-way function with known security. It turns out that our method for handling the
hiding property also eliminates the need to know the security.)

As discussed in Section 5, for regular one-way functions with unknown preimage size, Proto-
col 5.6 has a hiding first phase when the parameter t satisfies t <∼ H(f(Un)) and has a hiding second
phase when t satisfies t >∼ H(f(Un)). Intuitively, when f is not regular, we should replace the fixed
value H(f(Un)) with the dynamic value Hf (y)def= log(1/Pr[f(Un) = y]), where y = f(x) is the value
chosen by the sender in the pre-processing step, because Hf (y) can be viewed as measuring the
amount of entropy in y. The approximable preimage-size one-way functions studied by Haitner
et al. [HHK+] come equipped with an algorithm that estimates Hf (y), but for general one-way
functions, this quantity may be infeasible to compute.

A weakly hiding scheme (details in Section 6.2). One natural approach is to have the
sender choose t at random and hope that it is close to Hf (y). When we choose t too small, only
the first phase will be hiding, and when we choose t too large, only the second phase will be hiding.
But we have a non-negligible probability of δ = 1/n that t ≈ Hf (y), and thus both phases will be
hiding. Thus we have a 1-out-of-2-binding commitment scheme satisfying a weak hiding property,
where with probability δ = 1/n, both phases are hiding, and it is always the case that at least one
phase is hiding. Actually, in order to simplify our analysis, we will include t as a parameter to the
protocol. Then there exists a choice of t such that the protocol is weakly hiding in the sense above,
and for all choices of t the protocol is 1-out-of-2 binding. At the end, we will enumerate over all
values of t, resulting in a collection of commitment schemes as claimed in Theorem 6.1, albeit with
a weak hiding property.

Unfortunately, we do not know how to directly construct zero-knowledge arguments from weakly
hiding 1-out-of-2-binding commitments. Thus instead, much of the effort in this paper is devoted
to amplifying the weak hiding property, where δ = 1/n, into a strong hiding property, where
δ = 1− neg(n), while maintaining the 1-out-of-2 binding property.

Amplifying the hiding property (details in Section 6.3). We do not amplify the hiding
probability from δ = 1/n to δ = 1 − neg(n) in one shot, but instead perform a sequence of log n
iterations, each one of which increases δ by a roughly factor of 2. This results in δ = Ω(1), and
then we are able to get δ = 1− neg(n) in just one more amplification step.

How do we double δ? A natural idea is to consider several executions of the previous weakly
hiding scheme. Specifically, if we take m = O(1) executions, the probability that at least one of
the executions has both phases hiding is roughly m · δ. Moreover, each of the remaining m − 1
executions have either the first phase hiding or the second phase hiding. Thus for some value of
β, there are β + 1 first phases that are hiding and m − β second phases that are hiding. It turns
out that we can choose β so that this exact (β + 1,m−β) breakdown given that one execution has
both phases hiding occurs with probability Ω(1/

√
m). Thus we are in the situation described with

probability m · δ · Ω(1/
√

m) = Ω(
√

m · δ) > 2δ, for a large enough constant m.
Now our aim is to combine the outcomes of the weakly hiding schemes in such a way that when

the above-described situation occurs, which happens with probability at least 2δ, both phases are
hiding. Notice that the secret values σ1, . . . , σm ∈ {0, 1}k to which the sender commits in the first
commit phases have entropy (even min-entropy) at least (β + 1) · k conditioned on the receiver’s
view (because (β + 1) of them are hiding), and similarly the sender’s secrets in the second commit
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phases have entropy at least (m− β) · k conditioned on the receiver’s view. Let us compare this to
the situation with binding. Since each execution is 1-out-of-2 binding, a cheating polynomial-time
sender can break the binding property for either at most β of the first phases or at most m− β− 1
of the second phases. Thus the number of possible values to which the sender can open in each
case is at most 2m · 2k·β in the first phase or at most 2k·(m−β−1), where the 2m factor in the first
bound comes from the sender’s ability to choose which subset of executions to break (and it is this
factor that limits us to taking m to be a constant). We can view these as strong forms of entropy
upper bounds m + kβ and k · (m− β − 1). In at least one phase, there will be an entropy gap of at
least k −m.

How can we exploit these entropy gaps? It turns out that interactive hashing, again, is a useful
tool. Specifically, in the first phase we have the sender choose a random pairwise-independent hash
function h1 mapping to approximately (β + 1) · k bits and use (h1, h1(σ1, . . . , σm)) as the input
to the interactive hashing protocol, and analogously for the second phase. By the Leftover Hash
Lemma, this pairwise-independent hashing converts the min-entropy lower bound described above
to an almost-uniform distribution, so the interactive hashing hiding property applies. As for the
binding property, the bound on the number of the sender’s choices gets translated to saying that
the sender’s input (in the first phase) comes from a set Γ of density 2−(k−m), so the interactive
hashing binding property applies. The analysis for the second phase are similar. Formalizing these
ideas, we get a new 1-out-of-2-binding commitment scheme in which both phases are hiding with
probability at least 2δ.

When we try to iterate this amplification step O(log n) times, we run into a new difficulty.
Specifically, the above sketch hides the fact that we pay entropy losses of ω(log n) in both the
hiding and binding analysis. The entropy loss of ω(log n) in the hiding property comes from the
Leftover Hash Lemma, in order to ensure that (h1, h1(σ1, . . . , σm)) has negligible statistical distance
from uniform. The entropy loss of ω(log n) in the binding property comes from needing the µ(Γ) ·2k

factor to be negligible when applying Lemma 3.7. This forces us to go, in one step of amplification,
from a commitment scheme for secrets of length k to a scheme for secrets of length k−m−ω(log n).
As in Lemma 5.10, we can take the initial secret length to be k = Θ(log s(n)) = ω(log(n)) if the
one-way function has known security s(n) = nω(1). But to tolerate log n losses of ω(log n), we would
need s(n) = nω(log n) (i.e., at least quasi-polynomial security).

To get around this difficulty, in the amplification, we work with more relaxed, average-case
measures of entropy for both the hiding and binding analysis. Specifically, for hiding, we keep
track of the expected collision probability of the sender’s secret, conditioned on the receiver’s view.
(Actually, we use the expected square root of the collision probability.) For binding, we work with
the expected number of values to which the sender can open. In both cases, we only require these
expectations to be within a constant factor of the ideal values, which are 2−k and 1 respectively.
With these measures, it turns out that we need only lose O(m) = O(1) bits in the entropy gap
with each amplification step. Moreover, once we amplify δ to a constant, we can afford to take the
number of executions m to equal the security parameter n and get an Ω(n)-bit entropy gap in the
final amplification step. This allows us to achieve exponentially strong statistical hiding even when
we do not know the security and start with secret length of k = O(log n).

The hiding analysis of the above construction works only for certain values of t in the weakly
hiding scheme, and for certain values of the β’s in the amplification steps. We try out all possible
values of t and β’s, thus obtaining a collection of poly(n) schemes, at least one of which is strongly
hiding and all of which are 1-out-of-2 binding. Notice that the number of possible choices of t and
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the β’s are polynomial in n since t ∈ {1, 2, . . . , n}, the β’s in the each step except for the last is in
the range {0, 1, . . . , m− 1}, for some constant m, and the last β is in the range {0, 1, . . . , n}.

6.2 Weakly hiding and 1-out-of-2-binding commitments

As discussed in Section 5, for the case of regular one-way functions with unknown preimage size,
Protocol 5.6 has a hiding first phase when the parameter t satisfies t <∼ H(f(Un)) and has a hiding
second phase when t satisfies t >∼ H(f(Un)). When f is not regular, then there will be one value of
t ∈ {1, 2, . . . , n} such that H(f(Un)) ≈ t with probability 1/n. This is the case because there are
only n possible choices for the value of t.

With this observation in mind, our two-phase commitment scheme from general one-way func-
tions will be the same as the scheme in Protocol 5.6, with setting of parameters t = t0, k = O(log n),
and ∆1 = ∆2 = 2 log n, for some t0 ∈ {1, 2, . . . , n}. In other words, the same scheme—with slightly
different setting of parameters—used in the case of regular one-way functions is also applicable to
general one-way functions.

This commitment scheme (using general one-way functions), as we will show, is computationally
1-out-of-2 binding, but only statistically hiding in both phases with probability at least 1/n (hence,
called weakly hiding). In order to obtain a tighter analysis when we amplify this scheme, we
depart from the standard measures of hiding and binding used in Section 5. Instead, we measure
the statistical hiding property of our two-phase commitments using the expected square root of the
collision probability of the sender’s secret, denoted as CP1/2, and defined in Section 6.2.1. We
measure the binding property by analyzing the expected number of values to which an adversarial
sender can open.

Later in Section 6.3, we show how to boost the statistical hiding probability to 1−2−Ω(n) while
maintaining the computational 1-out-of-2 binding property.

6.2.1 Properties of collision probability

DEFINITION 6.2
For any random variable A, we define its collision probability as the probability that two inde-
pendent samples from A are equal. In other words,

CP(A) def=
∑

a∈Supp(A)

(Pr[A = a])2 = E
a←A

[Pr[A = a]] .

Measuring the collision probability of a random variable is equivalent to measuring its Renyi
entropy of order 2, defined as

H2(A) = log
1

Ea←A [Pr[A = a]]
= log

1
CP(A)

.

DEFINITION 6.3
For any random variable A, we define its expected square root of the collision probability as

CP1/2(A) def=
√

CP(A) .
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For any two (possibly correlated) random variables A and B, we define

CP1/2(A|B) def= E
b←B

[
CP1/2(A|B=b)

]
.

We think of CP1/2(A|B) ≤
√

2k as saying that A has conditional Renyi entropy of at least
k given B. We use the expected square root of the collision probability (as our measure of hiding)
instead of just expected collision probability in order to ensure that conditioning on a random
variable Z can only decrease the conditional Renyi entropy by at most log(|Supp(Z)|) bits. (See
Lemma 6.7 below for details.)

The following lemmas show that CP1/2 behaves nicely as an entropy measure. Proofs are in
Appendix A.

LEMMA 6.4
For independent pairs of random variables (X1, Y1), . . . , (Xm, Ym),

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) =
m∏

i=1

CP1/2(Xi|Yi) .

Note that Xi and Yi can be correlated, it is only required that the pair (Xi, Yi) be independent from
the other tuples.

In terms of conditional Renyi entropy, Lemma 6.4 states that the entropy is additive for in-
dependent random variables. We will actually need a generalization of Lemma 6.4 to deal with
somewhat dependent random variables, as stated in the next lemma.

LEMMA 6.5
Suppose random variables (X1, Y1), . . . , (Xm, Ym) satisfy the following conditions for some values of
α1, . . . , αm ∈ R+ and all i = 1, 2, . . . ,m:

1. For every (y1, . . . , yi−1) ∈ Supp(Y1, Y2, . . . , Yi−1),

CP1/2(Xi|Y1=y1,...,Yi−1=yi−1 | Yi|Y1=y1,...,Yi−1=yi−1) ≤ αi .

2. For every (y1, . . . , yi) ∈ Supp(Y1, Y2, . . . , Yi), the i + 1 random variables X1, X2, . . . , Xi, and
Yi+1 are independent, even if we condition on Y1 = y1, . . . , Yi = yi.

Then,

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) ≤
m∏

i=1

αi .

The next lemma shows that pairwise-independent randomness extraction (h, h(x)) preserves
the CP1/2 measure.
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LEMMA 6.6
(Randomness Extraction Lemma.) Let (X,Y ) be any (possibly correlated) pair of random variables,
and let random variable H denote a random hash function from a family of pairwise-independent hash
functions H with range {0, 1}α. Suppose the hash functions from H are represented by (q − α)-bit

strings and CP1/2(X|Y ) ≤
√

2−(α+3). If H is independent from (X, Y ), then

CP1/2((H,H(X))|Y ) ≤
√

2−(q−1) .

In other words, if X has at least α + 3 bits of conditional Renyi entropy given Y , then we can
extract α bits from X that have conditional Renyi entropy at least α− 1. Notice that this entropy
loss is only 4 bits, as compared to 2 log(1/ε) if we require that the output be ε-close to uniform as
in the Leftover Hash (Lemma 4.1). This constant loss of conditional Renyi entropy allows us to do
a tighter hiding analysis in Section 6.3.1.

LEMMA 6.7
For any triple of (possibly correlated) random variables X, Y and Z,

CP1/2(X|Y ) ≤ CP1/2(X|(Y,Z)) ≤
√
|Supp(Z)| · CP1/2(X|Y ) .

This says that conditioning on random variable Z can only decrease the conditional Renyi
entropy, but does so by at most log(|Supp(Z)|) bits. The final lemma is a stronger variant of
the previous Leftover Hash Lemma of Lemma 4.1, with its hypothesis stated in terms of collision
probability.

LEMMA 6.8
(Leftover Hash Lemma, strengthened [BBR, ILL].) Let random variable H denote a random hash
function from a family of pairwise-independent hash functions H with range {0, 1}α. For any ε > 0,
if CP(X) ≤ ε2 · 2−α and H is independent from X, then random variable (H, H(X)) is ε-close in
statistical distance to uniform.

6.2.2 Average-case hiding and binding properties of interactive hashing

We now analyze the interactive hashing protocol, namely Protocol 3.3, in terms of average-case
measures. For hiding, we use the CP1/2 measure introduced in the previous section. For the binding
property, we present an average-case variant of Lemma 3.7, where we look at the expected number
of outputs that lies in any set Γ, rather than bound the probability that there is more than one
output in Γ.

LEMMA 6.9
(Hiding of interactive hashing in CP1/2 measure.) Let (SIH, RIH) be the interactive hashing protocol
in Protocol 3.3. If the sender SIH’s input comes from a random variable Y over {0, 1}q and W is any
(possibly correlated) random variable (representing the receiver’s a priori information about Y ), then
for any receiver R∗,

CP1/2(Z|(W,V )) ≤
√

2q−k · CP1/2(Y |W ) ,
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where Z = outputSIH
(SIH(Y ), R∗)(1q, 1k) and V = viewR∗(SIH(Y ), R∗)(1q, 1k).

Proof. Without loss of generality, we may assume that R∗ is deterministic. (The randomized case
then follows by taking expectation over R∗’s coins.) Now that since R∗ is deterministic, the hash
functions sent h0, . . . , hq−k−1 are fully determined by SIH’s responses c0, . . . , cq−k−1 ∈ {0, 1} (refer
to Protocol 3.3). Hence, the number of possible different receiver’s view is bounded by 2q−k. This
implies that |Supp(V )| ≤ 2q−k, where V = viewR∗(SIH(Y ), R∗)(1q, 1k). By Lemma 6.7,

CP1/2(Y |(W,V )) ≤
√
|Supp(V )| · CP1/2(Y |W ) ≤

√
2q−k · CP1/2(Y |W ) .

Observe that given any particular instantiation of W = w and V = v, the distributions
outputSIH

(SIH(Y ), RIH)(1q, 1k)|W=w,V =v has the same collision probability with Y |W=w,V =v (in-
deed they are in bijective correspondence). Hence, CP1/2(Z|(W,V )) = CP1/2(Y |(W,V )) ≤

√
2q−k ·

CP1/2(Y |W ). ¤

LEMMA 6.10
(Binding of interactive hashing in expected measure.) Let (SIH, RIH) be the interactive hashing
protocol in Protocol 3.3. For any fixed subset Γ ⊆ {0, 1}q, and for any sender S∗, setting C =
output((S∗, RIH)(1q, 1k)), we have

E [|{z : C(z) ∈ Γ}|] < max{24, 2k+1 · µ(Γ)} ≤ 24 + 2k+1 · µ(Γ) ,

where the above expectation is taken over the coins of S∗ and RIH.

This lemma and its proof are inspired by the work of Goldriech, Goldwasser, and Linial [GGL],
who studied a protocol similar to interactive hashing for a different purpose (namely, random
selection protocols).

Proof. Without loss of generality, we may assume that R∗ is deterministic. (Else, we can fix
its coins to maximize the expectation.) Note that for iteration j = 0, . . . , q − k − 1, RIH will
send a random hj , partitioning the set of possible outputs into two sets {y : hj(y) = 0} and
{y : hj(y) = 1}, and S∗ chooses a side of the partition by sending a bit cj . Let Γ0 = Γ, and for
all j > 0, Γj = {y ∈ Γ : hi(y) = ci ∀i < j} denote the set of compatible elements at iteration j.
Let µj = E[|Γj | · 2−(q−j)], where the expectation is taken over random choices of h0, . . . , hj−1. For
convenience of notation, assume that the hash function hi’s range is {±1}, instead of {0, 1}.

Consider a particular set Γj , and a particular hash function hj . Observe that for every y 6= y′ ∈
Γj , Prhj [hj(y) = hj(y′)] ≤ 1/2. Hence,

E
hj

[hj(y)hj(y′)] ≤ 0 ∀y 6= y′ ∈ Γj . (2)
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Observe that the set Γj+1 = {y ∈ Γj : hj(y) = cj}. Therefore,

E
hj

[µ(Γj+1)] = µ(Γj) + 2−(q−j) · E
hj




∣∣∣∣∣∣
∑

y∈Γj

hj(y)

∣∣∣∣∣∣




≤ µ(Γj) + 2−(q−j) ·

√√√√√E
hj





∑

y∈Γj

hj(y)




2
 (Cauchy-Schwartz/Jensen)

= µ(Γj) + 2−(q−j) ·
√
|Γj |+

∑

y 6=y′
E
hj

[hj(y)hj(y′)]

≤ µ(Γj) + 2−(q−j) ·
√
|Γj | (by 2)

= µ(Γj) +
√

2−(q−j) · µ(Γj) .

