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1 Introduction

Zero-knowledge protocols are interactive protocols whereby one party, the prover, convinces another
party, the verifier, that some assertion is true with the remarkable property that the verifier “learns
nothing” other than the fact that the assertion being proven is true. Since their introduction by
Goldwasser, Micali, and Rackoff [GMR], zero-knowledge protocols have played a central role in the
design and study of cryptographic protocols.

Zero-knowledge protocols come in several flavors, depending on how one formulates the two
security conditions: (1) the zero-knowledge condition, which says that the verifier “learns nothing”
other than the fact the assertion being proven is true, and (2) the soundness conditions, which says
that the prover cannot convince the verifier of a false assertion. In statistical zero knowledge, the
zero-knowledge condition holds regardless of the computational resources the verifier invests into
trying to learn something from the interaction. In computational zero knowledge, we only require
that a probabilistic polynomial-time verifier learns nothing from the interaction.1 Similarly, for
soundness, we have statistical soundness, giving rise to proof systems, where even a computation-
ally unbounded prover cannot convince the verifier of a false statement (except with negligible
probability), and computational soundness, giving rise to argument systems [BCC], where we only
require that a polynomial-time prover cannot convince the verifier of a false statement. Using a
prefix of S or C to indicate whether the zero knowledge is statistical or computational and a suffix of
P or A to indicate whether we have a proof system or argument system, we obtain four complexity
classes corresponding to the different types of zero-knowledge protocols: SZKP, CZKP, SZKA,
CZKA. More precisely, these are the classes of decision problems Π having the correponding type
of zero-knowledge protocol. In such a protocol, the prover and verifier are given as common input
an instance x of Π, and the prover is trying convince the verifier that x is a yes instance of Π.

These two security conditions seem to be of very different flavors; zero knowledge is a ‘secrecy’
condition, whereas soundness is more like an ‘unforgeability’ condition. However, in a remarkable
paper, Okamoto [Oka] showed that they are actually symmetric in the case of statistical security.

Theorem 1.1 ([Oka, GSV]2). The class SZKP of problems having statistical zero-knowledge proofs
is closed under complement. That is, Π ∈ SZKP if and only if Π ∈ SZKP.

In a zero-knowledge protocol for proving that a string x is a yes instance of a problem Π, zero
knowledge is required only when x is a yes instance (that is, when the statement being proven
is true) and soundness is required only when x is a no instance (that is, when the statement is
false). Thus, by showing that SZKP is closed under complement, Okamoto established a symmetry
between zero knowledge and soundness, in the case when both security conditions are statistical.

We ask whether an analogous theorem holds when the security conditions are computational,
namely when considering computational zero-knowledge arguments. If we make complexity as-
sumptions, then the answer is yes. Indeed, the classical results of Goldreich, Micali, and Wigder-
son [GMW], and Brassard, Chaum, and Crépeau [BCC] show that every problem in NP has
computational zero-knowledge argument systems under widely believed complexity assumptions,
and in fact either one of the security conditions can be made statistical. Moreover, it is known

1More precisely, in statistical zero knowledge, we require that the verifier’s view of the interaction can be efficiently
simulated up to negligible statistical distance, whereas in computational zero knowledge, we only require that the
simulation be computationally indistinguishable from the verifier’s view.

2Okamoto’s result was actually for the class of languages having honest-verifier statistical zero-knowledge proofs,
but in [GSV] it was shown this is the same as the class of languages having general statistical zero-knowledge proofs.
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that the existence of one-way functions (OWF) suffices for the construction of computational zero-
knowledge proof systems and statistical zero-knowledge argument systems for every problem in
NP [Nao, HILL, NOV]. Thus, the existence of one-way functions implies that computational zero
knowledge and computational soundness are symmetric for problems in NP ∩ coNP, by implying
that all problems in NP ∩ coNP and their complements have computational zero-knowledge ar-
guments. We note that here, and throughout the paper, we usually restrict attention to problems
in NP, because argument systems are mainly of interest when the prover can be implemented in
polynomial time given a witness of membership, which only makes sense for problems in NP.3

In this paper, we establish an unconditional symmetry between computational zero knowledge
and computational soundness.

Theorem 1.2 (Symmetry Theorem).

1. (CZKA versus co-CZKA) Problem Π ∈ NP ∩ coNP has a computational zero-knowledge
argument system if and only if its complement Π has a computational zero-knowledge argument
system.

2. (SZKA versus CZKP) Problem Π ∈ NP has a statistical zero-knowledge argument system
if and only if its complement Π has a computational zero-knowledge proof system.

Observe how the quality of the zero-knowledge condition for Π translates to the quality of the
soundness condition for Π and vice-versa.

1.1 The SZKP–OWF Characterization

The Symmetry Theorem is obtained by new characterizations of the classes of problems having
zero-knowledge protocols, and moreover these characterizations treat zero knowledge and sound-
ness symmetrically. These characterizations are a generalization of the “SZK/OWF Characteri-
zation Theorem” of [Vad], which says that any problem having a computational zero-knowledge
proof system can be described as a problem having a statistical zero-knowledge proof plus a set
of yes instances from which we can construct a one-way function. To characterize zero-knowledge
argument systems, we will also allow some additional no instances from which we can construct a
one-way function.

To formalize this, we will need the notion of a promise problem, which is simply a decision
problem with some inputs excluded. More precisely, a promise problem Π consists of two disjoint
sets of strings (ΠY,ΠN), corresponding to yes and no instances respectively. All of the complexity
classes that we consider—for instance, SZKP, CZKP, SZKA, and CZKA—generalize to promise
problems in a natural way; completeness and zero knowledge are required for yes instances, and
soundness is required for no instances.

Definition 1.3 (SZKP–OWF Condition). We say that promise problem Π = (ΠY,ΠN) satisfies
the SZKP–OWF Condition if there exists a set of instances I ⊆ ΠY∪ΠN such that the following
two conditions hold.

• The promise problem (ΠY \ I, ΠN \ I) is in SZKP.
3Actually polynomial-time provers also make sense for problems in MA, which is a variant of NP where the

verification of witnesses is probabilistic. All of our results easily extend to MA, but we state them for NP for
simplicity.

2



• There exists a polynomial-time computable function fx : {0, 1}n(|x|) → {0, 1}m(|x|), with n(·)
and m(·) being polynomials and instance x given as an auxiliary input, such that for every
nonuniform probabilistic polynomial-time adversary A, and for every constant c > 0, we have

Pr
y←{0,1}n(|x|)

[
A(fx(y)) ∈ f−1

x (fx(y))
]
≤ |x|−c ,

for every sufficiently long x ∈ I.

We call I the set of owf instances, I ∩ ΠY the set of owf yes instances, and I ∩ ΠN the set of
owf no instances.

We use the SZKP–OWF Condition to characterize the classes of problems having zero-
knowledge protocols.

Theorem 1.4 (SZKP–OWF Characterization of Zero Knowledge).

1. (SZKP [trivial]) Problem Π ∈ IP has a statistical zero-knowledge proof system if and only if
Π satisfies the SZKP–OWF Condition without owf instances, namely I = ∅.

2. (CZKP [Vad]) Problem Π ∈ IP has a computational zero-knowledge proof system if and only
if Π satisfies the SZKP–OWF Condition without owf no instances, namely I ∩ΠN = ∅.

3. (SZKA [new]) Problem Π ∈ NP has a statistical zero-knowledge argument system if and only
if Π satisfies the SZKP–OWF Condition without owf yes instances, namely I ∩ΠY = ∅.

4. (CZKA [new]) Problem Π ∈ NP has a computational zero-knowledge argument system if
and only if Π satisfies the SZKP–OWF Condition.

Theorem 1.2, our Symmetry Theorem between computational zero knowledge and computa-
tional soundness, follows directly from: (i) Theorem 1.4 above, (ii) Okamoto’s Theorem that SZKP
is closed under complement (Theorem 1.1), and (iii) the symmetric role played by the set of owf
instances I in the SZKP–OWF Condition.

The advantage of the SZKP–OWF Characterization Theorem is that it reduces the study of
the various forms of zero-knowledge protocols to the study of SZKP together with the study of
the consequences of one-way functions, both of which are by now quite well-developed. Indeed, we
also use these characterizations to prove many other unconditional theorems about the classes of
problems in NP possessing zero-knowledge arguments, such as equivalences between honest-verifier
and malicious-verifier zero knowledge, private coins and public coins, inefficient provers and efficient
provers, and non-black-box simulation and black-box simulation. Previously, such results were only
known unconditionally for the case of zero-knowledge proof systems [Oka, GSV, Vad, NV], or were
known under the complexity assumptions like the existence of one-way functions for the case of
zero-knowledge argument systems [GMW, Nao, HILL, NOV].

While our characterizations of SZKA and CZKA (Items 3 and 4) are similar in spirit to
the CZKP characterization of [Vad] (Item 2), both directions of the implications require new
ingredients that were not present in [Vad].

In the forward direction, going from CZKA or SZKA to an SZKP–OWF Condition, we
combine the work of [Vad] with an idea of Ostrovsky [Ost] to construct a one-way function on no
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instances in I ∩ ΠN. Ostrovsky showed that if a hard-on-average problem has a statistical zero-
knowledge argument system, then (standard) one-way functions exist.4 (This was later generalized
to computational zero knowledge in [OW].) We use the same construction, but with a slightly
different analysis. In Ostrovsky’s work, the hardness of inverting the one-way function is derived
from the assumed (average-case) hardness of the problem having the zero-knowledge protocol, and
it is shown to be hard to invert on yes instances. In our proof, the hardness of inverting the one-way
function is instead derived from a gap between between statistical soundness and computational
soundness, and it is analyzed on no instances.

In the reverse direction, going from an SZKP–OWF Condition to CZKA or SZKA, there
were more fundamental obstacles in extending the work of [Vad]. First, the construction of [Vad]
made use of a computationally unbounded prover in an essential way (as did the previous work on
SZKP, such as [Oka]), whereas argument systems are rather unnatural with unbounded provers
and hence are typically defined with respect to efficient provers. Second, at the time we did not
know of a construction of statistical zero-knowledge arguments for NP from any one-way function,
which is necessary to make use of the one-way functions constructed from instances in I ∩ΠN—this
is clear when trying to characterize SZKA, but it also turns out to be important for characterizing
CZKA. Fortunately, both of these obstacles have been recently overcome in [NV] and [NOV],
respectively.

