
A Lower Bound on List Size for List Decoding∗

Venkatesan Guruswami†

Dept. of Computer Science & Engineering
University of Washington

Seattle, WA
venkat@cs.washington.edu

Salil Vadhan‡

Division of Engineering & Applied Sciences
Harvard University

Cambridge, MA
salil@eecs.harvard.edu

July 13, 2005

Abstract

A q-ary error-correcting code C ⊆ {1, 2, . . . , q}n is said to be list decodable to radius ρ with
list size L if every Hamming ball of radius ρ contains at most L codewords of C. We prove
that in order for a q-ary code to be list-decodable up to radius (1 − 1/q)(1 − ε)n, we must
have L = Ω(1/ε2). Specifically, we prove that there exists a constant cq > 0 and a function fq

such that for small enough ε > 0, if C is list-decodable to radius (1− 1/q)(1− ε)n with list size
cq/ε2, then C has at most fq(ε) codewords, independent of n. This result is asymptotically tight
(treating q as a constant), since such codes with an exponential (in n) number of codewords are
known for list size L = O(1/ε2).

A result similar to ours is implicit in Blinovsky [Bli] for the binary (q = 2) case. Our proof
works for all alphabet sizes, and is technically and conceptually simpler.

1 Introduction

List decoding was introduced independently by Elias [Eli1] and Wozencraft [Woz] as a relaxation of
the classical notion of error-correction by allowing the decoder to output a list of possible answers.
The decoding is considered successful as long as the correct message is included in the list. We
point the reader to the paper by Elias [Eli2] for a good summary of the history and context of list
decoding.

The basic question raised by list decoding is the following: How many errors can one recover
from, when constrained to output a list of small size? The study of list decoding strives to (1)

∗An extended abstract of this paper will appear in RANDOM ‘05 [GV].
†Supported in part by NSF Career Award CCF-0343672.
‡Supported by NSF grant CCF-0133096, ONR grant N00014-04-1-0478, US-Israel BSF grant 2002246, and a Sloan

Research Fellowship. Work done in part while a Fellow at the Radcliffe Institute for Advanced Study.

1

understand the combinatorics underlying this question, (2) realize the bounds with explicit con-
structions of codes, and (3) list decode those codes with efficient algorithms. This work falls in
the combinatorial facet of list decoding. Combinatorially, an error-correcting code has “nice” list-
decodability properties if every Hamming ball of “large” radius has a “small” number of codewords
in it. In this work, we are interested in exposing some combinatorial limitations on the performance
of list-decodable codes. Specifically, we seek lower bounds on the list size needed to perform decod-
ing up to a certain number of errors, or in other words, lower bounds on the number of codewords
that must fall inside some ball of specified radius centered at some point. We show such a result
by picking the center in a certain probabilistic way. We now give some background definitions and
terminology, followed by a description of our main result.

1.1 Preliminaries

We denote the set {1, 2, . . . , m} by the shorthand [m]. For q ≥ 2, a q-ary code of block length n
is simply a subset of [q]n. The elements of the code are referred to as codewords. The high-level
property of a code that makes it useful for error-correction is its sparsity — the codewords must
be well spread-out, so they are unlikely to distort into one another. One way to insist on sparsity
is that the Hamming distance between every pair of distinct codewords is at least d. Note that this
is equivalent to requiring that every Hamming ball of radius b(d−1)/2c has at most one codeword.
Generalizing this, one can allow up to a small number, say L, of codewords in Hamming balls of
certain radius. This leads to the notion of list decoding and a good list-decodable code. Since
the expected Hamming distance of a random string of length n from any codeword is (1− 1/q) · n
for a q-ary code, the largest fraction of errors one can sensibly hope to correct is (1− 1/q). This
motivates the following definition of a list-decodable code.

Definition 1 Let q ≥ 2, 0 < ρ < 1, and L be a positive integer. A q-ary code C of block length n
is said to be (ρ, L)-list-decodable if for every y ∈ [q]n, the Hamming ball of radius ρ · (1− 1/q) · n
centered at y contains at most L codewords of C.

We will study (ρ, L)-list-decodable codes for ρ = 1− ε in the limit of ε → 0. This setting is the
one where list decoding is most beneficial, and is a clean setting to initially study the asymptotics.
In particular, we will prove that, except for trivial codes whose size does not grow with n, (1−ε, L)-
list-decodable codes require list size L = Ω(1/ε2) (hiding dependence on q).

1.2 Context and Related Results

Before stating our result, we describe some of the previously known results to elucidate the broader
context where our work fits. The rate of a q-ary code of block length n is defined to be logq |C|

n . For
0 ≤ x ≤ 1, we denote by Hq(x) the q-ary entropy function, Hq(x) = x logq(q − 1)− x logq x− (1−
x) logq(1− x).