Consequently,

µj+1 = E
h0,...,hj

[µ(Γj+1)]

= E
h0,...,hj−1

[E
hj

[µ(Γj+1)]]

≤ E
h0,...,hj−1

[
µ(Γj) +

√
2−(q−j) · µ(Γj)

]

≤ E
h0,...,hj−1

[µ(Γj)] +
√

2−(q−j) · E
h0,...,hj−1

[µ(Γj)] (Cauchy-Schwartz/Jensen)

= µj +
√

2−(q−j) · µj .

Assume that the µj ’s are monotonically increasing (otherwise, we can make it so). This gives
us

µq−k ≤ µ0 +
q−k−1∑

j=0

√
2−(q−j) · µj

≤ µ0 +
√

µq−k ·
q−k−1∑

j=0

√
2−(q−j) (µj ’s are monotonically increasing)

< µ0 +
√

µq−k ·
√

6/2k

≤ µ0 +
µq−k

2
(if µq−k ≥ 24 · 2−k) ,

giving us µq−k < 2µ0 = 2µ(Γ) if µq−k ≥ 24 · 2−k. This means that µq−k is either less than 24 · 2−k

or less than 2µ(Γ). Therefore, we can conclude that

E
[
|{z : C(z) ∈ Γ}| : C = output((S∗, RIH)(1q, 1k))

]
= µq−k · 2k

< max{24, 2k+1 · µ(Γ)} . ¤
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6.2.3 Protocol 5.6 is hiding in CP1/2 measure

We are now ready to analyze the hiding property of Protocol 5.6 in terms of the CP1/2 measure. To
do so, we say what it means for a scheme to be δ-hiding in CP1/2 measure in Definition 6.11 below.
But before going into that definition, we first establish some notations that are used throughout
this part of the section.

With the sender’s input being x, we let random variable viewR∗(S1
c (x), R∗) denote the view of

receiver R∗ in the first commit phase, let random variable outputS(S1
c (x), R∗) denote the sender’s

private output in the first phase, and let random variable transcript(S1(x), R∗) denote the first
(commit and reveal) phase transcript.

Using similar notations, with the transcript being τ and sender’s input being x, we let random
variable viewR∗(S2

c (x), R∗)(τ) denote the view of receiver R∗ in the second commit phase, let
random variable outputS(S2

c (x), R∗)(τ) denote the sender’s private output in the second phase,
and let random variable transcript(S2(x), R∗)(τ) denote the second (commit and reveal) phase
transcript. We write Γ1 in viewR∗(S1

c (Γ1), R∗)—and similarly for others—to mean that the sender’s
private input is chosen uniformly from a set Γ1.

DEFINITION 6.11
For a parameter δ ∈ [0, 1], two-phase commitment scheme (S,R) is said to be δ-hiding in CP1/2

measure if there exists two sets Γ1, Γ2 ⊆ {0, 1}n such that the following three properties hold.

(H.1) Γ1 ∪ Γ2 = {0, 1}n and µ(Γ1 ∩ Γ2) ≥ δ.

(H.2) When the sender’s private input x is chosen uniformly from Γ1, the sender’s private output
in the first phase has low collision probability given the receiver’s view. Formally, for any
adversarial receiver R∗,

CP1/2(A|V ) ≤
√

2−(k−1) ,

for (A, V ) = (outputS(S1
c (Γ1), R∗), viewR∗(S1

c (Γ1), R∗)).

(H.3) When the sender’s private input x is chosen uniformly from Γ2, the sender’s private output in
the second phase has low collision probability given the receiver’s view. Formally, for every
adversarial receiver R∗ and every τ ∈ Supp(T), where T = transcript(S1(Γ2), R∗), we have

CP1/2(Bτ |Wτ ) ≤
√

2−(k−1) ,

for (Bτ ,Wτ ) = (outputS(S2
c (Γ2), R∗), viewR∗(S2

c (Γ2), R∗))|T=τ .

REMARK 6.12
Being δ-hiding in CP1/2 measure in the above Definition 6.11 roughly means that the scheme is
always hiding in at least one phase, and hiding in both phases occurs with probability δ.

LEMMA 6.13
(Protocol 5.6 is (1/n)-hiding in CP1/2 measure.) Let f : {0, 1}n → {0, 1}n be any function, not
necessarily one-way. There exist an integer t0 ∈ {1, 2, . . . , n} such that Protocol 5.6, with setting of
parameters t = t0, k ≤ q(n), ∆1 ≥ log n + 4, and ∆2 ≥ 3, is (1/n)-hiding in CP1/2 measure.
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Proof. Without loss of generality, we may assume that R∗ is deterministic since we can fix the coins
of R∗ that maximizes the above collision probabilities. We prove that (S, R) satisfies the above
three properties of Definition 6.11 as follows:

Property (H.1). Define p(y) = Pr[f(Un) = y], and let A1 = {y ∈ {0, 1}n : 1/2 ≤ p(y) ≤ 1}, and
for t ∈ {2, 3, . . . , n}, let At = {y ∈ {0, 1}n : 2−t ≤ p(y) < 2−t+1}. Since ∪tAt = f({0, 1}n), there
exists an index t0 such that Pr[f(Un) ∈ At0 ] ≥ 1/n. Define sets Γ1 and Γ2 as follows:

Γ1 = {x : p(f(x)) < 2−t0+1}
Γ2 = {x : p(f(x)) ≥ 2−t0}

By the definition of Γ1 and Γ2, we have that µ(Γ1 ∩ Γ2) = Pr[f(Un) ∈ At0 ] ≥ 1/n, and also
Γ1 ∪ Γ2 = {0, 1}n.

Property (H.2). In the case when the sender’s private input x ∈ Γ1, we bound the collision
probability of the first phase secret as follows:

CP(f(Γ1)) =
∑

y∈f(Γ1)

(
p(y)
µ(Γ1)

)2

≤
(

max
y∈f(Γ1)

p(y)
)
·

 ∑

y∈f(Γ1)

p(y)


 · 1

µ(Γ1)2

< 2−t0+1 · µ(Γ1) · µ(Γ1)−2

≤ 2−(t0−log n−1) (since µ(Γ1) ≥ 1/n) .

Observe that CP(f(Γ1)) ≤ 2−(t0−log n−1) ≤ 2−(t0−∆1+3). Therefore we can apply Randomness
Extraction Lemma 6.6 to get CP1/2(Q) ≤

√
2−(q−1), where Q = (H1,H1(f(Γ1))) and H1 is an

independent random hash from H1.
Next, let A = outputS(S1

c (Γ1), R∗) denote the private output of the sender S in the first phase
of Protocol 5.6, which in turn is equal to the output of SIH in the interactive hashing protocol, so
equivalently A = outputSIH

(SIH(Q), R∗). Similarly, let V = viewR∗(S1
c (Γ1), R∗) denote the view

of the adversarial receiver R∗ in the first phase, which in turn is equal to the view of R∗ in the
interactive hashing protocol, so equivalently V = viewR∗(SIH(Q), R∗).

The final step is to use the hiding property of interactive hashing given by Lemma 6.9 to
bound the collision probability of A (the private output of the sender S) given V (the view of the
adversarial receiver R∗) as follows:

CP1/2(A|V ) ≤
√

2q−k ·
√

CP(Q) ≤
√

2q−k ·
√

2−(q−1) =
√

2−(k−1) .

Property (H.3). In the case when the sender’s private input x ∈ Γ2, we analyze the collision
probability of the second phase secret as follows. First we observe that for any x, x′ ∈ {0, 1}n

such that f(x) = f(x′), the first phase transcripts for both x and x′ are identically distributed,
that is transcript(S1(x), R∗) ≡ transcript(S1(x′), R∗). Thus, if we fix a first phase transcript
τ ∈ transcript(S1(x), R∗) containing a value y = f(x) in the reveal phase, any element in Γ2,y =
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f−1(y) ⊆ Γ2 is equally likely to have generated τ . Also observe that the Γ2,y’s form a partition of
Γ2.

Note that by definition, |Γ2,y| ≥ 2n−t0 , and hence CP(Γ2,y) ≤ 2−(n−t0) ≤ 2−(n−t0−∆2+3).
Therefore we can apply Randomness Extraction Lemma 6.6 to get CP1/2(Q′) ≤

√
2−(q−1), for

Q′ = (H2,H2(Γ2,y)).
Next, let Bτ = outputS(S2

c (Γ2,y), R∗)(τ) denote the private output of the sender S in the
second phase, which in turn is equal to the output of SIH in the interactive hashing protocol, so
equivalently Bτ = outputSIH

(SIH(Q′), R∗). Similarly, let Wτ = viewR∗(S2
c (Γ2,y), R∗)(τ) denote the

view of the adversarial receiver R∗ in the second phase, which in turn is equal to the view of R∗ in
the interactive hashing protocol, so equivalently Wτ = viewR∗(SIH(Q′), R∗).

The final step is to use the hiding property of interactive hashing given by Lemma 6.9 to bound
the collision probability of Bτ (the private output of the sender S) given Wτ (the view of the
adversarial receiver R∗) as follows:

CP1/2(Bτ |Wτ ) ≤
√

2q−k ·
√

CP(Q′) ≤
√

2q−k ·
√

2−(q−1) =
√

2−(k−1) . ¤

6.2.4 Protocol 5.6 is 1-out-of-2 binding in expected measure

The definition of 1-out-of-2 binding in Definition 5.4 considers the first phase (resp., second phase)
to be broken if the sender S∗ produces valid decommitments to two different values after the first
commit stage (resp., second commit stage). In this section and Section 6.3, we will work with
a relaxed notion where we simply bound the expected number of values to which the sender can
open. To this end, we define openings(S∗, R1) [resp., openings(S∗, R2)] to be a random variable
denoting the number of values to which the sender successfully opens in phase 1 [resp., phase 2],
where ‘successfully’ opens is defined for each phase analogously to Definition 5.4. More formally,
for a two-phase commitment scheme (S, R) and a ‘binding’ set B, we define openings(S∗, R1)(B) as
follows:

• S∗ and R1
c interact to get first phase commitment c(1).

• After the interaction, S∗ outputs a sequence of values d
(1)
1 , . . . , d

(1)
` and corresponding full

transcripts λ1, . . . , λ` of both phases. Recall that λi = (τi, κi), where τi and κi are the first-
phase and second-phase transcripts, respectively.

• We let openings(S∗, R1)(B) be the set of distinct values d
(1)
i whose opening λi is valid, where

by valid we mean that λi begins with prefix c(1), λi contains a decommitment of c(1) to the
value d

(1)
i with first-phase transcript τi /∈ B, and both R1

r and R2
r accept in λi.

Analogously, we define openings(S∗, R2)(τ), where τ is a first-phase transcript, as follows:

• S∗ and R2
c interact to get second phase commitment c(2).

• After the interaction, S∗ outputs a sequence of values d
(2)
1 , . . . , d

(2)
` and corresponding second-

phase transcripts κ1, . . . , κ`.

• We let openings(S∗, R2)(τ) be the set of distinct values d
(2)
i whose opening κi is valid, where

by valid we mean that κi starts with prefix c, κi contains a decommitment of c(2) to the value
d

(2)
i , and R2

r accepts in κi.
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Now, we can describe the binding property of Protocol 5.6 in this language (even when the
underlying one-way function has unknown security).

LEMMA 6.14
(Protocol 5.6 is 1-out-of-2 binding in expected measure.) For every integer t ∈ {1, 2, . . . , n}, k =
O(log n), ∆1 = O(log n), and ∆2 = O(log n), the following holds for the two-phase commitment
scheme (S, R) in Protocol 5.6 based on one-way function f : {0, 1}n → {0, 1}n:

There exists a binding set B for (S, R) where:

(B.1) No PPT adversary S∗ can break the first phase binding with nonnegligible probability in
the sense of Definition 5.4. That is, for every PPT S∗, we have | openings(S∗, R1)(B)| ≤
1 with probability 1− neg(n) over the coins of S∗ and R1

c .

(B.2) For all τ ∈ B and every adversarial sender S∗,

E
[∣∣openings(S∗, R2)(τ)

∣∣] < 2 ,

where the above expectation is taken over the coins of S∗ and R2.

Proof. We follow the proof of the binding property in Lemma 5.10, using both Claims 5.12 and
5.11 from that proof. Let B = {y ∈ {0, 1}n : Pr[f(Un) = y] ≤ 2−t−∆3} be the same binding
set as defined in both claims. We set ∆3 = ∆2 + O(log n) to be large enough so that the binding
parameter poly(n)·2−Ω(∆3−∆2) in Claim 5.12 is at most 2−k. (This can be done since k = O(log n).)
Now, Claim 5.12 states that if τ ∈ B, then the second commitment phase is not binding—i.e.,∣∣openings(S∗, R2)(τ)

∣∣ ≥ 2—with probability at most 2−k. Since
∣∣openings(S∗, R2)(τ)

∣∣ ≤ 2k (the
commitment is to a k-bit string), taking expectations we have

E
[∣∣openings(S∗, R2)(τ)

∣∣] ≤ 2k · 2−k + 1 · (1− 2−k) < 2 .

To see why property (B.1) holds, let ε = ε(n) be the probability for which PPT S∗ breaks the
first phase binding. Observe that the inversion success probability of f from Claim 5.11 is

εO(1) · 1/poly(n) · 2−(k+∆1+∆3) = εO(1) · 1/poly(n) · 2−(k+∆1+∆2+O(log n))

=
εO(1)

poly(n)
,

since all k, ∆1, ∆2 = O(log n). This forces ε(n) to be a negligible function. ¤

6.3 Converting weakly hiding to strongly hiding commitments

In the previous section, we established that Protocol 5.6, with appropriate choice of parameters,
is 1/n-hiding in CP1/2 measure (hence, only weakly hiding), and 1-out-of-2 binding in expected
measure. Our goal in this section is to show how to boost the hiding probability to δ = 1−neg(n),
therefore making the scheme strongly hiding, while maintaining the 1-out-of-2 binding property.

We first show how to double the hiding probability by combining a constant number of schemes
to obtain a new scheme. We then repeat this doubling amplification process O(log n) times to
boost the hiding probability from 1/n to a constant c > 0, hence obtaining an Ω(1)-hiding scheme.
Finally we boost it all the way to 1 − neg(n) by combining polynomial number of Ω(1)-hiding
schemes. This is all achieved via a hiding amplification procedure stated next.
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ALGORITHM 6.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hiding amplification procedure, denoted as Amplify.

Input: two-phase commitment (S, R)

Additional Input Parameters: These are given in unary, and listed below:

1. Security parameter n.

2. Number m of schemes (S, R) to be combined.

3. Integer r denoting S’s private input length.

4. Integer k denoting S’s private output length.

5. Integer k′ denoting S’s private output length.

6. Integer thresholds α1 and α2, for the first and second commit phases respectively.

Output: two-phase commitment (S,R), as described by Protocol 6.16.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To reduce unnecessary clutter, we write (S,R) = Amplify(S, R) when the rest of the parameters
are clear from context.

PROTOCOL 6.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Amplified scheme (S,R) from hiding amplification of base scheme (S,R).

Sender’s private input: x = (x1, . . . , xm) ∈ {0, 1}mr.

First phase commit:
1. (S1

c ,R
1
c) does m sequential executions of (S1

c , R1
c), using xi for S1

c ’s secret in the i-
th execution. Let (S1

c [i](xi), R1
c [i]) denote the i-th execution of (S1

c , R1
c). Define ai =

outputS(S1
c [i](xi), R1

c [i]) ∈ {0, 1}k, and let a = (a1, . . . , am).

2. Let H1 = {h1 : {0, 1}mk → {0, 1}α1} be a family of pairwise independent hash functions.
S1 chooses a random hash h1 ← H1, and computes y(1) = (h1, h1(a)) ∈ {0, 1}q.

3. (S1
c ,R

1
c) runs the interactive hashing protocol (S1

IH(y(1)), R1
IH)(1q, 1k), given by Proto-

col 3.3, with S1 and R1 acting as S1
IH and R1

IH, respectively.
Let circuit C : {0, 1}k′ → {0, 1}q be the common output, and d(1) ∈ {0, 1}k′ be S1

IH’s
private output in (S1

IH(y(1)), R1
IH)(1q, 1k).

First phase sender’s private output: String d(1) ∈ {0, 1}k′ .

First phase reveal:
S1

r sends tuple γ(1) = (d(1), a, h1) ◦ (γ(1)
1 , . . . , γ

(1)
m ), where γ

(1)
i is the first phase revelation

string of S1
r [i] in the above execution of (S1

r [i](xi), R1
r [i]).