In more detail, we prove the reverse direction by showing that every problem satisfying the
SZKP–OWF Condition has an instance-dependent commitment scheme5 [BMO, IOS, MV],
and then using techniques from [GMW, IOS], we show that every problem in NP with such a
commitment scheme has a zero-knowledge argument system. In the original version of this pa-
per [OV], our instance-dependent commitment scheme inherited a certain “1-out-of-2” binding
property from [NV] and [NOV]. This property is weaker and more complicated than the standard
binding property of commitments, but sufficed for establishing our main theorems (Theorems 1.2
and 1.4). Subsequently, the results of [NV] and [NOV] have been improved to yield standard-
binding commitments, the latter by Haitner and Reingold [HR] and the former by [HORV]. Thus
in this version, we use standard-binding instance-dependent commitments, as it simplifies our pre-
sentation.

2 Preliminaries

If X is a random variable taking values in a finite set U , then we write x ← X to indicate that x
is selected according to X. If S is a subset of U , then x ← S means that x is selected according
to the uniform distribution on S. We adopt the convention that when the same random variable
occurs several times in an expression, they refer to a single sample. For example, Pr[f(X) = X]
is defined to be the probability that when x ← X, we have f(x) = x. We write Un to denote the
random variable distributed uniformly over {0, 1}n.

A function ε : N→ [0, 1] is called negligible if ε(n) = n−ω(1). We let neg(n) denote an arbitrary
negligible function (i.e., when we say that f(n) < neg(n) we mean that there exists a negligible

4Ostrovky’s theorem is only stated in terms of statistical zero-knowledge proofs, but it immediately extends to
arguments.

5Informally, instance-dependent commitment schemes for a problem Π are commitment schemes where the hiding
and binding properties are required to hold only on the yes and no instances of Π, respectively. A formal definition
was first given by Itoh, Ohta, and Shizuya [IOS], and we provide it in Section 2.2.
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function ε(n) such that for every n, f(n) < ε(n)). Likewise, poly(n) denotes an arbitrary function
f(n) = nO(1).

PPT refers to probabilistic algorithms (i.e., Turing machines) that run in strict polynomial
time. A nonuniform PPT algorithm is a pair (A, z̄), where z̄ = z1, z2, . . . is an infinite sequence of
strings where |zn| = poly(n), and A is a PPT algorithm that receives pairs of inputs of the form
(x, z|x|). (The string zn is the called the advice string for A for inputs of length n.) Nonuniform
PPT algorithms are equivalent to (nonuniform) families of polynomial-sized Boolean circuits.

Statistical Difference. The statistical difference (a.k.a. variation distance) between random
variables X and Y taking values in U is defined to be ∆(X, Y ) = maxS⊂U |Pr [X ∈ S]− Pr [Y ∈ S]|.
We say that X and Y are ε-close if ∆(X, Y ) ≤ ε. Conversely, we say that X and Y are ε-far if
∆(X, Y ) > ε. For basic facts about this metric, see [SV, Sec 2.3].

2.1 Promise Problems

A promise problem [ESY], stated informally, is a decision problem where some inputs are excluded.
Formally, a promise problem is specified by two disjoint sets of strings Π = (ΠY,ΠN), where we
call ΠY the set of yes instances and ΠN the set of no instances. Such a promise problem is
associated with the following computational problem: given an input that is “promised” to lie in
ΠY ∪ ΠN, decide whether it is in ΠY or in ΠN. Note that languages are a special case of promise
problems (namely, a language L over alphabet Σ corresponds to the promise problem (L,Σ∗ \L)).
Thus working with promise problems makes our results more general. Moreover, even to prove our
results just for languages, it turns out to be extremely useful to work with promise problems along
the way.

The complement of a promise problem Π = (ΠY,ΠN) is the promise problem Π = (ΠN,ΠY).
The union of two promise problems Π and Γ is the promise problem Π∪Γ = (ΠY∪ΓY,ΠN∩ΓN). The
intersection of two promise problems Π and Γ is the promise problem Π∩Γ = (ΠY ∩ΓY,ΠN ∪ΓN).

Most complexity classes, typically defined as classes of languages, extend to promise problems
in a natural way, by translating conditions on inputs in the language to be conditions on yes
instances, and conditions on inputs not in the language to be conditions on no instances. For
example, a promise problem Π is in BPP if there is a probabilistic polynomial-time algorithm A
such that x ∈ ΠY ⇒ Pr [A(x) = 1] ≥ 2/3 and x ∈ ΠN ⇒ Pr [A(x) = 0] ≤ 1/3. All complexity
classes in this paper denote classes of promise problems.

We refer the reader to the recent survey of Goldreich [Gol3] for more on the utility and subtleties
of promise problems.

2.2 Instance-Dependent Cryptographic Primitives

It will be very useful for us to work with cryptographic primitives that may depend on an instance
x of a problem Π = (ΠY,ΠN), and where the security condition will hold only if x is in some
particular set I ⊆ {0, 1}∗. Indeed, recall that the SZKP–OWF Condition (Definition 1.3) refers
to such a variant of of one-way functions, as captured by Definition 2.2 below.

Instance-Dependent One-Way Functions. To define instance-dependent one-way functions,
we will need to define what it means for a function to be instance dependent.
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Definition 2.1. An instance-dependent function is a family F = {fx : {0, 1}n(|x|) → {0, 1}m(|x|)}x∈{0,1}∗ ,
where n(·) and m(·) are polynomials. We call F polynomial-time computable if there is a deter-
ministic polynomial-time algorithm F such that for every x ∈ {0, 1}∗ and y ∈ {0, 1}n(|x|), we have
F (x, y) = fx(y).

To simplify notation, we often write fx : {0, 1}n(|x|) → {0, 1}m(|x|) to mean the instance-dependent
function {fx : {0, 1}n(|x|) → {0, 1}m(|x|)}x∈{0,1}∗ .

Definition 2.2 (Instance-Dependent One-Way Function). For any set I ⊆ {0, 1}∗, a polynomial-
time computable instance-dependent function fx : {0, 1}n(|x|) → {0, 1}m(|x|) is an instance-dependent
one-way function on I if for every nonuniform PPT adversary A, there exists a negligible function
ε such that for every x ∈ I,

Pr
y←{0,1}n(|x|)

[
A(x, fx(y)) ∈ f−1

x (fx(y))
]
≤ ε(|x|) .

Next we consider an instance-dependent variant of distributionally one-way functions, which
are functions that are hard for PPT adversaries to invert in a distributional manner—that is, given
y it is hard for PPT adversaries to output a random preimage f−1(y). The standard definition of
distributionally one-way function is given by Impagliazzo and Luby [IL]; here we give the instance-
dependent analogue.

Definition 2.3 (Instance-Dependent Distributionally One-Way Function). For any set I ⊆ {0, 1}∗,
a polynomial-time computable instance-dependent function fx : {0, 1}n(|x|) → {0, 1}m(|x|) is an
instance-dependent distributionally one-way function on I if there exists a polynomial p(·) such that
for every nonuniform PPT adversary A, the random variables (Un(|x|), fx(Un(|x|)))
and (A(fx(Un(|x|))), fx(Un(|x|))) are 1/p(|x|)-far for all sufficiently long x ∈ I.

Asking to invert in a distributional manner is a stronger requirement that just finding a preim-
age, therefore distributionally one-way functions might seem weaker than one-way functions. How-
ever, Impagliazzo and Luby [IL] proved that they are in fact equivalent. Like almost all reductions
between cryptographic primitives, this result immediately extends to the instance-dependent ana-
logue (using the same proof).

Proposition 2.4 (based on [IL, Lemma 1]). For every set I ⊆ {0, 1}∗, there exists an instance-
dependent one-way function on I if and only if there exists an instance-dependent distributionally
one-way function on I.

Indistinguishability of Instance-Dependent Ensembles. The notions of statistical and com-
putational indistinguishability have instance-dependent analogues. But first, we define an instance-
dependent analogue of probability ensembles.

Definition 2.5. An instance-dependent probability ensemble is a collection of random variables
{Ax}x∈{0,1}∗ , where Ax takes values in {0, 1}p(|x|) for some polynomial p. We call such an ensemble
samplable if there is a probabilistic polynomial-time algorithm M such that for every x, the output
M(x) is distributed according to Ax.

6



Definition 2.6. Two instance-dependent probability ensembles {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are
computationally indistinguishable on I ⊆ {0, 1}∗ if for every nonuniform PPT D, there exists a
negligible function ε such that for all x ∈ I,

|Pr [D(x,Ax) = 1]− Pr [D(x,Bx) = 1]| ≤ ε(|x|) .

Similarly, we say that {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are statistically indistinguishable on I ⊆ {0, 1}∗
if the above is required for all functions D, instead of only nonuniform PPT ones. Equivalently,
{Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are statistically indistinguishable on I iff Ax and Bx are ε(|x|)-close
for some negligible function ε and all x ∈ I. We write ≈c and ≈s to denote computational and
statistical indistinguishability, respectively.

Instance-Dependent Commitment Schemes. Recall that a (standard) commitment scheme
is a two-stage protocol between a sender and a receiver. In the first stage, called the commit stage,
the sender “commits” to a private message m. In the second stage, called the reveal stage, the
sender reveals m and “proves” that it was the message to which she committed in the first stage.
We require two properties of commitment schemes. The hiding property says that the receiver
learns nothing about m in the commit stage. The binding property says that after the commit
stage, the sender is bound to a particular value of m; that is, she cannot successfully open the
commitment to two different bits in the reveal stage.