Using the probabilistic method, it can be shown that (ρ, L)-list-decodable q-ary codes of rate
1−Hq((1− 1/q)ρ)− 1/L exist [Eli2, GHSZ]. In particular, in the limit of large L, we can achieve a
rate of 1−Hq((1−1/q)ρ), which equals both the Hamming bound and the Shannon capacity of the
q-ary channel that changes a symbol α ∈ [q] to a uniformly random element of [q] with probability
ρ and leaves α unchanged with probability 1 − (1 − 1/q)ρ. When ρ = 1 − ε for small ε, we have
Hq((1− 1/q)ρ) = 1−Ω(qε2/ log q). Therefore, there exist (1− ε, L(q, ε))-list-decodable q-ary codes

2

with 2Ω(qε2n) codewords and L(q, ε) = O(log q
qε2). In particular, for constant q, list size of O(1/ε2)

suffices for non-trivial list decoding up to radius (1− 1/q) · (1− ε).
We are interested in whether this quadratic dependence on 1/ε in the list size is inherent. The

quadratic bound is related to the 2 log(1/ε) − O(1) lower bound due to [RT] for the amount of
“entropy loss” in randomness extractors, which are well-studied objects in the subject of pseudo-
randomness. In fact a lower bound of Ω(1/ε2) on list size will implies such an entropy loss bound
for (“strong”) randomness extractors. However, in the other direction, the argument loses a factor
of ε in the lower bound, yielding only a lower of Ω(1/ε) for list size (cf. [Vad]).

For the model of erasures, where up to a fraction (1− ε) of symbols are erased by the channel,
optimal bounds of Θ(log(1/ε)) are known for the list size required for binary codes [Gur]. This can
be compared with the log log(1/ε)−O(1) lower bound on entropy loss for dispersers [RT].

A lower bound of Ω(1/ε2) for list size L for (1− ε, L)-list-decodable binary codes follows from
the work of Blinovsky [Bli]. We discuss more about his work and how it compares to our results in
Section 1.5.

1.3 Our Result

Our main result is a proof of the following fact: the smallest list size that permits list decoding
up to radius (1− 1/q)(1− ε) is Θ(ε−2) (hiding constants depending on q in the Θ-notation). The
formal statement of our main result is below.

Theorem 2 (Main) For every integer q ≥ 2 there exists cq > 0 and dq < ∞ such that for all
small enough ε > 0, the following holds. If C is a q-ary (1 − ε, cq/ε2)-list-decodable code, then
|C| ≤ 2dq ·ε−2 log(1/ε).

1.4 Overview of Proof

We now describe the high-level structure of our proof. Recall that our goal is to exhibit a center
z that has several (specifically Ω(1/ε2)) codewords of C with large correlation, where we say two
codewords have correlation ε if they agree in (1/q + ε) · n locations. (The actual definition we
use, given in Definition 3, is slightly different, but this version suffices for the present discussion.)
Using the probabilistic method, it is not very difficult to prove the existence of such a center z and
Ω(1/ε2) codewords whose average correlation with z is at least Ω(ε). (This is the content of our
Lemma 6.) This step is closely related to (and actually follows from) the known lower bound of
Radhakrishnan and Ta-Shma [RT] on the “entropy loss” of “randomness extractors,” by applying
the known connection between randomness extractors and list-decodable error-correcting codes (see
[Tre, TZ, Vad]).

However, this large average could occur due to about 1/ε codewords having a Ω(1) correlation
with z, whereas we would like to find many more (i.e., Ω(1/ε2)) codewords with smaller (i.e., Ω(ε))
correlation. We get around this difficulty by working with a large subcode C ′ of C where such a
phenomenon cannot occur. Roughly speaking, we will use the probabilistic method to prove the
existence of a large “L-pseudorandom” subcode C ′, for which looking at any set of L codewords
of C never reveals any significant overall bias in terms of the most popular symbol (out of [q]).
More formally, all `-tuples, ` ≤ L, the average “plurality” (i.e., frequency of most frequent symbol)
over all the coordinates isn’t much higher than `/q. (This is the content of our Lemma 7.) This
in turn implies that for every center z, the sum of the correlations of z with all codewords that

3

have “large” correlation (say at least Dε, for a sufficiently large constant D) is small. Together
with the high average correlation bound, this means several codewords must have “intermediate”
correlation with z (between ε and Dε). The number of such codewords is our lower bound on list
size.