Receiver R1
r accepts if only if C(d(1)) = (h1, h1(a)) and R1

r [i] accepts (γ(1)
i , ai) for all i ∈

{1, 2, . . . , m}.
Second phase commit:

Second phase common input: Transcript τ = (τ1, . . . , τm), where each
τi = transcript(S1

i (xi), R1
i ).
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1. (S2
c ,R

2
c) does m sequential executions of (S2

c , R2
c), using xi for S2’s secret and transcript

τi in the i-th execution. Let (S2
c [i](xi), R2

c [i])(τi) denote the i-th execution of (S2, R2).
Define bi = outputS(S2

c [i](xi), R2
c [i])(τi) ∈ {0, 1}k, and let b = (b1, . . . , bm).

2. Let H2 = {h2 : {0, 1}mk → {0, 1}α2} be a family of pairwise independent hash functions.
S2 chooses a random hash h2 ← H2, and computes y(2) = (h2, h2(b)) ∈ {0, 1}q.

3. (S2
c ,R

2
c) runs the interactive hashing protocol (S2

IH(y(2)), R2
IH)(1q, 1k), given by Proto-

col 3.3, with S2
c and R2

c acting as S2
IH and R2

IH, respectively.
Let circuit C : {0, 1}k′ → {0, 1}q be the common output, and d(2) ∈ {0, 1}k′ be S2

IH’s
private output in (S2

IH(y(2)), R2
IH)(1q, 1k).

Second phase sender’s private output: String d(2) ∈ {0, 1}k′ .

Second phase reveal:
S2

r sends tuple γ(2) = (d(2), b, h2) ◦ (γ(2)
1 , . . . , γ

(2)
m ), where γ

(2)
i is the second phase revelation

string of S2
r [i] in the above execution of (S2

r [i](xi), R2
r [i]).

Receiver R2
r accepts if only if C(2)(d(2)) = (h2, h2(b)) and R2

r [i] accepts (γ(2)
i , bi) for all i ∈

{1, 2, . . . , m}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Starting from a weakly hiding scheme (S0, R0) of Protocol 5.6, we iteratively apply the amplifi-
cation process Amplify, in a way described by Algorithm 6.17 below, to achieve a new scheme (S, R)
that we will show to be statistically hiding. Let D > 1 denote a large enough integer constant. We
will set the number of schemes to be combined to be m = D in all but the last iteration, in which
we set m = n.

ALGORITHM 6.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Iterative amplification procedure.

Input: Function f : {0, 1}n → {0, 1}n, constant integer D > 1, and thresholds t ∈ {1, 2, . . . , n},
β1, . . . , β` ∈ {0, 1, . . . , D − 1}, β`+1 ∈ {0, 1, . . . , n}.

1. Let k0 = (16D) · log n, ` = log n, and (S0, R0) be the two-phase commitment scheme
based on function f : {0, 1}n → {0, 1}n from Protocol 5.6 using parameters t, k = k0,
and ∆1 = ∆2 = 2 log n.

2. For j = 1, 2, . . . , `, repeat the following:

(a) Set kj = kj−1 − 8D − 8.
(b) Set (Sj , Rj) = Amplify(Sj−1, Rj−1) for settings of parameters m = D, r = n ·Dj−1,

k = kj−1, k′ = kj , α1 = (βj + 1)(kj−1 − 1)− 3 and α2 = (D − βj)(kj−1 − 1)− 3.

3. Set (S, R) = Amplify(S`, R`) for settings of parameters m = n, r = n ·D`, k = k`, k′ = n,
α1 =

⌊
(β`+1 + 1

3δn)k
⌋

and α2 =
⌊
(n− β`+1 + 1

3δn)k
⌋
, where δ = 1/(2D).

Output: two-phase commitment scheme (S, R).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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LEMMA 6.18
If scheme (S0, R0) used by Algorithm 6.17 runs in polynomial time, then scheme (S,R), the output of
Algorithm 6.17, also runs in polynomial time.

Proof. Scheme (S, R) consists of n ·D` = n ·DO(log n) = poly(n) executions of (S0, R0). In addition,
each amplification procedure Amplify adds an overhead time of poly(n) since both the sender and
receiver are doing interactive hashing. Since there are only 1+n+nD+nD2+ · · ·+D`−1 = poly(n)
amplifications steps, the overhead time is polynomial. Hence, scheme (S, R) runs in polynomial time
if (S0, R0) does too. ¤

The rest of this section, which is technically involved, is devoted to proving the hiding and
binding properties of the final scheme (S, R). (In process of doing so, we also analyze the the hiding
and binding properties of intermediate schemes (Sj , Rj).)

6.3.1 Hiding amplification

The following two lemmas, Lemma 6.19 and 6.20, provide us a way to understand the hiding
property (in the CP1/2 measure) of amplified scheme (S,R), in terms of its base scheme (S, R).
Lemma 6.19 basically say that the hiding probability doubles when we go from (Sj−1, Rj−1) to
(Sj , Rj) = Amplify(Sj−1, Rj−1) (refer to Step 2b in Algorithm 6.17). So if we start up with 1/n-
hiding scheme (S0, R0), in ` = log n iterations, we will get a scheme (S`, R`) with Ω(1)-hiding.
Lemma 6.20 essentially argues that the final amplification step boost the hiding probability all the
way to 1 − neg(n) (in both phases) when starting from a scheme that is Ω(1)-hiding. With these
two lemmas, we can establish that the final scheme (S, R) = Amplify(S`, R`) is statistically hiding
in both phases.

LEMMA 6.19
(Intermediate step hiding amplification.) For any sufficiently large constant D ∈ Z+, the following
holds:

If scheme (S,R) is δ-hiding, then there exist an integer β ∈ {0, 1, . . . , D − 1} such that
scheme (S,R) = Amplify(S, R), with parameters m = D, k′ = k − 8D − 8, α1 = (β +
1)(k − 1)− 3, and α2 = (D − β)(k − 1)− 3, is δ′-hiding, for δ′ = min{2δ, 1/D}.

Proof. Without loss of generality, we may assume that R∗ is deterministic since we can fix the coins
of R∗ that maximizes the collision probability. Throughout this proof, the value of m will be fixed
to D, although we will keep writing m. Let the δ-hiding properties, as stated in Definition 6.11, of
(S,R) be (H.1), (H.2) and (H.3), respectively. We will prove that (S,R) satisfies Definition 6.11
with Properties (H’.1), (H’.2) and (H’.3) by showing that Property (H.1) implies (H’.1), and so
forth.

Property (H.1) implies (H’.1). Let Γ1 and Γ2 be the corresponding sets for (S,R). Define
the sets Γ′1 and Γ′2 in terms as follows (the value of β will be determined later).

Γ′1 = {(x1, . . . , xm) : ∃ i1, . . . , iβ+1 such that xi1 , . . . , xiβ+1
∈ Γ1} ,

Γ′2 = {(x1, . . . , xm) : ∃ i1, . . . , im−β such that xi1 , . . . , xim−β
∈ Γ2} .
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By the way we defined Γ′1 and Γ′2 together with the fact that Γ1 ∪ Γ2 = {0, 1}r, it is the case
that Γ′1 ∪ Γ′2 = {0, 1}mr. This is because either at least β + 1 of the xi are in Γ1 (in which case,
(x1, . . . , xm) ∈ Γ′1) or else at most β of the xi are in Γ1, which implies that at least m− β of the xi

are in Γ2 (in which case, (x1, . . . , xm) ∈ Γ′2).
We are given that µ(Γ1 ∩ Γ2) ≥ δ. Define δ′ = min{δ, 1/(2m)}. What we need to show is that

µ(Γ′1 ∩ Γ′2) ≥ δ′. Choose any subset S ⊆ Γ1 ∩ Γ2 such that µ(S) = δ′. Hence, we have

Pr
x1,...,xm←{0,1}r

[exactly one xi ∈ S] = mδ′(1− δ′)m−1 ≥ mδ′(1− 1/(m− 1))m−1 = Ω(mδ′) .

Given that exactly one xi ∈ S, assume without loss of generality that xm ∈ S. Let pt denote the
conditional probability that exactly t of the rest of the m−1 xi’s are in Γ1\Γ2. Choose β ∈ [0,m−1]
to maximize pt, i.e., β = argmaxt pt. Let Ii, for i = 1, 2, . . . , m − 1, be a binary random variable
indicating whether xi ∈ Γ1 or not; note that these are independent random variables conditioned
on the fact that xm ∈ S. Let the µ the mean of the Ii’s. By a Chernoff bound,

Pr

[∣∣∣∣∣
∑

i

Ii − µ · (m− 1)

∣∣∣∣∣ > 3
√

m− 1

]
≤ 2e((m−1)/3)·(3/

√
m−1)2 < 1/2 .

This means that greater 1/2 of the weight is centered around µ · (m−1)±3
√

m− 1. Since we chose
β = argmaxt pt in a maximal way, we have

Pr
x1,...,xm←{0,1}r

[exactly β of xi’s are in Γ1 \ S | exactly one xi ∈ S] = Ω
(

1√
m

)
.

Knowing that Γ1 ∪Γ2 = {0, 1}r, if exactly β of xi’s in Γ1 \S and exactly one xi ∈ S, then there
must be at least m− 1− β of xi’s in Γ2 \ S. Consequently,

Pr
x1,...,xm←{0,1}r

[(x1, . . . , xm) ∈ Γ′1 ∩ Γ′2] = Ω(mδ′) · Ω
(

1√
m

)

= Ω(
√

mδ′)
> 2δ′ = min{2δ, 1/m},

where the last inequality holds when m = D is a large enough constant.

Property (H.2) implies (H’.2). In the first commitment phase (S1
c , R

∗), the cheating receiver
R∗ interacts with m sequential executions of S1

c . Here we must analyze the case when S1
c ’s private

input in these m executions, given by x = (x1, . . . , xm), are distributed uniformly in Γ′1. We let
Ai(x) denote the private output of the sender and Vi(x) the view of the receiver in the i’th execution,
for x being the private input for S1

c . That is, for i = 1, . . . , m,

Ai(x) = outputS(S1
c (xi), R∗(V1, . . . , Vi−1));

Vi(x) = viewR∗(S1
c (xi), R∗(V1, . . . , Vi−1)).

Note that while the sender’s behavior in the i’th execution is independent of the previous exe-
cutions, the cheating receiver may base its strategy on its previous views. We want to bound
CP1/2(A′′(Γ ′1)|V ′′(Γ ′1)), where A′′(Γ ′1) = (A1(Γ ′1), . . . , Am(Γ ′1)) represents the combined first-phase
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private outputs of the m senders, and V ′′(Γ ′1) = (V1(Γ ′1), . . . , Vm(Γ ′1)) represents the view of R∗

when interacting with these m senders. Note that random variable Γ ′1 represents an independent
random element from the set Γ′1. To do this, we consider, for each I ⊆ [m] of size at least β +1, the
random variable Γ ′1|I for private input of the sender S, where Γ ′1|I represents choosing xi uniformly
in Γ1 for i ∈ I, and uniformly in Γ1 for i /∈ I. To get a bound on CP1/2(A′′(Γ ′1|I)|V ′′(Γ ′1|I)), we
will have to refer to Lemma 6.5 and see why the (Ai, Vi)’s satisfy the two conditions of the lemma.

Conditioned on the any previous view—namely, V1(Γ ′1|I) = v1, . . . , Vi−1(Γ ′1|I) = vi−1 for any
v1, . . . , vi−1—it is the case that CP1/2(Ai(Γ ′1|I)|Vi(Γ ′1|I)) ≤

√
2−(k−1) if i ∈ I. This follows from

Property (H.2) because the receiver R∗ can incorporate the previous view v1, . . . , vi−1 as advice
(since R∗ is unbounded), and then the only randomness in the definition of Ai and Vi is the sender’s
coins xi ← (Γ ′1|I)i, which are uniform in Γ1 (even conditioned on v1, . . . , vi−1). This shows that
the first condition of Lemma 6.5 is satisfied.

For the second condition, what we need to show is that conditioned on V1(Γ ′1|I) = v1, . . . , Vi(Γ ′1|I) =
vi, the random variables A1(Γ ′1|I), . . . , Ai(Γ ′1|I), Vi+1(Γ ′1|I) are independent. This can be seen by
induction on i as follows. It is vacuously true for i = 0. Assuming it is true for i = j−1, we prove it
for i = j as follows. First condition on v1, . . . , vj−1. By inductive hypothesis, A1, . . . , Aj−1, Vj are
independent (omitting Γ ′1|I from the notation for readability). Moreover, since we have conditioned
on v1, . . . , vj−1, Aj and Vj are functions of only (Γ ′1|I)j , the sender’s coins in the j’th execution,
which is independent of A1, . . . , Aj−1 (because we have only used (Γ ′1|I)1, . . . , (Γ ′1|I)j−1 so far).
Thus, if we condition on Vj = vj , Aj remains independent of A1, . . . , Aj−1. Vj+1 is independent of
A1, . . . , Aj because now it is only a function of (Γ ′1|I)j+1, which has not been used yet.

Applying Lemma 6.5, we have

CP1/2(A′′(Γ ′1|I)|V ′′(Γ ′1|I)) ≤
√

2−(β+1)(k−1), (3)

since from property (H.2), it is the case that for all i ∈ I, CP1/2(Ai|Vi) ≤
√

2−(k−1) (even condi-
tioned on the previous views), and |I| ≥ β + 1.

Now, to bound CP1/2(A′′(Γ ′1)|V ′′(Γ ′1)) where X is uniform in Γ′1, we observe that Γ ′1 = Γ ′1|I ,
where I is the random variable on subsets I of size at least β + 1 given by

Pr [I = I] = Pr
(x1,...,xm)←Γ′1

[{i : xi ∈ Γ1} = I].

In other words, sampling from Γ′1 can be broken into two steps; first sampling an I ← I, and then
sampling xi ← Γ1 for i ∈ I, and xi ← Γ1 for i /∈ I. Therefore, we have

CP1/2(A′′(Γ ′1|I)|V ′′(Γ ′1|I)) ≤ CP1/2(A′′(Γ ′1|I)|(V ′′(Γ ′1|I), I)) (by Lemma 6.7)

= E
I←I

[
CP1/2(A′′(Γ ′1|I)|V ′′(Γ ′1|I)

]

≤
√

2−(β+1)(k−1) (4)

=
√

2−(α1+3),

with the last inequality following from (3). Therefore we can apply Randomness Extraction
Lemma 6.6 to get CP1/2(H1,H1(A′′(Γ ′1))|V ′′(Γ ′1)) ≤

√
2−(q−1), where H1 is an independent random

hash from H1.
Next, let A′ = outputS(S1(Γ′1), R

∗) denote the private output of the sender S in the first phase,
which in turn is equal to the output of SIH in the interactive hashing protocol, so equivalently
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A′ = outputSIH
(SIH(Q), R∗

IH), where Q = (H1,H1(A′′(Γ ′1))). Similarly, let V ′ = viewR∗(S1(Γ′1), R
∗)

denote the view of the adversarial receiver R∗ in the first phase, which in turn is equal to the view
of R∗ in the interactive hashing protocol, so equivalently V ′ = (viewR∗IH(SIH(Q), R∗

IH), V ′′), for the
same Q = (H1,H1(A′′(Γ ′1))).

The final step is to use the hiding property of interactive hashing given by Lemma 6.9 to
bound the collision probability of A′ (the private output of the sender S) given V ′ (the view of the
adversarial receiver R∗) as follows:

CP1/2(A′|V ′) ≤
√

2q−k′ · CP1/2(Q|V ′′) ≤
√

2q−k′ ·
√

2−(q−1) =
√

2−(k′−1) .

Property (H.3) implies (H’.3). Fix a transcript τ ′ ∈ Supp(T′), where random variable T′ =
transcript(S1(Γ ′2), R

∗). Transcript τ ′ contains first-phase transcripts (τ1, . . . , τm) for the m execu-
tions of (S, R). Similarly to the above proof of Property (H’.2), we define the following random
variables:

Bi(x) = outputS(S2
c (xi), R∗(W1, . . . , Wi−1)(τi));

Wi(x) = viewR∗(S2
c (xi), R∗(W1, . . . , Wi−1)(τi)),

where xi are the coins of the sender in the i’th execution of the the (S,R). For notational simplicity,
we omit the sender’s coin-tosses from the first-phase interactive hashing (they can be considered
fixed for the analysis below). As above, we want to bound CP1/2(B′′(Xτ ′)|W ′′(Xτ ′)), where random
variable B′′(Xτ ′) = (B1(Xτ ′), . . . , Bm(Xτ ′)) represents the combined second-phase private outputs
of the m senders, and random variable W ′′(Xτ ′) = (W1(Xτ ′), . . . , Wm(Xτ ′)) represents the view of
R∗ when interacting with these m senders, with Xτ ′ being a shorthand for Γ ′2|T(Γ ′2)=τ ′ . To do this,
we consider, for each subset J ⊆ [m] of size at least m − β, the random variable XJ for private
input of the sender S, where XJ represents choosing xi uniformly in Γ2 for i ∈ J , and uniformly in
Γ2 for i /∈ J .

It is important to note that even when we condition on T′(XJ) = τ ′, the components (X1, . . . , Xm)
of XJ remain independent, and the distribution of Xi|T′(XJ )=τ ′ is equivalent to Xi|T(Xi)=τi

, where
only condition on the transcript of the i’th execution. (Similarly to the inductive proof above, it
can be shown that (X1, . . . , Xm) are independent given the receiver’s view Vm of the m executions
of S1

c . The only additional information revealed about the Xi’s in the first phase is (A1, . . . , Am),
where Ai is a function only of Xi once we condition on Vm.)