Instance dependent analogues of commitments schemes are commitments schemes that are
tailored specifically to a specific problem Π. More precisely, instance-dependent commitment
schemes [BMO, IOS, MV] receive an instance x of the problem Π as auxiliary input, and are
required to be hiding when x ∈ ΠY and be binding when x ∈ ΠN. Thus, they are a relaxation of
standard commitment schemes, since we do not require that the hiding and binding properties hold
at the same time. Nevertheless, as observed in [IOS], this relaxation is still useful in constructing
zero-knowledge protocols. The reason is that zero-knowledge protocols based on commitments (for
example, the protocol of [GMW]) typically use only the hiding property in proving zero knowledge
(which is required only when x is a yes instance) and use only the binding property in proving
soundness (which is required only when x is a no instance).

We give a definition of instance-dependent commitment schemes that extends the standard
(that is, non-instance dependent) definition of commitment schemes in a natural way. Note that
in our definition below, the reveal stage is noninteractive (that is, consisting of a single message
from the sender to the receiver). This because in the reveal stage, without loss of generality, we
can have the sender provide the receiver the random coin tosses it used in the commit stage, and
the receiver verifies consistency.

Definition 2.7 (instance-dependent commitment schemes). An instance-dependent commitment
scheme is a family {Comx}x∈{0,1}∗ with the following properties:

1. Scheme Comx consists of a commit and a reveal stage. In both stages, the sender and the
receiver receive instance x as common input, and hence we denote them as Sx and Rx,
respectively, and write Comx = (Sx, Rx).

2. At the beginning of the commit stage, sender Sx receives a private input b ∈ {0, 1}. At the
end of the commit stage, both sender Sx and receiver Rx output a commitment c.
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3. In the reveal stage, sender Sx sends a pair (b, d), where d is interpreted as the decommitment
string for bit b. Receiver Rx accepts or rejects based on x, b, d, and c.

4. The sender Sx and receiver Rx algorithms are computable in polynomial time (in |x|), given
x as auxiliary input.

5. For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both sender Sx and receiver
Rx follow their prescribed strategy.

Instance-dependent commitment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ is public coin if for every x ∈
{0, 1}∗, all messages sent by Rx in the commit phase are independent random coins.

To simplify notation, we write Comx or (Sx, Rx) to denote instance-dependent commitment
scheme {Comx = (Sx, Rx)}x∈{0,1}∗ . Next, we define the hiding and binding properties of instance-
dependent commitments.

Definition 2.8 (hiding). Instance-dependent commitment scheme Comx = (Sx, Rx) is statistically
[resp., computationally] hiding on I ⊆ {0, 1}∗ if for every [resp., nonuniform PPT] R∗, the ensem-
bles {viewR∗(Sx(0), R∗)}x∈I and {viewR∗(Sx(1), R∗)}x∈I are statistically [resp., computationally]
indistinguishable, where random variable viewR∗(Sx(b), R∗) denotes the view of R∗ in the commit
stage interacting with Sx(b).

Definition 2.9 (binding). Instance-dependent commitment scheme Comx = (Sx, Rx) is statistically
[resp., computationally] binding on I ⊆ {0, 1}∗ if for every [resp., nonuniform PPT] S∗, there exists
a negligible function ε such that for all x ∈ I, the adversarial sender S∗ succeeds in the following
game with probability at most ε(|x|).

S∗ interacts with Rx in the commit stage obtaining commitment c. Then S∗ outputs
pairs (0, d0) and (1, d1), and succeeds if in the reveal stage, Rx(0, d0, c) = Rx(1, d1, c) =
accept.

For a problem Π = (ΠY,ΠN), we say that instance-dependent commitment scheme Comx for Π
is statistically [resp., computationally] binding on the no instances if Comx is statistically [resp.,
computationally] binding on ΠN.

2.3 Zero-Knowledge Protocols—Brief Introduction

For the benefit of more experienced readers, we briefly recall the variants of zero knowledge that
we use. Section 2.4 contains a more detailed introduction with complete definitions. Informal
descriptions of the complexity classes used are listed below.

• IP denotes the class of promise problems possessing interactive proof systems.

• HV-SZKP and HV-CZKP denote the classes of promise problems having honest-verifier
statistical and computational zero-knowledge proofs, respectively. Analogously, HV-SZKA
and HV-CZKA denote the classes of promise problems having honest-verifier statistical and
computational zero-knowledge arguments, respectively.

• SZKP and CZKP are the classes of promise problems possessing statistical and computa-
tional (auxiliary-input) zero-knowledge proofs, respectively. Analogously, SZKA and CZKA
are the classes of promise problems possessing statistical and computational (auxiliary-input)
zero-knowledge arguments, respectively.
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We highlight the following points.

1. Proof versus argument systems: Interactive argument systems refer to protocols whose sound-
ness condition is computational. That is, only nonuniform PPT cheating provers are guaran-
teed not to be able to convince the verifier of false statements except with negligible probabil-
ity; this is a weaker condition than proof systems, where the soundness condition is required
of all cheating provers instead of just nonuniform PPT ones. Hence, we say that proof systems
have statistical soundness.

2. Prover complexity : In interactive proofs and interactive arguments, and in their zero-knowledge
analogues, we allow the honest prover to be computationally unbounded, unless we specify
efficient prover, which means a polynomial-time honest prover strategy given a witness for
membership. It was shown in [NV] that for problems in NP, any zero-knowledge proof sys-
tem with an unbounded prover can be transformed into one with an efficient prover; we will
show the same for argument systems.

2.4 Zero-Knowledge Protocols—Detailed Introduction

An interactive protocol (A,B) consists of two algorithms that compute the next-message function
of the (honest) parties in the protocol. Specifically, A(x, a, α1, . . . , αk; r) denotes the next message
αk+1 sent by party A when the common input is x, A’s auxiliary input is a, A’s coin tosses are
r, and the messages exchanged so far are α1, . . . , αk. There are two special messages, accept and
reject, which immediately halt the interaction. We say that party A (resp. B) is probabilistic
polynomial time (PPT) if its next-message function can be computed in polynomial time (in |x|+
|a| + |α1| + · · · + |αk|). Sometimes (though not in this section) we will refer to protocols with a
joint output; such an output is specified by a deterministic, polynomial-time computable function
of the messages exchanged.

For an interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random process
obtained by having A and B interact on common input x, (private) auxiliary inputs a and b to
A and B, respectively (if any), and independent random coin tosses for A and B. We call (A,B)
polynomially bounded if there is a polynomial p such that for all x, a, b, the total length of all
messages exchanged in (A(a), B(b))(x) is at most p(|x|) with probability 1. Moreover, if B∗ is any
interactive algorithm, then A will immediately halt and reject in (A(a), B∗(b))(x) if the total length
of the messages ever exceeds p(|x|), and similarly for B interacting with any A∗.

We write viewA(A(a), B(b))(x) to denote A’s view of the interaction, that is a transcript
(x, γ1, γ2, . . . , γt; r), where the γi’s are all the messages exchanged and r is A’s coin tosses. (Sim-
ilarly, we define viewB(A(a), B(b))(x) to denote B’s view of the interaction.) When dealing with
interactive protocol (P, V ), we also write 〈P, V 〉(x) to denote V ’s view of the interaction, that is
〈P, V 〉(x) = viewV (P, V )(x). Let transcript(A(a), B(b))(x) denote the messages exchanged in the
protocol including the common input x, i.e., (x, γ1, γ2, . . . , γt).

The number of rounds in an execution of the protocol is the total number of messages exchanged
between A and B, not including the final accept/reject message. We call the protocol (A,B)
public coin if all of the messages sent by B are simply the output of its coin-tosses (independent of the
history), except for the final accept/reject message which is computed as a deterministic function
of the transcript. (Such protocols are also sometimes known as Arthur-Merlin games [BM].)
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Definition 2.10 (interactive proofs). An interactive protocol (P, V ) is an interactive proof system
for a promise problem Π if exist functions c, s : N → [0, 1] such that 1 − c(n) > s(n) + 1/poly(n)
and the following conditions hold.

• Efficiency : (P, V ) is polynomially bounded, and V is computable in probabilistic polynomial
time.

• Completeness: If x ∈ ΠY, then V accepts in (P, V )(x) with probability at least 1− c(|x|),

• Soundness: If x ∈ ΠN, then for every P ∗, V accepts in (P ∗, V )(x) with probability at most
s(|x|).

We call c(·) the completeness error and s(·) the soundness error. We say that (P, V ) has negligible
error if both c and s are negligible. We say that it has perfect completeness if c = 0. We denote
by IP the class of promise problems possessing interactive proof systems. We denote MA to be
the class of promise problems possessing single-round interactive proof systems; that is, the prover
P just sends a single message to V , and V uses the prover’s message and its own random coins in
deciding whether to accept or reject.

We can think of MA as a generalization of NP where the verification of witnesses is proba-
bilistic. An equivalent definition of IP is the class of problems possessing public-coin interactive
proof systems with perfect completeness and negligible soundness error [GS, FGM+].

Definition 2.11 (interactive arguments). We say that (P, V ) is an interactive argument system
for Π if the soundness condition in Definition 2.10 holds against all nonuniform PPT P ∗, instead
of every (computationally unbounded) P ∗. Specifically, we require both the efficiency and com-
pleteness conditions in Definition 2.10 to hold, and the new (weaker) soundness condition is the
following.

• Soundness: If x ∈ ΠN, then for every nonuniform PPT P ∗, V accepts in (P ∗, V )(x) with
probability at most s(|x|).

We denote by IA the class of promise problems possessing interactive argument systems.

Unlike interactive proofs, the complexity-theoretic characterization of IA is not well-studied.
In particular, we do not know if general interactive arguments can be made to have public coin
or to have perfect completeness. The completeness and soundness error, however, can be made
negligibly small by sequential repetition.

There are various notions of zero knowledge, referring to how rich a class of verifier strategies
are considered. The weakest is to consider only the “honest verifier,” the one that follows the
specified protocol.6

Definition 2.12 (honest-verifier zero knowledge). An interactive proof system (P, V ) for a promise
problem Π is statistical [resp., computational] honest-verifier zero knowledge if there exists a prob-
abilistic polynomial-time simulator S such that the ensembles {〈P, V 〉(x)} and {S(x)} are statisti-
cally [resp., computationally] indistinguishable on ΠY.