1.5 Comparison with Blinovsky [Bli]

As remarked earlier, a lower bound of L = Ω(1/ε2) for binary (1−ε, L)-list-decodable codes follows
from the work of Blinovsky [Bli]. He explores the tradeoff between ρ, L, and the relative rate γ of
a (ρ, L)-list-decodable code, when all three of these parameters are constants and the block length
n tends to infinity. A special case of his main theorem shows that if ρ = 1− ε and L ≤ c/ε2 for a
certain constant c > 0, then the rate γ must be zero asymptotically, which means that the code can
have at most 2o(n) codewords for block length n. A careful inspection of his proof, however, reveals
an f(ε) bound (independent of n) on the number of codewords in any such code. This is similar in
spirit to our Theorem 2. However, our work compares favorably with [Bli] in the following respects.

1. Our result also holds for q-ary codes for q > 2. The result in [Bli] applies only to binary
codes, and it is unclear whether his analysis can be generalized to q-ary codes.

2. Our result is quantitatively stronger. The dependence f(ε) of the bound on the size of the
code in [Bli] is much worse than the (1/ε)O(ε−2) that we obtain. In particular, f(ε) is at least
an exponential tower of height Θ(1/ε2) (and is in fact bigger than the Ackermann function
of 1/ε).

3. Our proof seems significantly simpler and provides more intuition about why and how the
lower bound arises.

We now comment on the proof method in [Bli]. As with our proof, the first step in the proof
is a bound for the case when the average correlation (w.r.t every center) for every set of L + 1
codewords is small (this is Theorem 2 in [Bli]). Note that this is a more stringent condition than
requiring no set of L+1 codewords lie within a small ball. Our proof uses the probabilistic method
to show the existence of codewords with large average correlation in any reasonable sized code.
The proof in [Bli] is more combinatorial, and uses a counting argument to bound the size of the
code when all subsets of L+1 codewords have low average correlation (with every center). But the
underlying technical goal of the first step in both the approaches is the same.

The second step in Blinovsky’s proof is to use this bound to obtain a bound for list-decodable
codes. The high-level idea is to pick a subcode of the list-decodable code with certain nice properties
so that the bound for average correlation can be turned into one for list decoding. This is also
similar in spirit to our approach (Lemma 7). The specifics of how this is done are, however, quite
different. The approach in [Bli] is to find a large subcode which is (L+1)-equidistant, i.e., for every
k ≤ L+1, all subsets of k codewords have the same value for their k’th order scalar product, which
is defined as the sum over all coordinates of the product of the k symbols (from {0, 1}) in that
coordinate.1 Such a subcode has the following useful property: in each subset of L+1 codewords,
all codewords in the subset have the same agreement with the best center, i.e., the center obtained
by taking their coordinate-wise majority, and moreover this value is independent of the choice of

1A slight relaxation of the (L + 1)-equidistance property is actually what is used in [Bli], but this description
should suffice for the discussion here.

4

the subset of L + 1 codewords. This in turn enables one to get a bound for list decoding from one
for average correlation. The requirement of being (L+1)-equidistant is a rather stringent one, and
is achieved iteratively by ensuring k-equidistance for k = 1, 2, . . . , L + 1 successively. Each stage
incurs a rather huge loss in the size of the code, and thus the bound obtained on the size of the
original code is an enormously large function of 1/ε. We make do with a much weaker property
than (L + 1)-equidistance, letting us pick a much larger subcode with the property we need. This
translates into a good upper bound on the size of the original list-decodable code.

2 Proof of main result

We first begin with convenient measures of closeness between strings, the agreement and the cor-
relation.

Definition 3 (Agreement and Correlation) For strings x, y ∈ [q]n, define their agreement,
denoted agr(x, y) = 1

n · #{i : xi = yi}. Their correlation is the value corr(x, y) ∈ [−1/(q − 1), 1]

such that agr(x, y) = 1
q +

(
1− 1

q

)
· corr(x, y).2

The standard notion of correlation between two strings in {1,−1}n is simply their dot product
divided by n; the definition above is a natural generalization to larger alphabets.

A very useful notion for us will be the plurality of a set of codewords.

Definition 4 (Plurality) For symbols a1, . . . , ak ∈ [q], we define their plurality plur(a1, . . . , ak) ∈
[q] to be the most frequent symbol among a1, . . . , ak, breaking ties arbitrarily. We define the plurality
count #plur(a1, . . . , ak) ∈ N to be the number of times that plur(a1, . . . , ak) occurs among a1, . . . , ak.

For vectors c1, . . . , ck ∈ [q]n, we define plur(c1, . . . , ck) ∈ [q]n to be the componentwise plurality,
i.e. plur(c1, . . . , ck)i = plur(c1i, . . . , cki).

We define #plur(c1, . . . , ck) to be the average plurality count over all coordinates; that is,
#plur(c1, . . . , ck) = (1/n) ·∑n

i=1 #plur(c1i, . . . , cki).