Thus from property (H.3), we have for all i ∈ J , CP1/2(Bi(XJ,τ ′)|Wi(XJ,τ ′)) ≤
√

2−(k−1), where
XJ,τ ′ = Γ ′2|J |T′(Γ ′2|J )=τ ′ , and this holds even conditioned on the previous views. Similar to the first
phase, we apply Lemma 6.5 to show that

CP1/2(B′′(XJ,τ ′)|W ′′(XJ,τ ′)) ≤
√

2−(m−β)(k−1) .

Again analogous to the first phase, we observe that Xτ ′ = XJ ,τ ′ for an appropriate random
variable J on sets of size at least m− β, and thus

CP1/2(B′′(Xτ ′)|W ′′(Xτ ′)) ≤
√

2−(m−β)(k−1) (5)

=
√

2−(α2+3).

By the Randomness Extraction Lemma 6.6, we get CP1/2(H2,H2(B′′(Xτ ′))|W ′′(Xτ ′)) ≤
√

2−(q−1).
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The final step is to use the hiding property of interactive hashing given by Lemma 6.9 to bound
the collision probability of Bτ (the private output of the sender S) given Wτ (the view of the
adversarial receiver R∗) as follows:

CP1/2(B′
τ ′ |W ′

τ ′) ≤
√

2q−k′ ·
√

2−(q−1) =
√

2−(k′−1) . ¤

LEMMA 6.20
(Final step hiding amplification.) The following statement holds for every constant δ > 0 and every
integer k ≥ 100/δ:

If scheme (S, R) is δ-hiding, then there exist an integer β ∈ [0, n] such that scheme
(S,R) = Amplify(S, R), with parameters m = n, k′ = n, α1 =

⌊
(β + 1

3δn)k
⌋

and
α2 =

⌊
(n− β + 1

3δn)k
⌋
, is statistically hiding in the sense of Definition 5.3.

Proof. Let the δ-hiding properties, as stated in Definition 6.11, of (S,R) be (H.1), (H.2) and (H.3),
respectively. To prove that scheme (S,R) is statistically hiding, it suffices to show that there exists
sets Γ′1, Γ

′
2 ⊆ {0, 1}nr such that the following holds for every adversarial receiver R∗:

(H’.1) Both µ(Γ′1), µ(Γ′2) ≥ 1− 2−Ω(n).

(H’.2) (A′, V ′) is 2−Ω(n)-close to (Un, V ′), where A′ = outputS(S1
c(Γ

′
1), R

∗) denotes the
private output of the sender S in the first phase, and V ′ = viewR∗(S1

c(Γ
′
1), R

∗)
denotes the view of the adversarial receiver R∗ in the first phase.

(H’.3) For all τ ′ ∈ Supp(T′), (B′
τ ′ ,W

′
τ ′) is 2−Ω(n)-close to (Un,W ′

τ ′), where random vari-
able (B′

τ ′ ,W
′
τ ′) = (outputS(S2

c(Γ
′
2), R

∗), viewR∗(S2
c(Γ

′
2), R

∗))|T′=τ ′ , and random
variable T′ = transcript(S1(Γ ′2), R

∗). We view B′
τ ′ as representing the private

output of the sender S in the second phase given that the first-phase transcript is
τ ′. Similarly, we view W ′

τ ′ as representing the view of the adversarial receiver R∗

in the second phase given that the first-phase transcript is τ ′.

Property (H.1) implies (H’.1). Let Γ1 and Γ2 be the corresponding sets for (S,R), and let
p = µ(Γ1). Set β =

⌊
pn− 1

2δn
⌋
, γ1 =

⌊
pn− 1

12δn
⌋

and γ2 =
⌊
(1− p + δ)n− 1

12δn
⌋
. Note that

β ∈ [0, n] since p ∈ [δ, 1].
Define the sets Γ′1 and Γ′2 as follows:

Γ′1 = {(x1, . . . , xn) : ∃ i1, . . . , iγ1 such that xi1 , . . . , xiγ1
∈ Γ1},

Γ′2 = {(x1, . . . , xn) : ∃ i1, . . . , iγ2 such that xi1 , . . . , xiγ2
∈ Γ2}.

To lower bound µ(Γ′1), note that µ(Γ1) − γ1/n = p − ⌊
pn− 1

12δn
⌋
/n ≥ 1

12δ = Ω(1) since
δ = Ω(1). Using a Chernoff bound, we get

µ(Γ′1) = 1− Pr
(x1,...,xn)

[less than γ1 of the xi’s are in Γ1]

= 1− 2−Ω(n).

To analyze µ(Γ′2), we note that µ(Γ2)− γ2/n = (1− p + δ)− ⌊
(1− p + δ)n− 1

12δn
⌋
/n ≥ 1

12δ =
Ω(1). Using a similar analysis as above, we get µ(Γ′2) = 1− 2−Ω(n).
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Property (H.2) implies (H’.2). Using the same notations and analysis as in the proof of
Lemma 6.19, we let Ai(x) denote the private output of the sender and Vi(x) the view of the
receiver in the i’th execution, for x being the private input for S1

c . That is, for i = 1, . . . , n,

Ai(x) = outputS(S1
c (xi), R∗(V1, . . . , Vi−1));

Vi(x) = viewR∗(S1
c (xi), R∗(V1, . . . , Vi−1)).

Let A′′(Γ ′1) = (A1(Γ ′1), . . . , An(Γ ′1)) represent the combined first-phase private outputs of the n
senders, and V ′′(Γ ′1) = (V1(Γ ′1), . . . , Vn(Γ ′1)) represent the view of R∗ when interacting with these
n senders, before interactive hashing is done. From now on, we simplify notation by making
A′′ = A′′(Γ ′1) and V ′′ = V ′′(Γ ′1).

Similar to (4) as in the proof of Lemma 6.19, we obtain

CP1/2(A′′|V ′′) ≤
√

2−γ1·(k−1) .

And by a Markov bound, we know that with probability greater than 1− 2−n over v′′ ← V ′′,

CP(A′′|V ′′=v′′) ≤ 2−γ1(k−1) · 22n ≤ 2−α1−(1/24)δkn+3n ≤ 2−(α1+n), (6)

with the last inequality following from k ≥ 100/δ.
Consider v′′ ∈ V ′′ such that the above (6) holds. Let Q = (H1,H1(A′′)), where H1 is an

independent random hash from H1. Because H1 is independent, Q|V ′′=v′′ = (H1,H1(A′′|V ′′=v′′)),
and we can apply the Leftover Hash Lemma 6.8 to obtain that Q|V ′′=v′′ , the input to the interactive
hashing protocol, is 2−Ω(n)-close to uniform.

Next, let A′ = outputS(S1(Γ ′1), R
∗) denote the private output of S in the first phase, which

in turn is equal to the output of SIH in the interactive hashing protocol, so equivalently A′ =
outputSIH

(SIH(Q), R∗). Similarly, let V ′ = viewR∗(S1
c (Γ1), R∗) denote the view of the adversarial

receiver R∗ in the first phase, and let VIH = viewR∗IH(SIH(Q), R∗
IH) denote the view of receiver R∗

during the interactive hashing execution only. Observe that V ′ = (V ′′, VIH), recalling that V ′′ is
the view of R∗ when interacting with these n senders, before interactive hashing is done.

Because Q|V ′′=v′′ , the input to interactive hashing, is 2−Ω(n)-close to uniform, we know that
(A′|V ′′=v′′ , VIH|V ′′=v′′) is 2−Ω(n)-close to (Un, VIH|V ′′=v′′), as guaranteed by the hiding property of
interactive hashing (see Definition 3.1). So the S’s private output A′|V ′′=v′′ is hidden for any
v′′ ∈ V ′′ satisfying the above (6). Finally note that (6) is satisfied for all but a 2−n fraction of
v′′ ← V ′′, so it follows that (A′, V ′) is 2−Ω(n)-close to (Un, V ′), as required.

Property (H.3) implies (H’.3). Using similar ideas in the proof of Lemma 6.19, we can proceed
as above and obtain that Property (H’.3) holds assuming (H.3). ¤

6.3.2 Binding preservation

In the execution of Algorithm 6.17, we obtained ` intermediate commitment schemes [(Sj , Rj)]1≤j≤` ,
and one final commitment scheme (S, R). Our goal is to prove that the final scheme (S,R) satisfies
the 1-out-of-2 binding property of Definition 5.4. To achieve our goal, we inductively show that
the expected number of openings a sender can produce in the intermediate schemes is bounded by
some constant, namely 32. (This is captured by Lemma 6.22 below.) Then in the final step, for
scheme (S, R), we show how to shrink this expectation to value that is very close to 1, effectively
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proving that scheme (S, R) is satisfies the 1-out-of-2 binding property. (This in turn is captured by
Lemma 6.24.)

In the definition of the computational 1-out-of-2 binding property (Definition 5.4), we stipulated
that the adversarial sender in the second phase can be computationally unbounded, whereas the
adversarial sender in the first phase must be probabilistic polynomial time (PPT). It will be rather
messy to work with PPT senders, hence we will first abstract away the PPT requirement by showing,
in the next section, how to convert any PPT sender violating the 1-out-of-2 binding property in
the first phase into a computationally unbounded sender with a special unique binding property.
A sender with the unique binding property, intuitively, will not break the (first-phase) binding
property of any execution of the initial schemes (S0, R0), but might still break the binding property
of the intermediate schemes (Sj , Rj) (or final scheme (S, R)). Intuitively, we can restrict to such
senders because of the computational 1-out-of-2 binding property of the initial scheme (S0, R0).
Once we have a sender with the unique binding property, the analysis of the amplification steps is
entirely information theoretic.

To formally define the unique binding property for senders, we observe that schemes [(Sj , Rj)]1≤j≤`

and (S, R) each contain multiple executions of initial scheme (S0, R0). Hence, when a cheating
sender S∗ interacts with Rj , it is actually also interacting with the i-th execution of R0, for each
i = 1, 2, . . . , which we will denote by R0[i]. Formally, we obtain a (computationally unbounded)
cheating sender strategy S∗[i] that interacts with this single execution of R0[i] (more precisely, the
first commit stage R1

0,c[i]), by simulating all of the other messages of Rj on its own until the end
of the first commit stage of R0[i]. Then it enumerates over all choices for the subsequent messages
of Rj and outputs all of the resulting transcripts of S∗’s interactions with R0[i] together with the
corresponding first-phase decommitment values.

DEFINITION 6.21
(Unique binding property of sender.) For intermediate schemes [(Sj , Rj)]1≤j≤` and final scheme
(S, R), a (deterministic) sender S∗ has the unique binding property if for all i, we have

| openings(S∗[i], R0[i])| ≤ 1

with probability 1 (over the coins of S∗[i]6 and R0[i]) where openings(·) is defined as in Section 6.2.4.

The following two lemmas, Lemma 6.22 and 6.24, provide us a way to understand the binding
property (in an average case sense) of (S,R), the amplified hiding scheme as presented in Proto-
col 6.16, in terms of (S,R). We might occasionally drop the superscript notations (1) and (2) from
the notations if it is clear which phase we are referring to.

LEMMA 6.22
(Intermediate step binding preservation.) For some constant D ∈ N and any integers t ∈ [1, n],
β1, . . . , β` ∈ {0, 1, . . . , D − 1}, and β`+1 ∈ [0, n], letting [(Sj , Rj)]1≤j≤` be the intermediate commit-
ment schemes obtained in the execution of Algorithm 6.17 with parameters D, t, and (β1, . . . , β`+1),
there exists a binding set B such that the following two conditions hold for each j = 1, 2, . . . , `:

6Note that S∗[i] is probabilistic even if S∗ is deterministic, because it simulates all of the random choices of Rj

other than those of R0[i].
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(B.1) For every deterministic sender S∗ with the unique binding property,

E
[∣∣openings(S∗, R1

j )(B)
∣∣] < 32 ,

where the expectation is taken over the coins tosses of R1
j .

(B.2) For every τ ∈ B and for every deterministic sender S∗,

E
[∣∣openings(S∗, R2

j )(τ)
∣∣] < 32 ,

where the expectation is taken over the coins tosses of R2
j .

Proof. We proceed to prove by induction on j. In fact, we will start with a base case of j = 0,
i.e., consider the scheme (S0, R0) from Section 6.2. By Lemma 6.14, we know that scheme (S0, R0)
satisfies both conditions (B.1) and (B.2). (Although Lemma 6.14 guarantees that (S0, R0) satisfies
condition (B.1) only for PPT S∗, it is also trivially satisfied for computationally unbounded S∗

with the unique binding property.)
For the inductive step, we assume (Sj , Rj) satisfy both (B.1) and (B.2), and show that so does

(Sj+1, Rj+1). Note that (Sj+1, Rj+1) is obtained by the amplification procedure (Protocol 6.16)
that combines m sequential executions of (Sj , Rj), i.e., (Sj+1, Rj+1) = Amplify(Sj , Rj). Hence, for
convenience of notation we will denote (Sj , Rj) and (Sj+1, Rj+1) as (S,R) and (S,R) respectively.
The i-th execution of (S, R) in (S,R) is denoted as (S[i], R[i]), not to be confused with the subscript
indexing notation of (Sj , Rj).

Also throughout this proof, the value of m will be fixed to D, although we will keep writing m.
Let B be the binding set for (S, R). We define our new binding set B′ for (S,R) in terms of B as
follows:

B′ = {(τ1, . . . , τm) : ∃ j1, . . . , jβ+1 such that τj1 , . . . , τjβ+1
∈ B} .

That is, a transcript τ ′ = (τ1, . . . , τm) ∈ B′ if and only if at least β + 1 of τj ’s are in B. Conversely,
τ ′ /∈ B′ if and only if at least m− β of the τj ’s are not in B.

Property (B.1). Consider a deterministic S∗ with the unique binding property interacting with
R1. The random coins of R1 can be broken up into independent random coins of R1[1], . . . , R1[m]
and R1

IH, the receiver in the interactive hashing.
Recall that the m executions of (S, R) in (S,R) are sequential. We want to focus on the

interaction of S∗ with (the commit phase of) R1[i]. To do so, define S∗[i], the sender interacting
with R1[i], as follows: S∗[i] simulates S∗ using fixed coins rj for all the previous R1[j]’s (for all
j < i) and after the interaction with R1[i], S∗[i] outputs all the valid openings that occur in some
continuation of S∗’s interaction with R[i] (by enumerating over all coins of the future R[j]’s, j > i,
the coins of R1

IH, and the coins of R2). Observe that S∗[i] inherits the unique binding property
from S∗. We will write S∗[i](r1, . . . , ri−1) to indicate the fixed coins rj that are used by S∗[i] in
simulating R1[j].

Let Xi(r1, . . . , ri) =
∣∣openings(S∗[i](r1, . . . , ri−1, R

1[i](ri))(B)
∣∣; in other words, count of the

number of valid decommitment in i-th execution, when the sender uses simulated coins r1, . . . , ri−1

and R1[i] uses coins ri. Let U = (U1, . . . , Um), where Ui denotes the uniform random variable on
coins ri for R[i]; note that these are independent because the honest receiver tosses independent
coins for each execution. We now consider the random variables Xi(U) = Xi(U1, . . . , Ui).
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By our induction hypothesis, for all fixed (r1, . . . , ri−1), we have

E [Xi(U)|U1 = r1, . . . , Ui−1 = ri−1] = E [Xi(r1, . . . , ri−1, Ui)] < 32 .

Because the previous Xj(U)’s, for j < i, only depend on U1, . . . , Uj , we have that the expected
value of Xi is less than 32 even given any previous values of Xj ’s. That is, E

[
Xi|X1=x1,...,Xi−1=xi−1

]
<

32 for any (x1, . . . , xi−1) ∈ Supp(X1, . . . , Xi−1). The following claim allows us to bound the expec-
tation of the product of these random variables.

CLAIM 6.23
Let Y1, . . . , Y` be nonnegative real-valued random variables such that for all i = 1, 2, . . . , `,
we have E[Yi|Y1=y1,...,Yi−1=yi−1 ] < αi ∈ R+, for every (y1, . . . , yi−1) ∈ Supp(Y1, . . . , Yi−1).
Then,

E

[∏̀

i=1

Yi

]
<

∏̀

i=1

αi .

Proof of Claim. Note that

E[Y1 · · ·Y`] = E
[
E[Y1 · · ·Y` | Y1 · · ·Y`−1]

]

= E
[
Y1 · · ·Y`−1 · E[Y` | Y1 · · ·Y`−1]

]

< E[Y1 · · ·Y`−1 · α`]
= α` · E[Y1 · · ·Y`−1] ,

and the claim follows by induction on `. ¤

As noted above, it is always the case that E [Xi] < 32, regardless of the instantiation of previous
Xj ’s, for j < i. Note that Claim 6.23 also applies to computing the expectation of

∏
i∈J Xi, for

any subset J ⊂ [m], since any subset of the Xi’s (preserving the right order) satisfy the condition
of claim.