6This is an instantiation of what is called an “honest-but-curious adversary” or “passive adversary” in the literature
on cryptographic protocols.
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HV-SZKP and HV-CZKP denote the classes of promise problems have honest-verifier sta-
tistical and computational zero-knowledge proofs, respectively. Analogously, HV-SZKA and
HV-CZKA denote the classes of promise problems have honest-verifier statistical and compu-
tational zero-knowledge arguments, respectively.

While honest-verifier zero knowledge is already a nontrivial and interesting notion, crypto-
graphic applications usually require that the zero-knowledge condition holds even if the verifier
deviates arbitrarily from the specified protocol. This is captured by the following definition.

Definition 2.13 (auxiliary-input zero knowledge). 7 An interactive proof system (P, V ) for a
promise problem Π is statistical [resp., computational] auxiliary-input zero knowledge if for every
PPT V ∗ and polynomial p, there exists a PPT S such that the ensembles

{〈P, V ∗(z)〉(x)} and {S(x, z)}

are statistically [resp., computationally] indistinguishable on the set {(x, z) : x ∈ ΠY, |z| = p(|x|)}.
SZKP and CZKP are the classes of promise problems possessing statistical and computa-

tional auxiliary-input zero-knowledge proofs, respectively. Analogously, SZKA and CZKA are the
classes of promise problems possessing statistical and computational auxiliary-input zero-knowledge
arguments, respectively. To avoid cumbersome terminologies, we often drop the prefix auxiliary in-
put and just use zero knowledge to actually mean auxiliary-input zero knowledge.

The auxiliary input z in the above definition allows one to model a priori information that the
verifier may possess before the interaction begins, such as from earlier steps in a larger protocol in
which the zero-knowledge proof is being used or from prior executions of the same zero-knowledge
proof. As a result, auxiliary-input zero knowledge is closed under sequential composition. That
is, if an auxiliary-input zero-knowledge proof is repeated polynomially many times sequentially,
then it remains auxiliary-input zero knowledge [GO]. Plain zero knowledge (i.e., without auxiliary
inputs) is not closed under sequential composition [GK1], and thus auxiliary-input zero knowledge
is the definition typically used in the literature. In the rest of the paper, we will often drop the
word “auxiliary-input” in reference to auxiliary-input zero knowledge.

Typically, a protocol is proven to be zero knowledge by actually exhibiting a single, universal
simulator that simulates an arbitrary verifier strategy V ∗ by using V ∗ as a subroutine. That is,
the simulator does not depend on or use the code of V ∗ (or its auxiliary input), and instead only
requires black-box access to V ∗. This type of simulation is formalized as follows.

Definition 2.14 (black-box zero knowledge). An interactive proof system (P, V ) for a promise
problem Π is statistical [resp., computational] black-box zero knowledge if there exists an oracle
PPT S such that for every nonuniform PPT V ∗, the ensembles

{〈P, V ∗〉(x)}x∈ΠY
and {SV ∗(x,·;·)(x)}x∈ΠY

are statistically [resp., computationally] indistinguishable.
7Our formulation of auxiliary-input zero knowledge is slightly different than, but equivalent to, the definition in

the textbook [Gol2]. We allow V ∗ to run in polynomial time in the lengths of both its input x and its auxiliary input
z, but put a polynomial bound on the length of the auxiliary input. In [Gol2, Sec 4.3.3], V ∗ is restricted to run in
time that is polynomial in just the length of the input x, and no bound is imposed on the length of the auxiliary
input z (so V ∗ may only be able to read a prefix of z). The purpose of allowing the auxiliary input to be longer than
the running time of z is to provide additional nonuniformity to the distinguisher (beyond that which the verifier has);
we do this directly by allowing the distinguisher to be nonuniform in Definition 2.6.
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Even though the above definition does not explicitly refer to an auxiliary input, the definition
encompasses auxiliary-input zero knowledge because we allow V ∗ to be nonuniform (and thus the
auxiliary input can be hardwired in V ∗ as advice). The work of Barak [Bar] demonstrated that non-
black-box zero-knowledge arguments can achieve properties (such as simultaneously being public
coin, having a constant number of rounds, and having negligible error) that were known to be impos-
sible for black-box zero knowledge [GK1]. Nevertheless, our results will show that, when ignoring
round efficiency considerations, black-box zero knowledge is as rich as standard, auxiliary-input
zero knowledge; for example, every problem in CZKA has a black-box zero-knowledge argument
system.

Efficient provers. Although we define interactive arguments without restricting the computa-
tional resource the honest prover, it is natural to do since the cheating provers are restricted to be
PPT. Hence, interactive arguments are most interesting when considering problems in NP, because
for these problems, we can restrict the honest prover to be PPT given a witness of membership.
To formalize this idea, we define witness relations for problems in NP.

Recall that NP, informally stated, is the class of problems that can be verified in polynomial
time given a valid “witness.” To formally define the relationship between an instance and its
corresponding valid witnesses, we consider a relation W and say that W is polynomial time if
deciding whether an element is in W can be done in polynomial time in the length of the first
component of the input (this is typically the length of the problem instance). With this, a problem
Π = (ΠY,ΠN) ∈ NP if there exist a polynomial-time binary relation W ⊆ {0, 1}∗ × {0, 1}∗ such
that the following two conditions hold:

• for every x ∈ ΠY, there exists a w with (x, w) ∈W ;

• for every x ∈ ΠY, and for every w, it is the case that (x,w) /∈W .

Any polynomial-time binary relation that satisfies the above two conditions is said to be an NP-
relation for the problem Π.

For MA, the probabilistic analog of NP, we generalize the relation W to allow for randomness;
specifically, we expand the domain of W ⊆ {0, 1}∗×{0, 1}∗×{0, 1}∗. To relate it with the NP case
above, we abuse notation and write (x, w) ∈ W if Prr[(x,w, r) ∈ W ] ≥ 2/3, and write (x,w) /∈ W
if Prr[(x,w, r) ∈W ] ≤ 1/3. Then, a problem Π = (ΠY,ΠN) ∈MA if there exist a polynomial-time
relation W ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ such that the following two conditions hold:

• for every x ∈ ΠY, there exists a w with (x, w) ∈W , namely Prr[(x,w, r) ∈W ] ≥ 2/3;

• for every x ∈ ΠY, and for every w, it is the case that (x,w) /∈ W , namely Prr[(x,w, r) ∈
W ] ≤ 1/3.

Any polynomial-time relation that satisfies the above two conditions is said to be an MA-relation
for the problem Π.

In an interactive protocol (P, V ) for problem Π ∈ NP [resp., Π ∈MA], prover P is an efficient
prover if its strategy on problem instance x is computable in polynomial time given w as auxiliary
input, where (x,w) ∈ W and W is an NP-relation [resp., MA-relation] for Π. We note that an
equivalent formulation of MA is the class of problems having efficient-prover argument systems
(cf., [BLV]). This means efficient provers is defined, without loss of generality, only for problems in
MA.

12



Remarks on the definitions. Our definitions mostly follow the now-standard definitions of
zero-knowledge proofs as presented in [Gol2], but we highlight the following points.

1. Prover complexity : Interactive proofs and interactive arguments, and their zero-knowledge
analogues, allow the honest prover to be computationally unbounded, unless we specify ef-
ficient prover. It was shown in [NV] than for problems in NP (actually, also MA), any
zero-knowledge proof system with an unbounded prover can be transformed into one with an
efficient prover; we will show the same for argument systems.

2. Promise problems: As has been done numerous times before (e.g., [GK2, SV]), we extend
all of the definitions to promise problems Π = (ΠY,ΠN) in the natural way, i.e., conditions
previously required for inputs in the language (e.g. completeness and zero knowledge) are now
required for all yes instances, and conditions previously required for inputs not in the language
(e.g., soundness) are now required for all no instances. Similarly, all of our complexity classes
(e.g., CZKA, SZKP and BPP) are classes of promise problems. These extensions to promise
problems are essential for formalizing our arguments, but all the final characterizations and
results we derive about CZKA automatically hold for the corresponding class of languages,
simply because languages are a special case of promise problems.

3. Nonuniform formulation: As has become standard, we have adopted a nonuniform formula-
tion of zero knowledge, where the computational indistinguishability has to hold even with
respect to nonuniform distinguishers and is universally quantified over all yes instances. Uni-
form treatments of zero knowledge are possible (see [Gol1] and [BLV, Apdx. A]), but the
definitions are much more cumbersome. We do not know whether analogues of our results
hold for uniform zero knowledge, and leave that as a problem for future work.

4. Strict polynomial-time simulators: In this version, we restrict our attention to zero knowl-
edge with respect to simulators that run in strict polynomial time. In fact, our techniques
actually imply an equivalence between defining the zero-knowledge classes (e.g., CZKA and
HV-CZKA) in terms of expected versus strict polynomial-time simulators. (This equivalence
is achieved following a similar line of reasoning as [Vad].)

3 Unconditional Characterizations of Zero Knowledge

In this section, we provide unconditional characterizations of zero knowledge that would among
other things allow us to establish our Symmetry Theorem between computational zero knowledge
and computational soundness (Theorem 1.2). We first present our main characterization theorems
in Section 3.1, which expands upon Theorem 1.4. The steps involved in proving these character-
ization theorems are outlined in Section 3.2, and lemmas needed to establish these theorems are
given in Sections 3.3, 3.4, and 3.5.

3.1 Our Main Characterization Theorems

In this subsection, we elaborate upon the SZKP–OWF Characterization of Zero Knowledge Theo-
rem (Theorem 1.4). Specifically, we state four theorems giving a variety of equivalent characteriza-
tions of the classes SZKP, CZKP, CZKA, and SZKA. The ones for zero-knowledge arguments,
namely CZKA and SZKA, are new; the other for zero-knowledge proofs, namely CZKP and
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SZKP, contain results from previous work, but are given for comparison. In addition to establish-
ing Theorem 1.4 (and hence Theorem 1.2), these theorems show an equivalence between problems
having only honest-verifier zero-knowledge protocols, problems satisfying the SZKP–OWF Condi-
tion, and problems with (malicious-verifier) zero-knowledge protocols having desirable properties
like an efficient prover, perfect completeness, public coins, and black-box simulation. We note that
these characterizations refer only to the classes of problems, and do not necessarily preserve other
efficiency measures like round complexity, unless explicitly mentioned.

The following two previously known theorems give unconditional characterizations of zero-
knowledge proofs.

Theorem 3.1 (SZKP Characterization Theorem [Oka, GSV, NV, HORV]). For every problem
Π ∈ IP, the following conditions are equivalent.

1. Π ∈ HV-SZKP.

2. Π satisfies the SZKP–OWF Condition without owf instances.

3. Π has an instance-dependent commitment scheme that is statistically hiding on the yes in-
stances and statistically binding on the no instances. Moreover, the scheme is public coin.

4. Π ∈ SZKP, and the statistical zero-knowledge proof system for Π has a black-box simulator,
is public coin, and has perfect completeness. Furthermore, if Π ∈ NP, the proof system has
an efficient prover.

Theorem 3.2 (CZKP Characterization Theorem [Vad, NV, HORV]). For every problem Π ∈ IP,
the following conditions are equivalent.

1. Π ∈ HV-CZKP.

2. Π satisfies the SZKP–OWF Condition without owf no instances.

3. Π has an instance-dependent commitment scheme that is computationally hiding on the yes
instances and statistically binding on the no instances. Moreover, the scheme is public coin.

4. Π ∈ CZKP, and the computational zero-knowledge proof system for Π has a black-box simu-
lator, is public coin, and has perfect completeness. Furthermore, if Π ∈ NP, the proof system
has an efficient prover.

We give analogous characterizations for zero-knowledge arguments.

Theorem 3.3 (SZKA Characterization Theorem). For every problem Π ∈ NP, the following
conditions are equivalent.

1. Π ∈ HV-SZKA.

2. Π satisfies the SZKP–OWF Condition without owf yes instances.

3. Π has an instance-dependent commitment scheme that is statistically hiding on the yes in-
stances and computationally binding on the no instances. Moreover, the scheme is public
coin.
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4. Π ∈ SZKA, and the statistical zero-knowledge argument system for Π has a black-box simu-
lator, is public coin, has perfect completeness, and an efficient prover.

Theorem 3.4 (CZKA Characterization Theorem). For every problem Π ∈ NP, the following
conditions are equivalent.

1. Π ∈ HV-CZKA.

2. Π satisfies the SZKP–OWF Condition.

3. Π has an instance-dependent commitment scheme that is computationally hiding on the yes
instances and computationally binding on the no instances. Moreover, the scheme is public
coin.

4. Π ∈ CZKA, and the computational zero-knowledge proof system for Π has a black-box sim-
ulator, is public coin, has perfect completeness, and an efficient prover.

We prove Theorems 3.3 and 3.4 using lemmas established in Sections 3.3, 3.4, and 3.5. Notice
that in these theorems involving zero knowledge arguments, we have restricted Π to be in NP
in contrast to the theorems involving zero-knowledge proofs (Theorems 3.1 and 3.2), which are
naturally restricted to IP. The reason for this is that argument systems are mainly interesting
when the honest prover runs in polynomial time given a witness for membership (otherwise the
protocol would not even be sound against prover strategies with the same resources as the honest
prover), and such efficient provers only make sense for problems in NP (or actually, MA, to which
our results generalize easily). In fact our theorems above show that for problems in NP, a zero-
knowledge protocol without an efficient prover can be converted into one with an efficient prover
(by the equivalence of Items 1 and 4 in Theorems 3.1 to 3.3 above).

3.2 Steps of Our Proof

Having stated our main characterization theorems in the previous subsection, we now provide an
outline of the steps involved in establishing these characterization theorems.

1. We show that every problem Π possessing a (honest-verifier) zero-knowledge protocol satisfies
the SZKP–OWF Condition. Depending on the zero knowledge and soundness guarantee,
the types of SZKP–OWF Condition that Π satisfies will differ (in whether the sets of owf
yes instances and owf no instances are empty or nonempty). This extends the unconditional
characterization work of [Vad] for zero-knowledge proof systems to the more general zero-
knowledge argument systems, and is in Section 3.3.

2. Next, we show that every problem Π satisfying the SZKP–OWF Condition yields an
instance-dependent commitment scheme for Π. This is based on the techniques of [NOV, NV,
HR, HORV], and is in Section 3.4.

3. Finally, we show that every problem Π ∈ NP having instance-dependent commitments allow
us to construct zero-knowledge argument systems for Π with desirable properties like perfect
completeness, black-box zero knowledge, public coins, and an efficient prover. This is done
by substituting instance-dependent commitments for standard (non-instance-dependent) com-
mitments used in existing zero-knowledge protocols like the Goldreich–Micali–Wigderson [GMW]
zero-knowledge protocol for NP, and is in Section 3.5.
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A summary of the steps involved in establishing our characterization theorems, together with
their corresponding lemmas, is given in Figure 1.

Honest-Verifier Zero-Knowledge Protocol

Lemmas 3.5 and 3.6
��

SZKP–OWF Condition

Lemma 3.13
��

Instance-Dependent Commitment

Lemma 3.19 + Π ∈ NP ��
Zero-Knowledge Protocol

(with public coins, black-box simulator, etc.)

immediate

^^

Figure 1: Steps of our proof.

3.3 From Zero-Knowledge Protocols to SZKP–OWF Characterizations

In this subsection, we show that problems possessing (honest verifier) zero-knowledge arguments
satisfy the SZKP–OWF Condition. Specifically, we prove that for every problem Π having a
zero-knowledge argument also satisfies the SZKP–OWF Condition. This involving establishing
a set of instances I ⊆ ΠY ∪ ΠN such that (ΠY \ I, ΠN \ I) ∈ SZKP, and from which instance-
dependent one-way functions can be constructed. The main difference from [Vad] is that [Vad]
characterizes only zero-knowledge proofs and has no owf no instances, namely I ∩ ΠN = ∅. In
other words, the characterizations of [Vad] satisfy the SZKP–OWF Condition without owf no
instances.

We state a lemma establishing SZKP–OWF Characterizations for zero-knowledge proofs. This
lemma follows from the works of [Oka, GSV, Vad], but is given for comparison.

Lemma 3.5 ([Oka, GSV, Vad]). If problem Π ∈ HV-CZKP, then Π satisfies the SZKP–OWF
Condition without owf no instances, namely I ∩ΠN = ∅. In addition, if Π ∈ HV-SZKP, then
Π satisfies the SZKP–OWF Condition without owf instances, namely I = ∅.

Next, we give analogous SZKP–OWF Characterizations for zero-knowledge arguments.

Lemma 3.6. If problem Π ∈ HV-CZKA, then Π satisfies the SZKP–OWF Condition. In
addition, if Π ∈ HV-SZKA, then Π satisfies the SZKP–OWF Condition without owf yes
instances, namely I ∩ΠY = ∅.

Proof Idea. Proving that Π ∈ HV-CZKA satisfies the SZKP–OWF Condition involves estab-
lishing a set I with an instance-dependent one-way on I and (ΠY \ I, ΠN \ I) ∈ SZKP. To do
so, we provide a separate analysis for the yes and no instances; namely, we show that there exist
sets IY ⊆ ΠY and IN ⊆ ΠN such that instance-dependent one-way functions can be constructed
on these sets, and that (ΠY \ IY ,ΠN \ IN ) ∈ SZKP. These instance-dependent one-way functions
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fx and gx on IY and IN , respectively, can be combined into a single instance-dependent one-way
function on I

def= IY ∪ IN by concatenating the functions fx and gx.
The sets IY and IN are defined based on the simulator S for the zero-knowledge protocol of Π ∈

HV-CZKA. Following Fortnow [For], we consider a simulation-based prover PS and corresponding
simulation-based verifier VS . Informally, PS replies with the same conditional probability as the
prover in the output of S, and VS sends its messages with the same conditional probability as the
verifier in the output of S. We make the following observations.

1. The interaction between PS and VS is identical to the output of the simulator S, on every x.

2. By the zero-knowledge condition, we have that 〈PS , VS〉 is computationally indistinguishable
from 〈P, V 〉, when x ∈ ΠY.

3. By assuming, without loss of generality, that the simulator always outputs accepting tran-
scripts, it holds that PS makes VS accepts with probability 1, on every x.

We consider a statistical measure of how “similar” VS is to V (on instance x, when interacting
with simulation-based prover PS). Using this statistical measure (given in the full proof below), we
define sets IY and IN as follows:

• IY contains instances x ∈ ΠY for which VS is statistically different from V , and

• IN contains instances x ∈ ΠN for which VS is statistically similar to V .

Now the proof that this gives a SZKP–OWF Condition proceed as follows:

1. On IY , we have that VS is statistically different from V . Nevertheless, by the zero-knowledge
condition (as noted above), VS is computationally similar to V . This enables us to construct
one-way functions for instances in IY , as shown in [Vad].

2. On IN , we have that VS is statistically similar to V . Combining this with the fact that PS will
always convince VS to accept (as noted above), we conclude that PS convinces V to accept
with high probability. By the computational soundness of (P, V ), it must be the case that PS

is not PPT. Using techniques from Ostrovsky [Ost], this allows us to convert the simulator
S into an instance-dependent distributional one-way function gx.8 Then by Proposition 2.4,
due to Impagliazzo and Luby [IL], we can obtain an instance-dependent one-way function
from gx.

3. To see that (ΠY \ IY ,ΠN \ IN ) ∈ SZKP, we observe the following: for those yes instances
not in IY —that is, instances in ΠY \IY —the simulated verifier VS is statistically similar to V .
And for those no instances not in IN—that is, instances in ΠN \ IN—the simulated verifier
VS is statistically different from V . This gap in the statistical properties allows us to reduce
promise problem (ΠY\IY ,ΠN\IN ) to one of the complete problems for SZKP [SV, GV, Vad].

8If gx is not distributionally one-way, then PS can be made to be efficient, hence contradicting the computational
soundness of (P, V ). Interestingly, Ostrovsky [Ost] uses the assumption that gx is not distributionally one-way to
invert the simulator S on the yes instances, and conclude that Π is not “hard-on-average”. Although we use similar
techniques as [Ost], we instead invert S on the no instances to contradict the computational soundness of (P, V ).
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Proof of Lemma 3.6. Let (P, V ) be a zero-knowledge argument system for Π, with simulator S.
We now proceed as in the proof of [Vad] and modify our interactive protocol (P, V ) to satisfy the
following (standard) additional properties.