Once the m commitments R1[i] are complete, we can define a random variable A = A(U) that
denotes the set of values a = (a1, . . . , am)’s for which the sender S∗ produces a valid opening
with respect to B′ in some continuation of the protocol. By the definition of B′, this means that
a = (a1, . . . , am) is valid if at least m− β of those are ai’s correspond to decommitments that are
in B. For those ai’s corresponding to decommitments that are in B, the number of possible values
that ai can take on is Xi(U). And for those ai’s correspond to decommitments that are not in
B, we can only bound the number of possible values that ai can take on by 2k (since ai is a k-bit
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string).

E
U

[|A(U)|] ≤ E
U


 ∑

J⊆[m],|J |≥m−β

∏

i∈J

Xi(U)
∏

i/∈J

2k




=
∑

J⊆[m],|J |≥m−β

E
U

[∏

i∈J

Xi(U)
∏

i/∈J

2k

]

<
∑

J⊆[m],|J |≥m−β

∏

i∈J

32 ·
∏

i/∈J

2k (by Claim 6.23)

≤ 2m · 32m−β · (2k)β (because 32 < 2k)

≤ 2(β+1)(k−1)+6m−k+1 = 2α1−(k−6m−4) .

Let random variable Γ1 = (H1,H1(A)). Since E[|A|] ≤ 2α1−(k−6m−4) and the range of h1 ∈ H1 is
α1, the expected density of Γ1 satisfies E[µ(Γ1)] ≤ E[|A|]·2−α1 ≤ 2−(k−6m−4), where the expectation
is taken over the coins tosses U = (U1, . . . , Um). Note that Γ1 is independent of the coins of R1

IH in
the first phase interactive hashing (though not independent of the coins of R1).

Finally, we have

E
coins R1

[∣∣openings(S∗,R1)(B′)∣∣] ≤ E
coins R1

IH,Γ1

[∣∣∣{d(1) : C(1)(d(1)) ∈ Γ1}
∣∣∣
]

,

where in the second expectation, C = output(S∗, R1
IH). By Lemma 6.10,

E
coins R1

IH,Γ1

[∣∣∣{d(1) : C(1)(d(1)) ∈ Γ1}
∣∣∣
]

< 24 + 2k′+1 · E[µ(Γ1)] < 32 ,

with the last inequality following from k′ < k − 8m− 8.

Property (B.2). We use the same approach as above, except this time, we consider all deter-
ministic S∗, as opposed to only those with the unique binding property. Also we need to fix a
binding transcript τ = (τ1, . . . , τm) ∈ B′. Let J be the set of indices such that τi ∈ B.

As done previously, we define S∗[i] and set Xi =
∣∣openings(S∗[i], R2[i])(τi)

∣∣, where S∗[i]. By
our induction hypothesis, for all i ∈ J , we have

E
[
Xi|X1=x1,...,Xi−1=xi−1

]
< 32 ,

for any (x1, . . . , xi−1) ∈ Supp(X1, . . . , Xi−1).
Let random variable B denote the denotes the set of values b = (b1, . . . , bm) for which the sender

S∗ produces a valid opening in some continuation of the protocol. Noting that Xi can be as large
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as 2k for indices i /∈ J , we have

E [|B|] ≤ E
coins R2[1], . . . , R2[m]

[∏

i∈J

Xi

∏

i/∈J

2k

]

<
∏

i∈J

32 ·
∏

i/∈J

2k (by Claim 6.23))

≤ 32β+1 · (2k)m−β−1 (because 32 < 2k)

≤ 2(m−β)(k−1)−(k−6m) (because m > 5)

= 2α2−(k−6m−3).

Let random variable Γ2 = (H2,H2(B)). Since E[|B|] ≤ 2α2−(k−6m−3) and the range of h2 ∈ H2 is
α2, the expected density of Γ2 satisfies E[µ(Γ2)] ≤ E[|B|]·2−α2 ≤ 2−(k−6m−3), where the expectation
is taken over the coins tosses of R2

1, . . . , R
2
m. Note that Γ2 is independent of the coins of R2

IH in the
second phase interactive hashing (though not independent of the coins of R2). Finally, we have

E
coins R2

[∣∣openings(S∗,R2)(τ ′)
∣∣] ≤ E

coins R2
IH,Γ2

[∣∣∣{d(2) : C(2)(d(2)) ∈ Γ2}
∣∣∣
]

,

where in the second expectation, C = openings(S∗(Γ2), RIH). By Lemma 6.10,

E
coins R2

IH,Γ2

[∣∣∣{d(2) : C(2)(d(2)) ∈ Γ2}
∣∣∣
]

< 24 + 2k′+1 · E[µ(Γ2)] < 32 ,

with the last inequality following from k′ < k − 8m− 8. ¤

LEMMA 6.24
(Final step binding preservation.) For some constant D ∈ N and any integers t ∈ [1, n], β1, . . . , β` ∈
{0, 1, . . . , D−1}, and β`+1 ∈ [0, n], letting (S, R) be the final output of Algorithm 6.17 with parameters
D, t, and (β1, . . . , β`+1), there exists a binding set B′ such that the following two conditions hold:

(B.1) For every deterministic sender S∗ with the unique binding property, with probability
1− 2−Ω(n) over the coins of R1,

∣∣openings(S∗, R1)(B′)∣∣ ≤ 1 .

(B.2) For every τ ∈ B′ and for every deterministic sender S∗, with probability 1 − 2−Ω(n)

over the coins of R2, ∣∣openings(S∗,R2)(τ)
∣∣ ≤ 1 .

Proof. From Lemma 6.22, we have scheme (S`, R`) with an associated binding set B satisfying both
conditions (B.1) and (B.2) in Lemma 6.22. Scheme (S, R) = Amplify(S`, R`), and hence we will need
to show that the amplification boosts the binding by making sure both

∣∣openings(S∗,R1)(B)
∣∣ ≤ 1

and
∣∣openings(S∗, R2)(τ)

∣∣ ≤ 1 with probability 1− 2−Ω(n).
Throughout this proof, the value of m will be fixed to n (as in Step 3 of Algorithm 6.17),

although we will keep writing m. We define our new binding set B′ for (S,R) in terms of B as
follows:

B′ = {(τ1, . . . , τm) : ∃ j1, . . . , jβ+1 such that τj1 , . . . , τjβ+1
∈ B} .
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That is, a transcript τ ′ = (τ1, . . . , τm) ∈ B′ if and only if at least β + 1 of τj ’s are in B. Conversely,
τ ′ /∈ B′ if and only if at least m− β of the τj ’s are not in B.

Property (B.1). Using the same analysis and notations as in the proof of Lemma 6.22, we have
that

E
coins R1[1], · · · , R1[m]

[|A|] ≤ 2m · 32m−β · (2k)β ≤ 2βk+6m ,

where A is the random variable denoting the set of values a = (a1, . . . , am)’s for which the sender
S∗ produces a valid opening with respect to B′ in some continuation of the protocol.

Since δ = Ω(1) and k = k` ≥ log n, observe that α1 =
⌊
(β + 1

3δn)k
⌋

= βk + ω(n), for large
enough values of n. Let random variable Γ1 = (H1, H1(A)). Since the range of h1 ∈ H1 is {0, 1}α1 ,
the density of Γ1 satisfies

E
coins R1[1], · · · , R1[m]

[µ(Γ1)] ≤ E[|A|] · 2−α1 < 2βk+6m · 2−(βk+ω(n)) = 2−ω(n) ,

since m = n. Thus, with probability at least 1− 2−n over the coins tosses of R1[1], . . . , R1[m], we
have that

µ(Γ1) ≤ 2−ω(n) · 2n ≤ 2−2n .

By Lemma 3.7, we can conclude that for such a Γ1 (with µ(Γ1) ≤ 2−2n),

Pr
coins R1

IH

[∣∣∣{d(1) : C(1)(d(1)) ∈ Γ1}
∣∣∣ > 1

]
≤ poly(n) · (2−2n · 2k′)1/2 = 2−Ω(n) .

Finally, we have:

Pr
coins R1

[∣∣openings(S∗,R1)
∣∣ > 1

]

≤ Pr
coins R1

1, · · · , R1
m

[
µ(Γ1) > 2−2n

]
+ Pr

coins R1
IH

[
|{d(1) : C(1)(d(1)) ∈ Γ1}| > 1

∣∣ µ(Γ1) ≤ 2−2n
]

= 2−Ω(n) .

Property (B.2). Fix any τ ′ ∈ B′. Again, we use the same analysis and notations as in the proof
of Lemma 6.22 to get:

E
coins R2[1], · · · , R2[m]

[|B|] ≤ 32β+1 · (2k)m−β−1 ≤ 2(m−β)k+5m ,

where B is the random variable denoting the set of values b = (b1, . . . , bm)’s for which the sender
S∗ produces a valid opening in some continuation of the protocol

Since δ = Ω(1) and k ≥ log n, observe that α2 =
⌊
(n− β + 1

3δn)k
⌋

= (n− β)k + ω(n), for large
enough values of n. Let random variable Γ2 = (H2, H2(B)). Since the range of h2 ∈ H2 is {0, 1}α2 ,
the density of Γ2 satisfies

E
coins R2[1], · · · , R2[m]

[µ(Γ2)] ≤ E[|B|] · 2−α2 < 2(m−β)k+5m · 2−((n−β)k+ω(n)) = 2−ω(n) ,

since m = n. Thus, with probability at least 1− 2−n over the coins tosses of R2[1], . . . , R2[m], we
have that

µ(Γ2) ≤ 2−ω(n) · 2n ≤ 2−2n.
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By Lemma 3.7, we can conclude that for such a Γ2 (with µ(Γ2) ≤ 2−2n),

Pr
coins R2

IH

[∣∣∣{d(2) : C(2)(d(2)) ∈ Γ2}
∣∣∣ > 1

]
= 2−Ω(n) .

Finally, we have:

Pr
coins R2

[∣∣openings(S∗,R2)(τ ′)
∣∣ > 1

]

≤ Pr
coins R2

1, · · · , R2
n

[
µ(Γ2) > 2−2n

]
+ Pr

coins R2
IH

[
|{d(2) : C(2)(d(2)) ∈ Γ2}|

∣∣ µ(Γ2) ≤ 2−2n
]

= 2−Ω(n) . ¤

6.4 A collection of 1-out-of-2-binding commitments

In this section, we prove Theorem 6.1 restated below.

RESTATEMENT OF THEOREM 6.1
Given a one-way function f : {0, 1}n → {0, 1}n, we can construct in time polynomial in n a collection
of m = poly(n) public-coin 2-phase commitment schemes COM = {Com1, · · · ,Comm} with message
lengths (k1, k2) = (n, n), such that:

• there exists an index i ∈ {1, 2, . . . , m} such that scheme Comi is statistically hiding, and

• for every index i ∈ {1, 2, . . . , m}, scheme Comi is computationally 1-out-of-2 binding.

6.4.1 Proof of Theorem 6.1

To obtain the desired collection of two-phase commitment schemes, we apply Algorithm 6.17 to
the weakly hiding scheme (S0, R0), which can be constructed based on any one-way function f :
{0, 1}n → {0, 1}n. More precisely, we obtain a collection of commitments by enumerating over all
the polynomially many choices of the integers t ∈ {1, 2, . . . , n}, β1, . . . , β` ∈ {0, 1, . . . , D − 1}, and
β`+1 ∈ {0, 1, . . . , n}. Note that the number of choices is n · D` · (n + 1) = poly(n), as D = O(1)
and ` = log n. By Lemma 6.18, the resulting commitment schemes Com1, · · · , Comm all run in
polynomial time. The hiding and binding properties of these schemes are given by Lemmas 6.25
and 6.26, which together establish Theorem 6.1.

LEMMA 6.25
For every function f : {0, 1}n → {0, 1}n (regardless of whether or not f is one way), there exists a
constant D ∈ N, integers t ∈ {1, 2, . . . , n}, β1, . . . , β` ∈ {0, 1, . . . , D − 1}, and β`+1 ∈ {0, 1, . . . , n}
such that the two-phase commitment scheme (S,R) produced by Algorithm 6.17 with parameters D, t,
and (β1, . . . , β`+1) is statistically hiding in the sense Definition 5.3.

Proof. We prove by induction on the properties of (Sj , Rj) for j = 0, 1, . . . , `. The induction
hypothesis is that (Sj , Rj) has two associated sets Γ1,j , Γ2,j ⊆ {0, 1}nmj

such that for all R∗, the
following holds:

1. Γ1,j ∪ Γ2,j = {0, 1}nmj
and µ(Γ1,j ∩ Γ2,j) ≥ min{2j/n, 1/2D}.

50



2. CP1/2(A|V ) ≤
√

2−(kj−1), where A = outputS(S1
c,j(Γ1,j), R∗) and V = viewR∗(S1

c,j(Γ1,j), R∗).

3. CP1/2(Bτ |Wτ ) ≤
√

2−(k−1), where the joint distribution (Bτ ,Wτ ) =
(outputS(S2

c (Γ2,j), R∗), viewR∗(S2
c (Γ2,j), R∗))|T=τ , for every τ ∈ Supp(T), for T =

transcript(S1(Γ2,j), R∗).

where kj is defined as in Algorithm 6.17.

The base case of j = 0 follows from the fact that Protocol 5.6 is (1/n)-hiding as established
by Lemma 6.13. The induction step is provided by the Intermediate Step Hiding Amplification
Lemma 6.19. Finally, observe that µ(Γ1,` ∩ Γ2,`) ≥ min{2`/n, 1/(2D)} = Ω(1) since ` = log n.

By the Final Step Hiding Amplification Lemma 6.20, there exists two sets Γ1,`+1 and Γ2,`+1

such that for all R∗, the following three conditions holds:

1. µ(Γ1,`+1), µ(Γ2,`+1) > 1− 2−Ω(n);

2. (A, V ) is 2−Ω(n)-close to (U1, V ), where A = outputS(S1
c(Γ1,`+1), R∗) and V =

viewR∗(S1
c(Γ1,`+1), R∗);

3. for all τ ′ ∈ Supp(T′), (B′
τ ′ ,W

′
τ ′) is 2−Ω(n)-close to (U1,W

′
τ ′), where (B′

τ ′ ,W
′
τ ′) =

(outputS(S2
c(Γ2,`+1), R∗), viewR∗(S2

c(Γ2,`+1), R∗))|T′=τ ′ , and T′ = transcript(S1(Γ2,`+1), R∗).

Since both µ(Γ1,`+1), µ(Γ2,`+1) > 1 − 2−Ω(n), we can substitute random variables Γ1,`+1 and
Γ2,`+1 with an independent uniform random variable UN , where N = nm`and get the following
desired hiding properties.

• (A, V ) is 2−Ω(n)-close to (U1, V ), where A = outputS(S1
c(UN ), R∗) and

V = viewR∗(S1
c(UN ), R∗).

• (B′,W ′,T′) is 2−Ω(n)-close to (U1,W
′,T′), where B′ = outputS(S2

c(UN ), R∗), W ′ = viewR∗(S2
c(UN )),

and T′ = transcript(S1(UN ), R∗).

The above two conditions are the requirements for being statistical hiding in the sense Definition 5.3.
¤

LEMMA 6.26
If f : {0, 1}n → {0, 1}n is one way, there exists a constant D ∈ N such that for all integers t ∈
{1, 2, . . . , n}, β1, . . . , β` ∈ {0, 1, . . . , D − 1}, and β`+1 ∈ {0, 1, . . . , n}, the two-phase commitment
scheme (S, R) produced by Algorithm 6.17 with parameters D, t, and (β1, . . . , β`+1) is computationally
1-out-of-2 binding in the sense of Definition 5.4. (Here the function f for which the scheme is based
on needs to be hard to invert.)

Proof. By Lemma 6.24, we have established that the two-phase commitment scheme (S, R) produced
by Algorithm 6.17 satisfies the first condition of Definition 5.4. In addition, it also satisfies the
second condition for all S∗ with the unique binding property. Stated formally, for every deterministic
(and computationally unbounded) S∗ with the unique binding property,

Pr
[∣∣openings(S∗,R1)

∣∣ ≤ 1
]

= 1− 2−Ω(n), (7)

where the probability is taken over the coins of R1.
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Thus, it suffices to prove is that any PPT S∗ breaking the second condition of Definition 5.4
with probability ε will either (i) yield a PPT Ŝ that violates the computational 1-out-of-2 binding
property of (S0, R0) with probability at least εO(1)/poly(n), or (ii) yield a computationally un-
bounded Ŝ that has the unique binding property and succeeds with probability greater than ε/2.
In both cases, ε needs to be negligibly small in order to avoid a contradiction.

From now on, let ε be the probability that the S∗ breaks the second condition of Definition 5.4
with respect to scheme (S,R). This probability is taken over the coin tosses of both the receiver R
and the cheating sender S∗. We will write S∗(r) to denote S∗ with its coin tosses fixed to r. By
the way we defined (S, R), it contains polynomially many executions of (S0, R0). Let N = n · D`

denote the number of such executions.
Let z denote the transcript of (S∗, R). Contained in z is also a first-phase commitment z[i] for

the i-th execution of R0, denoted R0[i] (for all i = 1, 2, . . . , N). Let ẑ[i] be the partial transcript of
z up to and including the first commit stage of R0[i]. Note that z[i] is a suffix of ẑ[i], and ẑ[i] is a
prefix of z.