• The completeness error c(|x|) and soundness error s(|x|) are both negligible. This can be
achieved by standard error reduction via (sequential) repetition.

• On every input x, the two parties exchange 2`(|x|) messages for some polynomial `, with the
verifier sending even-numbered messages and sending all of its r(|x|) random coin tosses in
the last message. (Without loss of generality, we may assume that r(|x|) ≥ |x|.) Having
the verifier send its coin tosses at the end does not affect soundness because it is after the
prover’s last message, and does not affect honest-verifier zero knowledge because the simulator
is anyhow required to simulate the verifier’s coin tosses.

• On every input x, the simulator S always outputs accepting transcripts, where we call a
sequence τ of 2` messages an accepting transcript on x if all of the verifier’s messages are
consistent with its coin tosses (as specified in the last message), and the verifier would accept
in such an interaction.

For a transcript τ , we denote by τi the prefix of τ consisting of the first i messages. For
readability, we often drop the input x from the notation, for instance using ` = `(|x|), 〈P, V 〉 =
〈P, V 〉(x), r = r(|x|), and so forth. Thus, in what follows, 〈P, V 〉i and Si are random variables
representing prefixes of transcripts generated by the real interaction and simulator, respectively, on
a specified input x.

Using the simulator S, we define the simulation-based prover PS as follows: On input x and
execution prefix τ2i, for i = 1, 2, . . . , `− 1, do the following:

1. If simulator S(x) outputs a transcript that begins with τ2i with probability 0, then PS replies
with a dummy message.

2. Otherwise, PS replies according with the same conditional probability as the prover in
the output of the simulator. That is, it replies with a string α with probability pα =
Pr [S(x)2i = τ2i−1 ◦ α|S(x)2i−1 = τ2i−1] .

The simulation-based verifier VS can be defined analogously as follows: On input x and execution
prefix τ2i−1, for i = 1, 2, . . . , `, do the following:

1. If simulator S(x) outputs a transcript that begins with τ2i−1 with probability 0, then VS

replies with a dummy message.

2. Otherwise, VS replies according with the same conditional probability as the verifier in
the output of the simulator. That is, it replies with a string β with probability pβ =
Pr [S(x)2i+1 = τ2i ◦ β|S(x)2i = τ2i] .

Observe that 〈PS , VS〉(x) is identically distributed to S(x), for every x. Following [AH, PT,
GV, Vad], we consider the following quantity:

h(x) =
∑̀
i=1

[H(S(x)2i)−H(S(x)2i−1)] =
∑̀
i=1

[H(〈PS , VS〉(x)2i)−H(〈PS , VS〉(x)2i−1)] , (1)
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where H(·) denotes the (Shannon) entropy measure, which is given by H(X) = Ex←X [log(1/ Pr[X = x])].
From [AH, PT, GV], we know that for every x ∈ {0, 1}∗, and every prover strategy P ′,

r(|x|) =
∑̀
i=1

[
H(〈P ′, V 〉(x)2i)−H(〈P ′, V 〉(x)2i−1)

]
. (2)

The above sum in (2) measures the total entropy contributed by the honest verifier’s messages, and
hence it is natural that this should equal r(|x|), the number of coin tosses of the honest verifier.
This is because the honest verifier reveals all its coin tosses at the end.

From (1) and (2), we observe that how close the value of h(x) gets to r(|x|) is a measure of
how close the simulation-based verifier VS is from the honest verifier V (when interacting with PS).
Following our intuition in the proof sketch above, we let IY be the set of instances x ∈ ΠY for
which the VS is “far” from the honest verifier V , and we let IN be the set of instances x ∈ ΠN for
which the VS is “close” to V . Formally, we define:

IY = {x ∈ ΠY : h(x) < r(|x|)− 1/q(|x|)} ;
IN = {x ∈ ΠN : h(x) > r(|x|)− 2/q(|x|)} ,

where the polynomial q(|x|) = 256 · `(|x|).
Having defined sets IY and IN , Lemma 3.6 is established by the following claims. The first

three are proven in the same way as in [Vad], and hence we defer their proofs to Appendix A.

Claim 3.7. Problem (ΠY \ IY ,ΠN \ IN ) ∈ SZKP.

Claim 3.8. There exists an instance-dependent one-way function on IY .

Claim 3.9. For Π ∈ HV-SZKA, we can take IY = ∅.

The main novelty in our analysis is the following claim.

Claim 3.10. There exists an instance-dependent one-way function on IN .

Proof of Claim. To get an instance-dependent one-way function on IN , we use the
following idea of Ostrovsky [Ost]: if we can invert the simulator, then PS ’s replies
can be approximated efficiently. By the computational soundness of (P, V ), this is
impossible, so the simulator must be a one-way function. More precisely, we define the
function gx, whose purpose is to output messages of the simulator, as follows:

gx(i, ω) = (x, i, S(x;ω)2i) . (3)

Note that gx is polynomial-time computable because the simulator S runs in poly-
nomial time. If gx is not distributionally one-way (in the sense of Definition 2.3), then
we can devise an efficient cheating prover strategy, call it P̃ , that efficiently “simulates”
our simulation-based prover PS upto negligible statistical error. The way to do this is
to feed a given transcript prefix τ2i after the verifier has responded in round 2i, into
the inversion algorithm of gx to obtain the simulation-based prover response for round
2i+1. In doing so, we contradict the computational soundness property of (P, V ). This
argument is captured by following proposition, whose proof is given in Appendix A.
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Proposition 3.11 (based on [Ost, Lemma 1]). 9 Let gx be as in (3). For every set
K ⊆ {0, 1}∗, if gx is not an instance-dependent distributionally one-way function on
K, then for every polynomial p, there exists a nonuniform PPT prover P̃ such that

∆(〈P̃ , V 〉(x), S(x)) ≤ `(|x|) ·
(

1
p(|x|)

+ 2 ·∆(〈PS , V 〉(x), S(x))
)

,

for infinitely many x ∈ K.

This leaves us to upper bound ∆(〈PS , V 〉, S) in order to obtain an upper bound
on ∆(〈P̃ , V 〉, S), and hence contradict the computational soundness of V (because S
always outputs accepting transcripts). Recall that for every x ∈ IN , we have h > r−2/q.
From [AH, PT, GV], we know that h = r −KL(〈PS , V 〉, S), where KL is the Kullback-
Leibler distance defined as KL(X, Y ) = Eα←X

[
log(Pr[X = α]) − log(Pr[Y = α])

]
.

(See [GV, Lemma 2.2].) Hence, we get KL(〈PS , V 〉, S) < 2/q. Using the fact that for
any random variables X and Y , KL(X, Y ) ≥ (1/2) · (∆(X, Y ))2 [CT, Lemma 12.6.1],
we get that for all x ∈ IN ,

∆(〈PS , V 〉, S) < 2/
√

q = 1/(8 · `) , (4)

since q = 256 · `.
Now by Proposition 3.11, if gx is not distributionally one-way on IN , we can take

IN = K and choose p(|x|) = 4 · `(|x|), to get a nonuniform PPT P̃ such that

∆(〈P̃ , V 〉, S) ≤ ` · (1/p + 2 ·∆(〈PS , V 〉, S))
= 1/4 + 2 · ` ·∆(〈PS , V 〉, S)
< 1/2 . (by (4))

And since the simulator S always produce accepting transcripts, we have

Pr[(P̃ , V )(x) = accept] ≥ 1/2 ,

for infinitely many x ∈ IN . This contradicts the computational soundness of (P, V ).
Therefore, gx must be a distributionally one-way function on IN . By Proposition 2.4
(due to Impagliazzo and Luby [IL]), gx can be converted into an instance-dependent
(standard) one-way function on IN , as desired. �

Let us see how the above five claims establish Lemma 3.6. Define set I = IY ∪ IN . This
means that the promise problem (ΠY \ I, ΠN \ I) = (ΠY \ IY ,ΠN \ IN ), and Claim 3.7 places this
problem in SZKP. Claims 3.8 and 3.10 give us instance-dependent one-way functions on IY and
IN , respectively; to obtain a single instance-dependent one-way function on I = IY ∪ IN , we use
the following claim.

Claim 3.12. For any sets J,K ⊆ {0, 1}∗, if there exist instance-dependent one-way functions on
J and there exist instance-dependent one-way functions on K, then there exist instance-dependent
one-way functions on J ∪K.

9As pointed out to us by Lilach Bien, the statement and application of this proposition in the original version of
our paper [OV, Lemma 4.8] erroneously neglected the dependence on ∆(〈PS , V 〉(x), S(x)).
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Proof of Claim. Let fx and gx be any instance-dependent one-way function on J and K,
respectively. Then, hx(y, z) = (fx(y), gx(z)) is an instance-dependent one-way function
on J ∪K. This is because inverting hx involves inverting both fx and gx, at least one
of which is hard to invert on J ∪K. �

Therefore, by Claim 3.12 above, we know that Π ∈ HV-CZKA satisfies the SZKP–OWF
Condition. Furthermore, if Π ∈ HV-SZKA, Claim 3.9 tells us that IY = ∅, and hence I ∩ΠY =
IY = ∅, giving us that Π satisfies the SZKP–OWF Condition without owf yes instances. �

3.4 From SZKP–OWF Characterization to Instance-Dependent Commitment
Schemes

In this subsection, we show that every problem Π satisfying the SZKP–OWF Condition yields an
instance-dependent commitment scheme for Π. This is obtained by combining statistically-binding
commitments from one-way functions [Nao, HILL], statistically-hiding commitments from one-way
functions [NOV, HR], and instance-dependent commitments for SZKP [NV, HORV]. In the original
version of this paper [OV], our instance-dependent commitment scheme inherited a certain “1-out-
of-2” binding property from [NV, NOV]. This property is weaker and more complicated than
the standard binding property of commitments, but sufficed for establishing our main theorems
(Theorems 1.2 and 1.4). Due to improvements by [HR, HORV], it is now possible to construct
instance-dependent commitments with the standard binding property, and hence we use standard-
binding commitments to simplify our presentation.

Lemma 3.13. The following conditions hold for problems Π satisfying the SZKP–OWF Condi-
tion.

• If Π satisfies the SZKP–OWF Condition without owf no instances [resp., without owf
instances], then it has an instance-dependent commitment scheme that is computationally
[resp., statistically] hiding on the yes instances and statistically binding on the no instances.

• If Π satisfies the SZKP–OWF Condition [resp., without owf yes instances], then it has
an instance-dependent commitment scheme that is computationally [resp., statistically] hiding
on the yes instances and computationally binding on the no instances.

Furthermore, all the above instance-dependent commitment schemes are public coin.

The proof of Lemma 3.13, tying together all the following propositions and claims, is given at
the end of this subsection. Before stating our propositions and claims, we provide an outline of
what we intend to construct in the next paragraph.

Given that problem Π satisfies the SZKP–OWF Condition, we let the set of owf yes in-
stances be denoted as IY = I∩ΠY, and the set of owf no instances be denoted as IN = I∩ΠN. Our
task of constructing an instance-dependent commitment scheme for Π is broken into following four
steps: (1) construct an instance-dependent commitment scheme for the problem (ΠY \ I, ΠN \ I) ∈
SZKP, (2) construct an instance-dependent commitment scheme for the problem (IY , IY ), (3)
construct an instance-dependent commitment scheme for the problem (IN , IN ), and (4) combine
all these three instance-dependent commitment schemes into a single instance-dependent commit-
ment scheme for Π. We will explain why these four steps yield an instance-dependent commitment
scheme for Π in the proof of Lemma 3.13, given at the end of this subsection.
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Step 1: The instance-dependent commitment for the problem (ΠY \IY ,ΠN\IN ) ∈ SZKP follows
from [HORV] (which builds on [NV]).

Proposition 3.14 ([HORV]). For any problem Γ ∈ SZKP, problem Γ has an instance-dependent
commitment scheme that is statistically hiding on the yes instances and statistically binding on the
no instances. Moreover, the instance-dependent commitment scheme obtained is public coin.

Step 2: Notice that the instance-dependent commitments given by the above proposition do not
guarantee hiding or binding properties on the owf instances sets IY and IN . Nevertheless, we
noted in [Vad], we can use the instance-dependent one-way functions on IY to construct instance-
dependent commitment schemes that are computationally hiding on IY and statistically binding
elsewhere, based on Naor’s [Nao] commitment scheme. This is because Naor’s scheme can be based
on any one-way function [HILL], and the statistical binding property of the scheme does not depend
on the one-way security of the function.

Proposition 3.15 (based on [Nao, HILL]). For every set K ⊆ {0, 1}∗, if there is an instance-
dependent one-way function on K, then problem (K, K) has an instance-dependent commitment
scheme that is computationally hiding on the yes instances (namely, instances in K), and statis-
tically binding on the no instances (namely, instances in K). Moreover, the instance-dependent
commitment scheme obtained is public coin.

Step 3: We construct instance-dependent commitment schemes that are computationally binding
on IN and statistically hiding elsewhere, based on the fact that statistically hiding and computa-
tionally binding commitments can be constructed from any one-way function [NOV, HR].

Proposition 3.16 (based on [NOV, HR]). For every set K ⊆ {0, 1}∗, if there is an instance-
dependent one-way function on K, then problem (K,K) has an instance-dependent commitment
that is statistically hiding on the yes instances (namely, instances in K), and computationally bind-
ing on the no instances (namely, instances in K). Moreover, the instance-dependent commitment
scheme obtained is public coin.

Step 4: Finally, we use standard methods to combine the three instance-dependent commitment
schemes that we have constructed into a single instance-dependent commitment scheme for Π. The
first method gives a combined scheme for the intersection of two problems.

Claim 3.17. Suppose problems Γ = (ΓY,ΓN) and Γ′ = (Γ′Y,Γ′N) have instance-dependent com-
mitment schemes Comx and Com′x, respectively. Then problem Γ∩Γ′ = (ΓY ∩Γ′Y,ΓN ∪Γ′N) has an
instance-dependent commitment scheme Com′′x with the following properties.

• Com′′x is statistically [resp., computationally] hiding if both Comx and Com′x are statistically
[resp., computationally] hiding.

• Com′′x is statistically [resp., computationally] binding if either of Comx or Com′x is statistically
[resp., computationally] binding.

• Com′′x is public coin if both Comx and Com′x are public coin.
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Proof. In commitment scheme Com′′x, the sender commits to b by committing to b in both schemes
Comx and Com′x, with the execution of both schemes done in parallel. The claimed properties of
Com′′x follow by inspection. �

The second method provides a combined scheme for the union of two problems.

Claim 3.18. Suppose problems Γ = (ΓY,ΓN) and Γ′ = (Γ′Y,Γ′N) have instance-dependent com-
mitment schemes Comx and Com′x, respectively. Then problem Γ∪Γ′ = (ΓY ∪Γ′Y,ΓN ∩Γ′N) has an
instance-dependent commitment scheme Com′′x with the following properties.

• Com′′x is statistically [resp., computationally] hiding if either of Comx or Com′x is statistically
[resp., computationally] hiding.

• Com′′x is statistically [resp., computationally] binding if both Comx and Com′x are statistically
[resp., computationally] binding.

• Com′′x is public coin if both Comx and Com′x are public coin.

Proof. In commitment scheme Com′′x, the sender on input bit b, first secret shares b into two shares,
b1 and b2, with the property that b1 ⊕ b2 = b and each bi is uniform in {0, 1}. (This can be done
by choosing a random b1 ← {0, 1}, and setting b2 = b1 ⊕ b.) The sender then commits to b by
committing to bits b1 and b2 in schemes Comx and Com′x, respectively. The execution of schemes
Comx and Com′x is done in parallel.

The hiding property follows from the fact that bit b remains hidden as long as one of the bits
b1 or b2 remains hidden. Then binding property follows from the fact that b = b1⊕ b2, and hence b
is bounded to a fixed value if both b1 and b2 are bounded to fixed values. The public coin property
and round complexity of Com′′x follow by inspection. �

Having established the propositions and claims that we need, we now prove Lemma 3.13.

Proof of Lemma 3.13. Given that problem Π satisfies the SZKP–OWF Condition, let I be the
set of owf instances, and let the owf yes instances be IY = I ∩ΠY and the owf no instances be
IN = I ∩ΠN. By Propositions 3.14, 3.15, and 3.16, we have three instance-dependent commitment
schemes, call them Com

(1)
x , Com

(2)
x , and Com

(3)
x , for the problems (ΠY\I, ΠN\I) ∈ SZKP, (IY , IY ),

and (IN , IN ), respectively. Moreover, all three schemes are public coin.
If Π satisfies the SZKP–OWF Condition without owf instances, then set I = ∅, and hence

Com
(1)
x suffices to be our instance-dependent commitment scheme for Π. If Π satisfies the SZKP–

OWF Condition without owf no instances, then IN = I ∩ ΠN = ∅. Consequently, we do not
need scheme Com

(3)
x , and can just combine schemes Com

(1)
x and Com

(2)
x in a manner prescribed by

Claim 3.18 to get an instance-dependent commitment scheme for Π.
Analogously, if Π satisfies the SZKP–OWF Condition without owf yes instances, then

IY = I ∩ ΠY = ∅. Consequently, we do not need scheme Com
(2)
x , and can just combine schemes

Com
(1)
x and Com

(3)
x in a manner prescribed by Claim 3.17 to get an instance-dependent commitment

scheme for Π. Finally, if Π satisfies the SZKP–OWF Condition, we first combine schemes Com
(1)
x

and Com
(2)
x in a manner prescribed by Claim 3.18 to get an instance-dependent commitment scheme

for (ΠY,ΠN \IN ), and then combine this scheme with Com
(3)
x in a manner prescribed by Claim 3.17

to get an instance-dependent commitment scheme for Π.
The hiding, binding, and public coin properties of the instance-dependent commitment scheme

for Π follow by inspection. �
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3.5 From Instance-Dependent Commitment Schemes to Zero-Knowledge Pro-
tocols

Having obtained instance-dependent commitments in the previous subsection, we now use these
commitments to construct unconditional zero-knowledge protocols for problems Π ∈ NP having
these instance-dependent commitments. We observe that the existing zero-knowledge protocols for
NP require complexity assumptions because they use standard (non-instance dependent) commit-
ments, and standard commitments are not known to exist unconditionally. Therefore, as observed
in [IOS], we can remove the complexity assumptions needed by substituting standard commit-
ments for instance-dependent commitments in these existing protocols. Specifically, we do this
substitution in the Goldreich–Micali–Wigderson [GMW] zero-knowledge protocol for NP.

Lemma 3.19 (based on [GMW]). If problem Π ∈ NP has an instance-dependent commitment
scheme Comx, then it has a zero-knowledge protocol (P, V ) with the following properties.

• (P, V ) is statistical [resp., computational] zero knowledge if Comx is statistically [resp., com-
putationally] hiding on the yes instances. Moreover, (P, V ) has a black-box simulator.

• (P, V ) is a proof [resp., argument] system if Comx is statistically [resp., computationally]
binding on the no instances.

• (P, V ) has perfect completeness and has an efficient prover.

• (P, V ) is public coin if Comx is public coin.

3.6 Putting It All Together

We now show how our lemmas in Sections 3.3, 3.4, and 3.5 imply our main characterization theorems
in Section 3.1.

Proof of Theorems 3.3 and 3.4. The implications for both theorems are captured by the same lem-
mas, so we can conveniently state them together.

(1) ⇒ (2) is established by Lemma 3.6.

(2) ⇒ (3) is established by Lemma 3.13.

(3) ⇒ (4) is established by Lemma 3.19. This is the only step that requires the problem Π ∈ NP.

(4) ⇒ (1) follows directly from definition. �
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A Proofs from Section 3.3

We restate and prove Claims 3.7, 3.8, and 3.9, and Proposition 3.11 from Section 3.3. The three
claims are proven using techniques from [Vad], and Proposition 3.11 is based on ideas from Os-
trovsky [Ost]. Recall that (P, V ) is the zero-knowledge argument system for Π, with simulator
S.