For all index i ∈ [N ], partial transcripts ẑ[i] ending with the first commit stage of R0[i] and
d ∈ {0, 1}k0 , and coin tosses r for S∗, define

pi,ẑ[i],d,r = Pr
z←(S∗(r),R1)

[z contains a valid opening of z[i] to value d |z begins with ẑ[i] ] ,

where as usual by a valid opening, we mean that the transcript τ [i] of S∗’s interaction with R0[i]
contains an opening of z[i] to the value d, the first phase of τ [i] is not in the binding set B0, and
R0[i] accepts in both phases of τ [i].

Let K = 2k0 , where k0 is the message length in (S0, R0). We have two cases to consider.

Case 1. There exists an i ∈ [N ] such that with probability at least ε
4NK over ẑ[i] and r, there

exists d 6= d′ with both pi,ẑ[i],d, pi,ẑ[i],d′ > ε
4NK .

In this case, we violate the computational 1-out-of-2 binding property of (S0, R0) by considering
the following sender Ŝ interacting with R0[i].

1. Select a random i ← [N ] and coin tosses r for S∗.

2. Run S∗(r) with R1, simulating all of the messages of R1 internally except for those
of R0[i]. Halting after the first commit stage of R0[i], we obtain a partial transcript
ẑ[i]. From ẑ[i], we get z[i], the first-phase commitment of R0[i].

3. Record the current state ψ of S∗(r) and R1.

4. Continue the execution of S∗(r) with R1 from ψ to obtain a decommitment to a
value d in the interaction with R0[i].

5. Repeat Step 4 with independent randomness in continuing the execution of S∗(r)
with R1 to obtain a decommitment to a value d′. (This can be done since R is
public coin, i.e., just sends independent random coins at each round, and S∗(r) is
deterministic.)

Because our goal is to violate the computational 1-out-of-2 binding property of (S0, R0), we
succeed in the above algorithm if d 6= d′ and decommitments produced are valid. We calculate our
success probability as follows: We guess correct index i ∈ [N ] with probability 1/N . Given that
we guess the correct i, we get the desired ẑ[i] with probability at least ε

4NK . Now, when we do two
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independent continuations of ẑ[i] we arrive at two different decommitted values with probability
greater than ( ε

4NK )2. Consequently, we violate the computational 1-out-of-2 binding property of
(S0, R0) (i.e., win the game in Condition 2 of Definition 5.4) with probability greater than

1
N
· ε

4NK
·
( ε

4NK

)2
=

1
N
·
( ε

4NK

)3
=

( ε

n

)O(1)
,

since K = 2k0 = 2O(log n) = poly(n) and N = n ·D` = n · O(1)O(log n) = poly(n). This forces ε to
be a negligible function.

Case 2. For all i ∈ [N ] and all coin tosses r for S∗, it holds that with probability greater than
1− ε

4NK over ẑ[i], there is at most one d such that pi,ẑ[i],d,r > ε
4NK .

Define d∗(ẑ[i], r) to be the value of d that maximizes pi,ẑ[i],d,r. Taking a union bound over all
the rest of the pi,ẑ[i],d′,r < ε

4NK , we have that

Pr
r,z←(S∗(r),R)

[S∗(r) opens some z[i] to a value other than d∗(ẑ[i], r)]

≤
N∑

i=1

(
ε

4NK
·K + Pr

ẑ[i],r

[
exists more than one d such that pi,ẑ[i],d,r >

ε

4NK

])

< N ·
( ε

4NK
·K +

ε

4NK

)

<
ε

2
.

Let Ŝ(r) be the adversary that mimics S∗(r) except that it halts and fails if S∗(r) attempts to
open some z[i] to a value other than d∗(ẑ[i], r), for some i ∈ [N ] and ẑ[i]. By the way we defined
Ŝ(r), the final outcome of (Ŝ, R1) will only differ with the original final outcome of (S∗, R1) with
probability at most ε/2 over r and the coins of R1. In addition, for each r, Ŝ(r) has the unique
binding property. By (7) above,

∣∣∣openings(Ŝ(r),R1)
∣∣∣ > 1 occurs with at most negligible probability

over the coins of R1. Hence,
∣∣openings(S∗(r), R1)

∣∣ > 1 occurs with probability at most neg(n)+ε/2
over r and the coins of R1. We started off assuming that S∗ breaks property (B.1) of scheme (S, R)
with probability at least ε, that is to say

∣∣openings(S∗, R1)
∣∣ > 1 with probability at least ε. Thus

ε ≤ neg(n) + ε/2, which implies that ε = neg(n). ¤

7 Standard Commitments from 1-out-of-2-Binding Commitments

In the previous sections, we constructed statistically hiding and computationally
(
2
1

)
-binding two-

phase commitment schemes from any one-way function. In this section, we transform these two-
phase commitments into commitment schemes that are statistically hiding and computationally
binding (in the standard sense of binding). We accomplish this using a novel application of a
universal one-way hash family, whose existence can be based on any one-way function [Rom] (see
also [KK]). Thus, our transformation can be based on any one-way function.

7.1 Overview

We would like to use a two-phase commitment schemes to construct a (standard) commitment
scheme. A naive attempt to design the commitment scheme may go as follows: First, the sender
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commits to some random string x using the first-phase commit stage. Then, the receiver flips
a coin phase ∈ {first, second}, if phase = first then the first-phase commitment is used as the
commitment (e.g., the sender sends to the receiver the exclusive-or of its secret with x). Otherwise
(phase = second), the two parties execute the first phase reveal stage and if successful (i.e., the
receiver does not reject), they use the second-phase commitment (invoked with the transcript of
the first-phase as input) as the commitment.

The intuition is that since the commitment is
(
2
1

)
-binding, the sender cannot cheat in both

phases together and thus the receiver would catch a cheating sender with probability half. The
problem is, however, that the sender can decide in which commitment he likes to cheat after knowing
the value of phase. Hence, the sender can cheat successfully in both cases without violating the(
2
1

)
-binding of the underlying protocol.
Our additional idea is to use universal one-way hash functions (UOWHFs) in order to force

the sender to decide in which phase it is about to cheat before knowing the value of phase. UOWHFs
are a relaxation of collision-resistant hash functions that were defined by Naor and Yung [NY] and
shown to be constructible from any one-way function by Rompel [Rom].7 A UOWHF is a family
of compressing functions such that no efficient adversary can succeed in the following game with
nonnegligible probability. The adversary should first announce a value x. Then, on a uniformly
selected hash function f (given to the adversary after it announces x), it should find x′ 6= x such
that f(x′) = f(x).

Our implementation is as follows: After the first-phase commit stage, the receiver selects a
random (universal one-way) hash function f and the sender sends back y = f(x). The protocol
proceeds essentially as the naive protocol above, where any time the first-phase reveal stage is
executed in the naive protocol revealing the value x′ (either in the commit-stage for phase = first
or in the reveal stage for phase = second), the receiver also verifies that f(x′) = y.

Assuming the hash function f is sufficiently compressing, the string x remains quite unpre-
dictable even though f(x) is sent to R (in the new variant of the protocol). Thus, in the case that
phase = first, we can still use the “entropy” remaining in x to hide the sender’s secret (assuming it
is sufficiently shorter than |x| − |f(x)|). To show the statistical hiding in the complementary case
when phase = second, it is sufficient to note that sending f(x), does not compromise the hiding
property of the second-phase commitment. All in all, the protocol is statistically hiding for both
choices of phase and thus it is statistically hiding.

To argue about the binding of the protocol, recall that the 1-out-of-2-binding property informally
states that with high probability after the first-phase commit stage, there exists a single value x̃
that allows the sender to cheat in the second-phase commitment. Now, if the sender sends y such
that f(x̃) = y, then in order to cheat in the case phase = first, it will have to open the first-phase
commitment to a value x′ 6= x̃ such that f(x′) = y = f(x̃). This would imply the breaking of the
universal one-way hash function. On the other hand, if f(x̃) 6= y, then in the case phase = second
the sender is forced to open the first-phase commitment to a value different than x̃. This guarantees
that the sender cannot cheat in the second-phase commitment and thus in this case our protocol is
binding. In conclusion, since y is sent before phase is chosen, we are guaranteed that our protocol
is weakly binding (since intuitively there always exists a choice of phase that prevent the sender
from cheating). We complete the construction by amplifying the above protocol into a full-fledged
statistically hiding commitment scheme using standard techniques.

7A version of Rompel’s result [Rom] for uniform adversaries was recently written by Katz and Koo [KK], also
adding missing details and fixing some errors.

54



7.2 The Transformation

We present the transformation algorithm using an arbitrary family of functions F , and will only
require F to be a universal one-way hash family when we want to prove the hiding and binding
security properties.

ALGORITHM 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The transformation, denoted as 2-to-1-Transform.

Input: security parameter 1n, two-phase commitment scheme (S,R) with message lengths (k1, k2) =
(n, 1), and a family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m}.

Output: Commitment scheme (S,R) as described by Protocol 7.2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hence, we write the commitment scheme obtained as (S,R) = 2-to-1-Transform((S,R),F).

PROTOCOL 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Standard commitment scheme (S,R) from two-phase commitment scheme (S,R).

Security parameter: 1n, given as common input to both S and R.

Sender’s private input: Bit b ∈ {0, 1}.
Commit stage:

1. S selects a uniform σ ← {0, 1}n.

2. S and R engage in (S1
c(σ),R1

c)(1
n), with S acting as S1

c and R acting as R1
c . Let c(1) be

the common output of S1
c and R1

c after the interaction.

3. R chooses f ← Fn and sends it to S.
4. S sends y = f(σ) to R.

5. R flips a random coin, represented by phase ← {1, 2}, and sends phase to S.
If phase = 1, then proceed as follows:

(a) S selects a random hash h ← H, where H is a family of pairwise-independent hash
functions with domain {0, 1}n and range {0, 1}, and sends (h, b⊕ h(σ)) to R.

(b) S and R both output (c(1), f, y, phase = 1, h, b⊕ h(σ)) as the commitment.

If phase = 2, then proceed as follows:

(a) S runs S1
r to obtain the decommitment message γ(1) and first-phase transcript τ

corresponding to both σ and c(1). S sends (σ, γ(1), τ) to R.
(b) S and R engage in (S2

c(b), R
2
c)(1

n, τ), with S acting as S2
c and R acting as R2

c . Let
c(2) be the common output of S2

c and R2
c after the interaction.

(c) S and R both output (c(1), f, y, phase = 2, c(2)) as the commitment.

Reveal stage:
To decommit to bit b, do the following depending the value of phase.

If phase = 1, then:
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1. S sends (b, σ) to R;

2. If y = f(σ) and the last component of the commitment equals b⊕ h(σ), then R accepts.
Otherwise, R rejects.

If phase = 2, then:

1. S runs S2
r to obtain the decommitment message γ(2), and sends (b, γ(2)) to R;

2. If y = f(σ) and both R1
r and R2

r accept (c(1), σ, γ(1)) and (c(2), b, γ(2)), respectively, then
R accepts. Otherwise, R rejects.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3 Analyzing the Transformation

The hiding and binding security properties of Protocol 7.2 will rely on properties of F being a
universal one-way hash family.

Our plan for the remaining of this section is as follows: (i) we present the definition of a universal
one-way hash family due to Naor and Yung [NY]; (ii) we separate the properties of a universal one-
way hash family into two parts; and finally, (iii) we prove the hiding and binding properties of
Protocol 7.2 based on these two separate properties.

Universal one-way hash family. In order to define a universal one-way hash family, we need
to understand what it means for a family of functions to be polynomial-time computable.

DEFINITION 7.3
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m} is polynomial-time computable if

• Every function f ∈ Fn is described by a bitstring of length p(n) for some polynomial p.
By abuse of notation, we also denote this description by f , and write f

R← Fn to mean
that it is chosen uniformly at random in {0, 1}p(n). (A more general definition would allow
the description of the function to be selected according to any polynomial-time samplable
distribution, even one that requires private coin tosses. However, our stronger ‘public-coin’
definition is achieved by existing constructions, and can be useful in applications, such as
constructing public-coin zero-knowledge arguments.

• There exists a deterministic polynomial-time algorithm F such that for every n and every
f ∈ Fn, given the description of the function f and a string x ∈ {0, 1}n, F outputs the value
of f(x).

DEFINITION 7.4
A polynomial-time computable family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m} is a

universal one-way hash family if m < n and the for all PPT A the following is negligible in n

Pr[(x, state) ← A(1n), f ← Fn, x′ ← A(x, state, f) : x′ 6= x
∧

f(x′) = f(x)].

REMARK 7.5
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• In the above definition, we allow the adversary to transfer additional information, i.e., state,
between the selection of x and finding the collision. This state variable does not appear in
the definition in Katz and Koo [KK], which is otherwise identical to the above. However, any
universal one-way hash family F meeting their weaker definition can be converted into one
meeting the above definition by selecting f

R←F , s
R←{0, 1}n, and defining f ′(x) = f(x⊕ s).

(Intuitively, the random shift s turns an arbitrary point x selected by the adversary into a
uniformly random point out of the adversary’s control.)

The original definition of Naor and Yung [NY] (also used by Rompel [Rom]) does not involve
the adversary before f is chosen at all, but rather requires that for all x ∈ {0, 1}n, A(x, f)
has a low probability of producing a collision (over the choice of f and A’s coin tosses). Their
definition is suited for the case of nonuniform security (as the arbitrary x can be viewed as
nonuniform advice), in which case it becomes equivalent to ours (since A can also have state
hardwired nonuniformly).

• Although it is more natural for the security be parameterized in terms of the output length,
namely m, our applications do not require hash functions that are shrinking by more than
a polynomial factor. Hence for this reason, and in part for consistency, we keep n as our
security parameter.

• Naor and Yung [NY] showed that starting with a universal one-way hash family that is
compressing by only one bit, namely m = n − 1, more compression can be achieved, say
m ≤ n/2, by iterative application several hash functions chosen from the family. Moreover, it
is easy to verify that the same construction holds also w.r.t. to Definition 7.4. Hence, without
loss of generality, we can assume that our universal one-way hash family will have the feature
that m ≤ n/2.

Two properties of a universal one-way hash family. A universal one-way hash family sat-
isfying Definition 7.4 has the following two main properties.

Large preimages: most of the preimages have a large size. This follows from the compressing
nature of hash functions: the output length m is much shorter than the input length n.
(Recall that we can get a universal one-way hash family with m ≤ n/2.) We formalize this
in property in Definition 7.6.

Target collision resistance: it is hard to find collisions with a value x announced before the
hash function is given. We formalize this in property in Definition 7.7

DEFINITION 7.6
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m} has the large preimages property if

for every f ∈ F , most elements in the range of f have large preimage sizes. Stated precisely, there
exists a function α(n) = ω(1) and a negligible function ε, such that for all values of n, the following
holds:

Pr
x←{0,1}n

[∣∣f−1(f(x))
∣∣ ≥ nα(n)

]
≥ 1− ε(n) ,

for every function f ∈ Fn.
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DEFINITION 7.7
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m} has the statistical [resp., computa-

tional] target collision resistance property if for every [resp., every PPT] A, the following is
negligible in n:

Pr[(x, state) ← A(1n), f ← Fn, x′ ← A(x, state, f) : x′ 6= x
∧

f(x′) = f(x)] .

REMARK 7.8
In this paper we are only using families of function that are computational target collision resis-
tance. Yet whenever possible we state the results also w.r.t. families with statistical target collision
resistance, because this generalization has proved useful in subsequent work [OV2].

Large preimages and target collision resistance are opposing properties. Specifically, it is im-
possible for a single family of functions to have large preimages and have statistical target collision
resistance. The power of a universal one-way hash family comes from the fact that it has the large
preimages property and has computational target collision resistance.

LEMMA 7.9
If F =

⋃
nFn = {f : {0, 1}n → {0, 1}m}, for m ≤ n/2, is a universal one-way hash family, then F has

both the large preimages and the computational target collision resistance properties.

Proof. The computational target collision resistance property follow directly from Definition 7.4.
Hence, all we need to show is that the compressing nature of F , when m ≤ n/2, implies the large
preimages property.

Group the elements with small preimages into a set S = {y ∈ {0, 1}m :
∣∣f−1(y)

∣∣ < 2
3
4
n−m}.

Since m ≤ n/2, every element y /∈ S has a preimage of size
∣∣f−1(y)

∣∣ ≥ 2
3
4
n−m ≥ 2n/4 = nω(1).

To complete, we bound the probability of landing in S, which we do by a union bound over the
elements in S (for which, there are at most 2m):

Pr
x←{0,1}n

[f(x) ∈ S] = Pr [∃y ∈ S with f(Un) = y] <
2

3
4
n−m

2n
· 2m = 2−n/4 = neg(n) . ¤

Hiding. Having separated the properties of a universal one-way hash family into having large
preimages and having target collision resistance, we now show that the large preimages property of
F translates to the hiding property of the commitment scheme (S,R) = 2-to-1-Transform((S, R),F).

LEMMA 7.10
If the family of functions F has the large preimages property, and the two-phase commitment scheme
(S, R) is statistically hiding, then scheme (S,R) = 2-to-1-Transform((S, R),F) is statistically hiding.

Proof. What we need to show is that for any adversarial receiver R∗, the views of R∗ in (S(0), R∗)
and (S(1), R∗) are statistically indistinguishable. (In this proof, we drop the security parametriza-
tion of 1n because it is clear from context.) We can, without loss of generality, only consider
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deterministic R∗ because we can fix the adversary’s coin tosses to maximize its distinguishing ad-
vantage. In the rest of this proof, we use indistinguishability and hiding to mean those of the
statistical variant.

Let P denote the value of phase sent by R∗, and we break our hiding analysis to cases when
P = 1 and P = 2. To formalize this case analysis, we say that random variables X and Y are
indistinguishable on event E if for all D, |Pr[D(X) = 1 ∧ E]− Pr[D(X) = 0 ∧ E]| is negligible
(in the security parameter n). What we will show is that the random variables viewR∗(S(0), R∗)
and viewR∗(S(1), R∗) are indistinguishable on both events P = 1 and P = 2, thus allowing us to
conclude that the scheme is hiding.

First, we analyze the case when P = 2. Let the random variables Σ and F denote S’s choice
of σ and the value of f sent by R∗, respectively. Observe that P is a deterministic function of
the random variables V1 = viewR∗(S1

c(Σ), R∗) and Y = F (Σ). In turn, V1 and Y are deterministic
functions of the first-phase transcript T = transcript(S1(Σ), R∗), which includes both the commit
and reveal stages. This is because we can compute the view of the receiver from the first-phase
transcript, and the first-phase transcript also contains the value of σ, from which we can compute
y = f(σ). For bit b ∈ {0, 1}, let random variable V2(b) = viewR∗(S2

c(b), R
∗)(T), recalling that

T = transcript(S1(Σ), R∗). Because (S, R) is hiding, its two-phase commitments is hiding even given
the first-phase transcript: this means that (V2(0),T) is indistinguishable from (V2(1),T). Since P
is a deterministic function of T, random variables (V2(0), T) and (V2(1),T) are indistinguishable on
event P = 2. Since viewR∗(S(b), R∗)|P=2 is a deterministic function of (V2(b), T)|P=2, for b ∈ {0, 1},
we have that viewR∗(S(0), R∗) and viewR∗(S(1), R∗) are indistinguishable on event P = 2.

Next, we analyze the case when P = 1. The hiding property of the first phase gives us

(V1, Σ) ≈s (V1, Un) ,

where Un represent a uniform random variable over {0, 1}n, and is independent from V1 and Σ.
Recall that the random variable F denotes the function f sent by R∗. Since F is a deterministic
function of V1, we get

(V1, F, F (Σ),Σ) ≈s (V1, F, F (Un), Un) .

Now, let the random variable H represent the hash function h selected by S when phase = 1. Note
that H is independent of V1, F , Σ, and Un, so

(V1, F, Y, H, H(Σ)) ≈s (V1, F, F (Un),H,H(Un)) , (8)

recalling that Y = F (Σ).
What we need to establish is that H(Un) is close to uniform so that we have hiding. The next

claim does this for us.

CLAIM 7.11
Suppose family of functions F =

⋃
nFn has the large preimages property. Let the random

variable H denote a random hash function from a family of pairwise-independent hash
functions with domain {0, 1}n and range {0, 1}, random variable Un denote a uniform
string in {0, 1}n, random variable U ′

1 denote a uniform string in {0, 1}, and that H, Un,
and U ′

1 are all independent. For every f ∈ Fn, (f(Un),H, H(Un)) is indistinguishable from
(f(Un),H, U ′

1).
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Proof of Claim. The large preimages property of F guarantees that with probability
1−neg(n) over y ← f(Un), the min-entropy H∞(Un|f(Un)=y) ≥ ω(log n). For y satisfying
this condition, we apply the Leftover Hash Lemma 4.1 to get that (y,H, H(Un|f(Un)=y))
is indistinguishable from (y, H,H(Un|f(Un)=y)). ¤

Because H and Un are independent from the rest of the random variables (and are independent
from each other), Claim 7.11 states that

(V1, F, F (Un),H,H(Un)) ≈s (V1, F, F (Un),H, U ′
1) , (9)

where U ′
1 is an independent random variable representing a uniform random variable over {0, 1}.

Combining (8) and (9), we get

(V1, F, Y,H, H(Σ)) ≈s (V1, F, F (Un),H, U ′
1) ,

which leads to:

(V1, F, Y, H, 0⊕H(Σ)) ≈s(V1, F, F (Un),H, 0⊕ U ′
1)

≡ (V1, F, F (Un),H, 1⊕ U ′
1)

≈s(V1, F, Y, H, 1⊕H(Σ)) .

Since P is a deterministic function of V1 and Y , random variables (V1, F, Y, H, 0 ⊕ H(Σ)) and
(V1, F, Y,H, 1 ⊕ H(Σ)) are indistinguishable on event P = 1. Since viewR∗(S(b), R∗)|P=1 is a
deterministic function of (V1, F, Y, H, b⊕H(Σ))|P=1, for b ∈ {0, 1}, we have that viewR∗(S(0), R∗)
and viewR∗(S(1), R∗) are indistinguishable on event P = 1. ¤

Binding. We show that the target collision resistance property of F translates to the bind-
ing property of the commitment scheme (S,R) = 2-to-1-Transform((S, R),F) obtained from the
2-to-1-Transform. Because we will only be able to show that (S,R) is binding with probability close
to 1/2, we first define what it means to for a scheme to be binding with probability δ, for some
δ ∈ [0, 1].

DEFINITION 7.12
Commitment scheme (S,R) is statistically [resp. computationally] δ(n)-binding if for every
[resp. every PPT] S∗ and every large enough values of n, sender S∗ succeeds in the following game
with probability at most δ(n):

On security parameter 1n, S∗ interacts with R in the commit stage obtaining commit-
ment c. Then S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the reveal stage,
R(0, d0, c) = R(1, d1, c) = accept.

The standard notion of binding as given in Definition 2.4 corresponds to being computationally
1/p(n)-binding for every polynomial p.
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LEMMA 7.13
If the family of functions F is statistically [resp., computationally] target collision resistant, and the two-
phase commitment scheme (S, R) is statistically [resp., computationally]

(
2
1

)
binding, then the scheme

(S,R) = 2-to-1-Transform((S, R),F) is statistically [resp., computationally] (1/2 + 1/p(n))-binding for
every polynomial p and sufficiently large n.

Proof. We will focus on the case of computational binding. The statistical case will follow from the
fact that the proof is “black box”. Specifically, our proof will (implicitly) give efficient reductions
M1, M2 such that given any sender strategy S∗ that breaks the (1/2 + 1/p(n))-binding property of
(S,R) as oracle, either MS∗

1 will break the target collision resistance property ofF with nonnegligible
probability or MS∗

2 will break the
(
2
1

)
binding property of (S,R). If both F and (S, R) have statistical

[resp., computational] security, then this is impossible for every strategy [resp., every PPT strategy]
S∗ and we deduce that (S,R) must be statistically [resp., computationally] (1/2+1/p(n))-binding.

Unless stated otherwise, we take probabilities over the entire interaction between S∗ and R in
both the commit and reveal stages. We say that S∗ succeeds if it is able to produce decommitments
to two different messages for commitment Υ in the reveal phase (recall that, the reveal stage is
non-interactive). We want to prove that Pr[S∗ succeeds] ≤ 1/2 + 1/p(n). We will do this by
breaking the probability space into events E1, . . . , E5 corresponding to the various cases in the
intuitive proof outline given in Section 7.1. We will show that Pr[

∨
i Ei] = 1, Pr[E1] = 1/2 and

Pr[S∗ succeeds ∧ Ei] ≤ 1/4p(n) for i = 2, . . . , 5, and this will suffice to prove the lemma.
The first event, E1, will depend on the random variables C = viewS∗(S∗, R1

c), representing S∗’s
view of the first phase commit (this determines the entire state of the interaction (S∗, R), since
by Definition 5.1 the honest receiver maintains no private state after the commit phase other than
the commitment string); Y , denoting the hash value sent by S∗ after the first-phase commit; P ,
representing the value of phase; and F , representing the choice of the function f

R←F . We would
also like to consider whether or not Y equals f(Σ∗), where Σ∗ intuitively represents the value to
which C is a commitment, i.e. the ‘unique’ value that will enable S∗ to break the binding property
of the 2nd phase. However, since the commitment scheme may be only computationally binding,
Σ∗ is not defined information-theoretically. Thus, we define it as the most likely value to which S∗

will open the first-phase commitment (with a transcript not in B). Formally, for each first-phase
commit transcript c ∈ Supp(C), we define:

pσ[c] = Pr
[

(S∗, R) includes an accepting full transcript λ = (τ, κ)
such that τ /∈ B and τ contains an opening to σ

|C = c

]
, (10)

where we say full transcript λ is accepting if both R1
r and R2

r accept in λ. With this measure, we
define σ∗[c] = argmaxσ pσ[c], breaking ties arbitrarily (say, by choosing the lexicographic smallest
σ). Then we define the random variable Σ∗ = σ∗[C].

The intuition described in Section 7.1 suggests a case analysis based on whether or not Y =
F (Σ∗). According to that intuition, the scheme will be binding if Y = F (Σ∗) and P = 1 (by target
collision resistance of F) or if Y 6= F (Σ∗) and P = 2 (by the 1-out-of-2 binding property), and
these events happen with probability 1/2 (because P is randomly chosen after Σ∗, F , and Y are
determined). This intuition can be turned directly into a proof in the case that F has nonuniform
target collision resistance, since the value of Σ∗ (which is determined before F ) can be hardwired
into the adversary breaking F . However, to prove our result for uniform adversaries as claimed,
we need to ensure that Σ∗ = σ∗[C] can be efficiently computed (before being given F , as per
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Definition 7.7). We observe that this is the case if pΣ∗ [C] > 1/4p(n), because then if we simulate
a continuation of the execution of (S∗, R) starting after C, we have a non-negligible probability of
Σ∗ being revealed. On the other hand the case that pΣ∗ [C] ≤ 1/4p(n) turns out to be analyzable
similarly to the case that Y 6= F (Σ∗); in both cases we simply use the fact that S∗ is unlikely to
produce a successful opening to Σ∗.

With the above in mind, we begin by analyzing the event in which we do not expect the scheme
to be binding.

CLAIM 7.14
For the event

E1 =
{

[[(Y = F (Σ∗)) ∧ (pΣ∗ [C] > 1/4p(n))] ∧ [P = 2]]
∨ [[(Y 6= F (Σ∗)) ∨ (pΣ∗ [C] ≤ 1/4p(n))] ∧ [P = 1]]

}
,

we have Pr[E1] = 1/2.

Proof of Claim. P is chosen randomly in {1, 2} after C, Σ∗, F , and Y are determined. ¤

Now we want to show that the scheme is binding on the complement of E1. First we handle
the case that P = 1.

CLAIM 7.15
For the event

E2 = {[Y = F (Σ∗)] ∧ [pΣ∗ [C] > 1/4p(n)] ∧ [P = 1]} ,

we have Pr[S∗ succeeds ∧ E2] ≤ 1/4p(n).

Proof of Claim. Suppose for contradiction that Pr[S∗ succeeds ∧E2] > 1/4p(n); we will show that
we can break the target collision resistance property of F with nonnegligible probability. In order
to do so, we need to output an element x before seeing the hash function, and then given a random
function f

R←F , we need to output x′ 6= x such that f(x) = f(x′). We do this as follows. First we
simulate the interaction between S∗ and R up to the end of the first-phase commitment, and record
c as the sender’s view so far. Then we continue the interaction from c to the end and set x to be
the value of σ sent by S∗ in the protocol. (In case phase = 1 and S∗ produces two values for σ in
breaking the scheme, choose one of the two at random.) Now we output x and store state = c, and
receive a random hash function f

R←F . We now rerun the interaction between S∗ and R, starting
with the view (c, f), and set x′ to be the value of σ sent by S∗ in the protocol (again choosing
randomly if phase = 1 and S∗ produces two values).

To see that this strategy breaks the target collision resistance property with nonnegligible
probability, consider the second completed execution of the interaction between S∗ and R (the one
with the given hash function f , which we now denote as a random variable F ). By assumption,
with probability greater than 1/4p(n) in this execution, it holds that S∗ succeeds, Y = F (Σ∗),
pΣ∗ [C] > 1/4p(n), and P = 1. Since S∗ succeeds and P = 1, it must be the case that S∗

produces two successful openings Σ1, Σ2 to the first-phase commit. At least one of these is different
from Σ∗, yet both must satisfy F (Σi) = Y = F (Σ∗). With probability at least 1/2, we output
Σi 6= Σ∗ as x′. Now, conditioned on all this, we argue that we had nonnegligible probability (at
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least (1/2) · 1/4p(n)) of outputting Σ∗ as x (prior to receiving F ). This follows because pΣ∗ [C] >
1/4p(n). Therefore, we break the target collision resistance property with probability at least
(1/4p(n)) · (1/2) · (1/2) · (1/4p(n)), which is a contradiction. ¤

Now we turn to the complement of E1 in case P = 2, namely the event

E′ = {[(Y 6= F (Σ∗)) ∨ (pΣ∗ [C] ≤ 1/4p(n))] ∧ [P = 2]} ,

Since we are now restricted to P = 2, there is a single first-phase decommitment value produced
by S∗, which we denote by the random variable Σ.

First we argue that it is almost always the case in E′ that Σ 6= Σ∗ (assuming S∗ succeeds).

CLAIM 7.16
For the event

E3 = E′ ∧ (Σ = Σ∗),

we have Pr[S∗ succeeds ∧ E3] ≤ 1/4p(n).

Proof of Claim. In E′, we either have Y 6= F (Σ∗), in which S∗ cannot succeed unless Σ 6= Σ∗, or
we have pΣ∗ [C] ≤ (1/4(p(n))), in which case S∗ successfully opens to value Σ∗ with probability at
most 1/4p(n). ¤

So now, instead of E′, we can focus on the event that {[Σ 6= Σ∗] ∧ [P = 2]}. For this, we have
two cases, depending on whether the transcript T of the first-phase commitment (including the
reveal) gives a binding second phase or not.

CLAIM 7.17
For the event

E4 = {[Σ 6= Σ∗] ∧ [P = 2] ∧ [T ∈ B]} ,

we have
Pr[S∗ succeeds ∧ E4] ≤ 1/4p(n).

Proof of Claim. If T ∈ B, then the second-phase commitment is binding. Since P = 2, S∗ can only
succeed with negligible probability. ¤

CLAIM 7.18
For the event

E5 = {[Σ 6= Σ∗] ∧ [P = 2] ∧ [T /∈ B]} ,

we have
Pr[S∗ succeeds ∧ E5] ≤ 1/4p(n).

Proof of Claim. Assume for contradiction that Pr[S∗ succeeds ∧ E5] > 1/4p(n). By Markov, this
implies that with probability at least 1/8p(n) over c

R← C, it holds that

Pr[S∗ succeeds ∧ E5|C = c] > 1/8p(n). (11)
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We will use this to break the first-phase binding of R. Similarly to the proof of Claim 7.15, we
carry out two executions of (S∗, R) beginning with the same first-phase commit c. Assume that
c satisfies (11). Then, with some probability q[c] greater than (1/8(p(n))), the first execution
will produce an accepting full transcript with an opening to some value σ 6= σ∗ = σ∗[c]. The
probability that the second execution produces an accepting full transcript with an opening to
some σ′ 6= σ is greater q[c]/2; otherwise σ would be the most likely opening conditioned on c,
contradicting the fact that σ 6= σ∗. Thus, we break the first-phase binding with probability at least
(1/8p(n) · q[c] · q[c]/2 = Ω(1/p(n)3), contradicting the security of (S,R). ¤

We the above claims, we complete the proof. By inspection, we have Pr[
∨

i Ei] = 1, and thus:

Pr[S∗ succeeds] ≤ Pr[E1] +
4∑

i=1

Pr[S∗ succeeds ∧ Ei] ≤ 1
2

+
1

p(n)
,

as desired. ¤

Boosting the binding. The commitment scheme (S,R) from Lemma 7.13 is only (3
4 + neg(n))-

binding. Nonetheless, by the following “folklore” claim, (S,R) implies a commitment scheme that
is neg(n)-binding and preserves the same hiding property as the original scheme.

CLAIM 7.19
There exists an efficient procedure that for any function δ ≥ 1/ poly(n) converts a statistically [resp.,
computationally] (1− δ(n))-binding commitment scheme (S,R) into a commitment scheme (S, R) that
is statistically [resp., computationally] binding. Furthermore, if (S,R) is statistically [resp., computa-
tionally] hiding, so is (S, R).

Proof. The protocol (S,R) is defined as follows: in order to commit to a bit b, the two parties run
t = dn/δe = poly(n) independent executions of the commit stage of (S(b),R) one after the other,
where S and R acting as S and R respectively. In the reveal stage, S decommits, via the reveal
stage of (S,R), all the t commitments and R accepts if and only if all the commitments are opened
successfully to the same value. The hiding of the above scheme follows by a straightforward hybrid
argument. For the binding part, let S∗ be a PPT trying to break the binding of (S,R). We show
that S∗ breaks the binding of (S, R) only with negligible probability, and since S∗ was arbitrarily
chosen it follows that (S, R) is computationally binding.