Before proving the above claims and proposition, we first define the conditional entropy of two
jointly distributed random variables as follows: For jointly distributed random variables X and Y ,
we define the conditional entropy of X given Y to be

H(X|Y ) def= E
y←Y

[H(X|Y =y)] = E
(x,y)←(X,Y )

[
log

1
Pr[X = x|Y = y]

]
= H(X, Y )−H(Y ) .

Next, recall the definition of h(x) as stated by (1) in Section 3.3:

h(x) =
∑̀
i=1

[H(S(x)2i)−H(S(x)2i−1)] =
∑̀
i=1

H(S(x)2i|S(x)2i−1) , (5)

where H(·) denotes the (Shannon) entropy measure, which is given by H(X) = Ex←X [log(1/ Pr[X = x])].
The second equality in (5) follows the fact that the output of S2i contains S2i−1, and hence
H(S2i, S2i−1) = H(S2i).

Finally, recall that from (2) in Section 3.3, we have that for every x ∈ {0, 1}∗, and every prover
strategy P ′, the number of coins used by the honest verifier, denoted by r(|x|), is:

r(|x|) =
∑̀
i=1

[
H(〈P ′, V 〉(x)2i)−H(〈P ′, V 〉(x)2i−1)

]
=

∑̀
i=1

H(〈P ′, V 〉(x)2i|〈P ′, V 〉(x)2i−1) , (6)

with the second equality following from the fact that the output of 〈P ′, V 〉2i contains 〈P ′, V 〉2i−1,
and hence H(〈P ′, V 〉2i, 〈P ′, V 〉2i−1) = H(〈P ′, V 〉2i).

Restatement of Claim 3.7. Problem (ΠY \ IY ,ΠN \ IN ) ∈ SZKP.

Proof. We note the following proposition.

Proposition A.1 (based on [Vad, Proposition 3.2]). Consider the problem Condi-
tional Entropy Approximation = (CEAY,CEAN), where CEAY = {((X, Y ), r) :
H(X|Y ) ≥ r} and CEAN = {((X, Y ), r) : H(X|Y ) ≤ r− 1}. Here (X, Y ) is a samplable
joint distribution specified by two circuits that use the same coin tosses. Conditional
Entropy Approximation is complete for SZKP.

Given the above proposition, it suffices to show a reduction from (ΠY \ IY ,ΠN \ IN ) to Condi-
tional Entropy Approximation. Our reduction is as follows: On input x, we construct circuits
X and Y that sample from the following (joint) random variables.

(X, Y ): Select i ← {1, . . . , `(|x|)}, choose random coin tosses ω for the simulator, and output
(S2i(x;ω), S2i−1(x;ω)).
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When x ∈ ΠY \ IY , we have h(x) > r − 1/q, and hence:

H(X|Y ) =
1
`

∑̀
i=1

H(S2i|S2i−1) =
h

`
>

r − 1/q

`
=

r

`
− 1

q · `
.

And when x ∈ ΠN \ IN , we have have h(x) < r − 2/q, and hence:

H(X|Y ) =
1
`

∑̀
i=1

H(S2i|S2i−1) =
h

`
<

r − 2/q

`
=

r

`
− 2

q · `
.

This is what we need to prove, except the entropy gap is only 1/(q · `). This can be increased
to 1 by taking q · ` independent samples from the joint distribution. That is, we define (X,Y ) =
((X1, . . . , Xq·`), (Y1, . . . , Yq·`)), where the (Xi, Yi)’s are independent copies of (X, Y ). Since (ΠY \
IY ,ΠN \ IN ) reduces to Conditional Entropy Approximation, Proposition A.1 gives us that
(ΠY \ IY ,ΠN \ IN ) ∈ SZKP. �

Restatement of Claim 3.8. There exists an instance-dependent one-way function on IY .

Proof. We note the following proposition.

Proposition A.2 (based on [Vad, Lemma 3.10]). Let K ⊆ {0, 1}∗ be any set. Assume
that there exists a polynomial-time computable mapping that maps every x ∈ K to
samplable joint distributions (X, Y ) and a parameter r such that H(X|Y ) ≤ r − 1, but
H(X ′|Y ′) ≥ r for some (X ′, Y ′) indistinguishable from (X, Y ). Then there exists an
instance-dependent one-way function on K.

When x ∈ ΠY, then S is computationally indistinguishable from 〈P, V 〉. So (X, Y ), as defined
in the proof of Claim 3.7 above, is indistinguishable from (X ′, Y ′) = (〈P, V 〉2L, 〈P, V 〉2L−1), where
random variable L denotes an independent uniform random element of {1, . . . , `}.

By (6), we have:

H(X ′|Y ′) =
1
`

∑̀
i=1

H(〈P, V 〉2i|〈P, V 〉2i−1) =
r

`
,

for all x ∈ ΠY. And when x ∈ IY ⊆ ΠY, we have have h(x) < r − 1/q and hence:

H(X|Y ) =
1
`

∑̀
i=1

H(S2i|S2i−1) =
h

`
<

r − 1/q

`
=

r

`
− 1

q · `
.

Again, like in the proof of Claim 3.7, we can increase the entropy gap between H(X ′|Y ′) and
H(X|Y ) to 1. Finally, we apply Proposition A.2 to establish our claim. �

Restatement of Claim 3.9. For Π ∈ HV-SZKA, we can take IY = ∅.

Proof. For Π ∈ HV-SZKA, the output of the simulator S(x) is statistically close to 〈P, V 〉(x) for
every x ∈ ΠY. This implies that IY = ∅, since for every x ∈ ΠY, we have

h(x) >
∑̀
i=1

[H(〈P, V 〉2i(x))−H(〈P, V 〉2i−1(x))]− neg(|x|) = r(|x|)− neg(|x|),

with the last equality following from (6). �
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Finally, we prove Proposition 3.11, restated below. Recall that the function gx(i, ω) = (x, i, S(x;ω)2i),
as stated by (3) in Section 3.3.

Restatement of Proposition 3.11. Let gx be as in (3) in Section 3.3. For every set K ⊆ {0, 1}∗,
if gx is not an instance-dependent distributionally one-way function on K, then for every polynomial
p, there exists a nonuniform PPT prover P̃ such that

∆(〈P̃ , V 〉(x), S(x)) ≤ `(|x|) ·
(

1
p(|x|)

+ 2 ·∆(〈PS , V 〉(x), S(x))
)

,

for infinitely many x ∈ K.

Proof. Let random variable I denote an independent uniform index i ← {1, 2, . . . , `}, and let
random variable Ω denote independent uniform coins ω for the simulator S. Recall the definition
of instance-dependent distributionally one-way function as stated in Definition 2.3. If gx is not an
instance-dependent distributionally one-way function on K, then for any polynomial q, there exists a
nonuniform PPT A such that the random variables ((I,Ω), S(x; Ω)2I) and (A(S(x; Ω)2I), S(x; Ω)2I)
are 1/q(|x|)-close for infinitely many x ∈ K. Let K ′ ⊆ K be the infinite set of instances x
for which the previously stated random variables are 1/q(|x|)-close. Let the polynomial p(|x|) =
q(|x|) · (1/`(|x|)). For this point on, we will drop the mention of x and assume that x ∈ K ′.

Since I is independent from the other random variables, we have that for all i = 1, 2, . . . , `, the
random variables

((i,Ω), S(Ω)2i) and (A(S(Ω)2i), S(Ω)2i) are (1/p)-close , (7)

since ` · (1/q) = 1/p.
For any interactive machine A and B, let random variable 〈A,B〉[mj ] denote the transcript

of messages exchanged between A and B conditioned on the first j messages being mj . In other
words, 〈A,B〉[mj ] = 〈A,B〉|〈A,B〉j=mj

. It follows from definition that

〈A,B〉[〈A,B〉j ] ≡ 〈A,B〉 , (8)

for any index j.
By (7), and noting that PS and P̃ use (i, Ω) and A(S(Ω)2i) to produce their messages in round

2i + 1, respectively, we have that for every i = 1, 2, . . . , `,

(〈PS , V 〉[S2i])2i+2 and (〈P̃ , V 〉[S2i])2i+2 are (1/p)-close , (9)

Using (8) and (9) above, we have that for every i = 1, 2, . . . , `,

∆(〈P̃ , V 〉2i+2, 〈PS , V 〉2i+2)

= ∆((〈P̃ , V 〉[〈P̃ , V 〉2i])2i+2, (〈PS , V 〉[〈PS , V 〉2i])2i+2) (by (8))

≤ ∆((〈P̃ , V 〉[S2i])2i+2, (〈PS , V 〉[S2i])2i+2)

+ ∆(〈P̃ , V 〉2i, S2i) + ∆(〈PS , V 〉2i, S2i)

≤ (1/p) + ∆(〈P̃ , V 〉2i, S2i) + ∆(〈PS , V 〉2i, S2i) (by (9))

≤ (1/p) + ∆(〈P̃ , V 〉2i, S2i) + ∆(〈PS , V 〉, S) . (10)
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We now prove the following by induction on i = 0, 1, 2, . . . , `:

∆(〈P̃ , V 〉2i, S2i) ≤ i · (1/p + 2 ·∆(〈PS , V 〉, S)) (11)

Note that the case for i = ` establishes Proposition 3.11. The base case for i = 0 is trivial. We
prove the inductive step as follows:

∆(〈P̃ , V 〉2i+2, S2i+2)

≤ ∆(〈P̃ , V 〉2i+2, 〈PS , V 〉2i+2) + ∆(〈PS , V 〉2i+2, S2i+2)

≤ ∆(〈P̃ , V 〉2i+2, 〈PS , V 〉2i+2) + ∆(〈PS , V 〉, S)

≤ (1/p) + ∆(〈P̃ , V 〉2i, S2i) + 2 ·∆(〈PS , V 〉, S) (by (10))
≤ (i + 1) · (1/p + 2 ·∆(〈PS , V 〉, S)) (by induction on i)

This completes our proof of Proposition 3.11. �
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