We say that S∗ breaks the binding of the ith execution of (S,R) if while trying to break
the binding of (S, R) it successfully opens the ith commitment into two different values. Notice
that this event depends on several random variables: C<i, the coins of S∗ and the coins of R in the
first i− 1 executions; Ci, the coins of R in the i’th execution; and C>i, the coins of R in executions
i + 1, . . . , t. For settings (c<i, ci) ∈ Supp(C<i, Ci), we define qi(c<i, ci) to be the probability over
C>i that S∗ breaks the binding of the ith execution conditioned on (C<i, Ci) = (c<i, ci).

For an arbitrary positive polynomial p, define a prefix c<i to bad if Pr[qi(c<i, Ci) > 1/p(n)] >
1 − δ + 1/p(n), and otherwise call c<i good. We will now show that Pr[C<i is bad] ≤ 1/p(n).
Suppose not. Then we can construct an efficient algorithm S∗ that breaks the binding of (S,R) with
probability 1−δ+1/3p(n). In the commit stage, S∗ first finds a value c<i for which Pr[qi(c<i, Ci) >
1/2p(n)] > 1− δ + 1/2p(n) and “hardwires” this value into S∗. (Note that the above can be done
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efficiently and with overwhelming success probability by random sampling, given oracle access to
S∗). When interacting with R, S∗ acts as S∗ does in the ith execution of (S∗, R). With probability
at least 1 − δ + 1/2p(n) over the coins ci of R, we have qi(c<i, ci) > 1/2p(n). If this occurs, then
by randomly continuing the simulation of (S∗, R) with O(n · p(n)) independent choices of C>i, S∗
will be able to break the binding with probability 1−neg(n). Thus, S∗ breaks the binding of (S,R)
with probability 1− δ + 1/2p(n)− neg(n) > 1− δ + 1/3p(n).

Let E1 be the event that for some i, C<i is bad. By the above and a union bound, Pr[E1] ≤
t/p(n). Let E2 be the event that for some i, qi(C<i, Ci) ≤ 1/p(n) but S∗ breaks the binding of the
i’th execution. By the definition of qi, we have Pr[E2] ≤ t/p(n). Finally, we have

Pr[S∗ breaks the binding ∧ ¬E1 ∧ ¬E2]

≤ Pr

[
t∧

i=1

[(C<i good) ∧ (qi(C<i, Ci) > 1/p(n))]

]

=
t∏

i=1

Pr


(C<i good) ∧ (qi(C<i, Ci) > 1/p(n))

∣∣∣∣∣∣
∧

j<i

[(C<j good) ∧ (qj(C<j , Cj) > 1/p(n))]




≤ (1− δ + 1/p(n))t

= neg(n) + t/p(n),

where the last inequality can be seen by considering any fixed value C<i = c<i, which fixes the
event on which we are conditioning in the i’th factor and whether C<i is good or bad. If c<i is bad,
then the probability in the i’th factor is 0. If c<i is good, then the probability (over just Ci) is at
most (1− δ + 1/p(n)) by the definition of good. Taking p(n) to be an arbitrarily large polynomial,
we deduce that S∗ breaks the binding with negligible probability. ¤

Having established the appropriate claims and lemmas, we now state what is achievable from
our transformation.

THEOREM 7.20
There exist an efficient procedure, call it 2-to-1-FullTransform, that takes as input a security parameter
1n, a two-phase commitment scheme (S, R) with message lengths (k1, k2) = (n, 1), and a family
of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m}, and outputs a commitment scheme (S, R) =

2-to-1-FullTransform((S,R),F) satisfying the following properties:

• If (S, R) is statistically hiding and F has the large preimages property, then (S, R) is statistically
hiding.

• If (S,R) is statistically [resp., computationally]
(
2
1

)
binding and F has statistical [resp., compu-

tational] target collision resistance, then (S,R) is statistically [resp., computationally] binding (in
the standard sense of binding).

• If (S, R) is public coin, then (S, R) is also public coin.

Proof. We describe the 2-to-1-FullTransform algorithm, recapping what we have done thus far, as
follows.
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1. Apply Algorithm 7.1 on (S,R) and F to obtain a (standard) commitment scheme (S,R).
Lemmas 7.10 and 7.13 state that for the right properties of both (S′, R′) and F (see the first
two items in 7.20 above), (S,R) is hiding and (1/2 + neg(n))-binding.

2. Next, using Claim 7.19, boost the binding of (S,R) to obtain a scheme (S,R) that is neg(n)-
binding while not affecting the hiding property. Output (S, R) as our desired scheme.

As for the preservation of the public coin property, observe that the messages sent by R that are
specific to the 2-to-1-Transform are choosing f ← F and selecting phase ← {0, 1}, both of which
are public coin operations. ¤

8 Putting it Together

Now, we put together everything from the previous sections to establish our main theorem.

RESTATEMENT OF THEOREM 1.1
Given a one-way function f : {0, 1}n → {0, 1}n, we can construct in time polynomial in n a public-coin
commitment scheme (S,R) that is statistically hiding and computationally binding.

The statistical hiding property holds regardless of whether or not f is secure (hard to invert). On
the other hand, if f is nonuniformly secure, than (S,R) will be computationally binding with nonuniform
security.

Proof of Theorem 1.1. We start off by constructing a collection of two-phase commitment schemes
from f using Theorem 6.1. For any polynomial k(n) (which we will choose below), we can construct
in time polynomial in n a collection of m = poly(n) public-coin two-phase commitment schemes
COM = {Com1, · · · ,Comm} with message lengths (k(n), 1) such that:

• there exists an index i ∈ {1, 2, . . . ,m} such that scheme Comi is statistically hiding, and

• for every index i ∈ {1, 2, . . . , m}, scheme Comi is computationally
(
2
1

)
binding.

(As remarked after Theorem 6.1, we can obtain two-phase commitments with message lengths
(k(n), k(n)) for any polynomial k that we choose. Using only 1 bit of the 2nd-phase message
(padding with k − 1 zeroes), we obtain message lengths (k, 1).)

Now in order to apply Theorem 7.20, from f we use [Rom, KK] to obtain a universal one-way
hash family Fn = {f : {0, 1}2k(n) → {0, 1}k(n)} for some polynomial k (which we use to determine
the message length for the 2-phase commitment above).8 Let the resulting (standard) commitment
schemes be Com′

i = 2-to-1-FullTransform(Comi,F). By Theorem 7.20 and Lemma 7.9, we know
that:

• Com′
i is statistically hiding if Comi is statistically hiding,

• Com′
i is computationally binding if Comi is computationally

(
2
1

)
binding, and

8Since we are using here the uniform definition of universal one-way hash family (i.e., where x is sampled by A),
we need to use the theorem of Katz and Koo [KK]. In their theorem, however, it is not explicitly defined whether or
not the adversary can encode additional information (i.e. state) between the declaration of x and finding the collision
(see Remark 7.5). Fortunately, the stronger version of this theorem required by our proof, follows readily from their
original proof.
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• Com′
i is public coin if Comi is public coin.

This means that we now have a collection of public-coin (standard) commitment schemes
COM′ =

{
Com′

1, · · · , Com′
m

}
, where m = poly(n), such that:

• there exists an index i ∈ {1, 2, . . . ,m} such that scheme Com′
i is statistically hiding, and

• for every index i ∈ {1, 2, . . . , m}, scheme Com′
i is computationally binding (in the standard

sense of binding).

We are almost done, except that we are still left with a collection of commitments instead of a
single commitment scheme. The following claim states that the latter collection can be converted
into the desired commitment scheme.

CLAIM 8.1
There is an efficient procedure that converts a polynomial collection of commitment schemes,
at least one of which is statistically hiding and all are computationally binding, into a single
commitment scheme that is statistically hiding and computationally binding. In addition, if
we start off with public-coin schemes, we also end up with a public-coin scheme.

Proof. To commit to a bit b, we randomly secret-share b = b1 ⊕ · · · ⊕ bm and commit
to share bi using the i’th commitment scheme. Alternatively, the proposition can be
deduced from [HHK+, Thm. 5.2]. ¤

The main theorem statement is now complete since we now have a single commitment scheme
that is statistically hiding and computationally binding, and the only complexity assumption made
is the existence of one-way functions.

We now proceed to the additional properties mentioned. By inspection, we observe that the
statistical hiding properties throughout the construction hold regardless of the security of f (see
e.g. Lemma 6.13). As for nonuniform security, we observe that our construction is “fully black-box”
in the sense of [RTV]; in particular, the computational binding property is proven by specifying
for every polynomial p, a PPT reduction R such that if S∗ is any sender strategy (of arbitrary
complexity) that breaks the binding property with probability with probability 1/p(n), then RS

∗

inverts f with nonnegligible probability. In particular, if S∗ a nonuniform PPT algorithm, then we
obtain a nonuniform PPT inverter for f , which cannot exist if f is nonuniformly secure. ¤

9 Conclusions

While our result resolves the complexity assumption needed to construct statistically hiding com-
mitment schemes, there is still room for substantial improvements. Both the construction and its
analysis are rather involved; we hope that a simpler and more direct proof can be found. A related
concern is that the construction is very inefficient, and certainly would never be utilized in prac-
tice. In particular, given a one-way function f : {0, 1}n → {0, 1}n, our commitment scheme utilizes
poly(n) invocations of the function f and poly(n) rounds of interaction. It would be interesting
to substantially improve these bounds or argue that they are essentially optimal. It was recently
shown in [HHRS] (generalizing [Sim, Wee]) that any “black-box” construction of statistically hiding
commitments from even one-way permutations must have Ω(n/ log n) rounds of interaction. Our

67



construction, as well as that of Naor et al. [NOVY], is black box; bypassing the lower bound with a
non-black-box construction would be very interesting (even if unlikely to yield something practical).
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A Collision Probability Lemmas

We prove the lemmas presented in Section 6.2.1.

RESTATEMENT OF LEMMA 6.4
For independent pairs of random variables (X1, Y1), . . . , (Xm, Ym),

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) =
m∏

i=1

CP1/2(Xi|Yi) .

Note that Xi and Yi can be correlated, it is only required that the pair (Xi, Yi) be independent from
the other tuples.

Proof. Since the Xi’s are independent, for all y1, . . . , ym, we have

CP((X1, . . . , Xm)|Y1=y1,...,Ym=ym) =
m∏

i=1

CP(Xi|Yi=yi) . (12)
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This gives us

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym))

= E
(Y1,...,Ym)

[
CP1/2((X1, . . . , Xm)|Y1,...,Ym)

]

= E
(Y1,...,Ym)

[
m∏

i=1

CP1/2(Xi|Yi)

]
(by 12)

=
m∏

i=1

E
Yi

[
CP1/2(Xi|Yi)

]
(by independence of Yi’s)

=
m∏

i=1

CP1/2(Xi|Yi) . ¤

RESTATEMENT OF LEMMA 6.5
Suppose random variables (X1, Y1), . . . , (Xm, Ym) satisfy the following conditions for some values of
α1, . . . , αm ∈ R+ and all i = 1, 2, . . . ,m:

1. For every (y1, . . . , yi−1) ∈ Supp(Y1, Y2, . . . , Yi−1),

CP1/2(Xi|Y1=y1,...,Yi−1=yi−1 | Yi|Y1=y1,...,Yi−1=yi−1) ≤ αi .

2. For every (y1, . . . , yi) ∈ Supp(Y1, Y2, . . . , Yi), the i + 1 random variables X1, X2, . . . , Xi, and
Yi+1 are independent, even if we condition on Y1 = y1, . . . , Yi = yi.

Then,

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) ≤
m∏

i=1

αi .

Proof. By induction, it suffices to prove

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) ≤ αm · CP1/2 ((X1, . . . , Xm−1)|(Y1, . . . , Ym−1)) , (13)

and then by iteratively expanding CP1/2 ((X1, . . . , Xm−1)|(Y1, . . . , Ym−1)) in terms of αj ’s, we get
our result. To simplify notation, we write X ′

m = Xm|Y1=y1,...,Ym−1=ym−1 and Y ′
m = Ym|Y1=y1,...,Ym−1=ym−1
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when y1, . . . , ym−1 are clear from context. We prove (13) as follows:

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) (14)

= E
(Y1,...,Ym)

[
CP1/2((X1, . . . , Xm)|Y1,...,Ym)

]
(15)

= E
(Y1,...,Ym−1)

[
E
Y ′m

[
CP1/2((X1, . . . , Xm)|Y1,...,Y ′m)

]]
(16)

= E
(Y1,...,Ym−1)

[
E
Y ′m

[
CP1/2((X1, . . . , Xm−1)|Y1,...,Y ′m) · CP1/2(Xm|Y1,...,Y ′m)

]]
(17)

= E
(Y1,...,Ym−1)

[
CP1/2((X1, . . . , Xm−1)|Y1,...,Ym−1) · E

Y ′m

[
CP1/2(Xm|Y1,...,Y ′m)

]]
(18)

= E
(Y1,...,Ym−1)

[
CP1/2((X1, . . . , Xm−1)|Y1,...,Ym−1) · CP1/2(X ′

m|Y ′
m)

]
(19)

≤ αm · E
(Y1,...,Ym−1))

[
CP1/2((X1, . . . , Xm−1)|Y1,...,Ym−1)

]
(20)

≤ αm · CP1/2 ((X1, . . . , Xm−1)|(Y1, . . . , Ym−1))) . (21)

Equation (17) follows because X1, . . . , Xm conditioned on Y1 = y1, . . . , Ym = ym are indepen-
dent. Equation (18) follows because X1, . . . , Xm−1, and Ym conditioned on Y1 = y1, . . . , Ym−1 =
ym−1 are independent. Finally, (20) follows from the assumption that for all (y1, . . . , yi−1) ∈
Supp(Y1, Y2, . . . , Ym−1),

CP1/2(X ′
m|Y ′

m) = CP1/2(Xm|Y1=y1,...,Ym−1=ym−1 | Ym|Y1=y1,...,Ym−1=ym−1) ≤ αm . ¤

RESTATEMENT OF LEMMA 6.6
(Randomness Extraction Lemma.) Let (X,Y ) be any (possibly correlated) pair of random variables,
and let random variable H denote a random hash function from a family of pairwise-independent hash
functions H with range {0, 1}α. Suppose the hash functions from H are represented by (q − α)-bit

strings and CP1/2(X|Y ) ≤
√

2−(α+3). If H is independent from (X, Y ), then

CP1/2((H,H(X))|Y ) ≤
√

2−(q−1) .
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Proof. We bound the value of CP1/2((H, H(X))|Y ) as follows:

CP1/2(H, H(X)|Y )

= E
y←Y

[
CP1/2(H,H(X)|Y =y)

]

≤ E
y←Y

[
CP1/2(H) ·

√
CP(X|Y =y) + 2−α

] (
since CP(H,H(Z)) ≤
CP(H) · (CP(Z) + 2−α)

)

≤ E
y←Y

[
CP1/2(H) ·

(
CP1/2(X|Y =y) +

√
2−α

)]
(Cauchy-Schwartz/Jensen)

= CP1/2(H) ·
((

E
y←Y

[
CP1/2(X|Y =y)

])
+
√

2−α

)

= CP1/2(H) · (CP1/2(X|Y ) +
√

2−α)

≤
√

2−(q−α) · (CP1/2(X|Y ) +
√

2−α) (since |h| = q − α)

≤
√

2−(q−α) ·
(√

2−α

8
+
√

2−α

)

<
√

2−(q−α) ·
(√

2−α ·
√

2
)

=
√

2−(q−1) . ¤

RESTATEMENT OF LEMMA 6.7
For any triple of (possibly correlated) random variables X, Y and Z,

CP1/2(X|Y ) ≤ CP1/2(X|(Y,Z)) ≤
√
|Supp(Z)| · CP1/2(X|Y ) .

Proof. For each y ∈ Supp(Y ) and z ∈ Supp(Z), let vy,z be the vector
(Pr[X = x ∧ Z = z|Y = y])x∈Supp(X). With this, we compute:

∥∥∥∥∥
∑

z

vy,z

∥∥∥∥∥
2

≤
∑

z

‖vy,z‖2 (triangle inequality)

≤
√

Supp(Z|Y =y) ·
∥∥∥∥∥
∑

z

vy,z

∥∥∥∥∥
2

(Cauchy-Schwartz/Jensen)

≤
√

Supp(Z) ·
∥∥∥∥∥
∑

z

vy,z

∥∥∥∥∥
2

.

Since CP1/2(X|Y =y) = ‖∑z vy,z‖2 and CP1/2 ((X|Y =y) | (Z|Y =y)) =
∑

z ‖vy,z‖2, taking expec-
tations over Y for both sides yield our result. ¤

RESTATEMENT OF LEMMA 6.8
Let random variable H denote a random hash function from a family of pairwise-independent hash
functions H with range {0, 1}α. For any ε > 0, if CP(X) ≤ ε2 · 2−α and H is independent from X,
then random variable (H,H(X)) is ε-close in statistical distance to uniform.
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Proof. Let D = 2q−α and L = 2α. We bound the statistical distance of (H, H(X)) from uniform
as follows:

1
2
|(H, H(X))− Uq|1 ≤

√
DL

2
‖(H,H(X))− Uq‖2

=
√

DL

2
·
√

CP(H, H(X))− 2−q

≤
√

DL

2
·
√

1
D

(
CP(X) +

1
L

)
− 1

DL

=

√
CP(X) · L

2
≤ ε

2
. ¤
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