The reason pluralities will be useful to us is that they capture the maximum average correlation
any vector has with a set of codewords:

Lemma 5 For all c1, . . . , ck ∈ [q]n,

max
z∈[q]n

k∑

i=1

agr(z, ci) =
k∑

i=1

agr(plur(c1, . . . , ck), ci)

= #plur(c1, . . . , ck)

Note that our goal of proving lower bound on list size is the same as proving that in every not
too small code, there must be some center z that has several (i.e. Ω(1/ε2)) close-by codewords, or
in other words several codewords with large (i.e., at least ε) correlation. We begin by showing the
existence of a center which has a large average correlation with a collection of several codewords.
By Lemma 5, this is equivalent to finding a collection of several codewords whose total plurality
count is large.

2Note that we find it convenient to work with agreement and correlation that are normalized by dividing by the
length n.

5

Lemma 6 For all integers q ≥ 2 and t ≥ 37q, there exists a constant bq > 0 such that for
every positive integer t and every code C ⊆ [q]n with |C| ≥ 2t, there exist t distinct codewords
c1, c2, . . . , ct ∈ C such that

#plur(c1, . . . , ct) ≥ t

q
+ Ω

(√
t

q

)
.

Equivalently, there exists a z ∈ [q]n such that

t∑

i=1

corr(z, ci) ≥ Ω
(√

t

q

)
. (1)

Proof: Without loss of generality, assume |C| = 2t. Pick a subset {c1, c2, . . . , ct} from C, chosen
uniformly at random among all t-element subsets of C. For j = 1, . . . , n, define the random variable
Pj = #plur(c1j , . . . , ctj) to be the plurality of the j’th coordinates. By definition, #plur(c1, . . . , ct) =
(1/n) · ∑n

j=1 Pj . Notice that Pj is always at least t/q, and we would expect the plurality to
occasionally deviate from the lower bound. Indeed, Lemma 15 shows that for any sequence of
2t elements of [q], if we choose a random subset of half of them, the expected plurality count is
t/q + Ω(

√
t/q). Thus, E[Pj] = t/q + Ω(

√
t/q). So E[(1/n) ·∑j Pj] = t/q + Ω(

√
t/q), and thus the

lemma follows by taking any c1, . . . , ct that achieves the expectation. The equivalent reformulation
in terms of correlation follows from Lemma 5 and the definition of correlation in terms of agreement
(Definition 3).

For any ε > 0, the above lemma gives a center z and t = Ω(1/qε2) codewords c1, . . . , ct such that
the average correlation between z and c1, . . . , ct is at least ε. This implies that at least (ε/2)·t of the
ci’s have correlation at least ε/2 with z. Thus we get a list-size lower bound of (ε/2) · t = Ω(1/qε)
for decoding from correlation ε/2. (This argument has also appeared in [LTW].)

Now we would like to avoid the ε factor loss in list size in the above argument. The reason
it occurs is that the average correlation can be ε due to the presence of ≈ εt of the ci’s having
extremely high correlation with z. This is consistent with the code being list-decodable with list
size o(1/(qε2)) for correlation ε, but it means that it code has very poor list-decoding properties
at some higher correlations — e.g., having εt = Ω(1/(qε)) codewords at correlation Ω(1), whereas
we’d expect a “good” code to have only O(1) such codewords. In our next (and main) lemma, we
show that we can pick a subcode of the code where this difficulty does not occur. Specifically, if
C has good list-decoding properties at correlation ε, we get a subcode that has good list-decoding
properties at every correlation larger than ε.

Lemma 7 (Main technical lemma) For all positive integers L, t, m ≥ 2t and q ≥ 2, and all
small enough ε > 0, the following holds. Let C be a (1 − ε, L)-list-decodable q-ary code of block
length n with |C| > 2L · t ·m!/(m − t)!. Then there exists a subcode C ′ ⊆ C, |C ′| ≥ m, such that
for all positive integers ` ≤ t and every c1, c2, . . . , c` ∈ C ′,

#plur(c1, . . . , c`) ≤
(

1
q

+
(

1− 1
q

)
· ε + O

(
q3/2

√
`

))
· `.

Equivalently, for every z ∈ [q]n and every c1, . . . , c` ∈ C ′, we have

∑̀

i=1

corr(z, ci) ≤
(
ε + O

(
q3/2

√
`

))
· ` . (2)

6

Notice that the lemma implies a better upper bound on list size for correlations much larger than
ε. More precisely, for every δ > 0, it implies that the number of codewords having correlation at
least ε+δ with a center z is at most ` = O(q3/δ2). In fact, any ` codewords must even have average
correlation at most ε + δ.

Proof: We will pick a subcode C ′ ⊆ C of size m at random from all m-element subsets of C, and
prove that C ′ will fail to have the claimed property with probability less than 1.

For now, however, think of the code C ′ as being fixed, and we will reduce proving the desired
properties above to bounding some simpler quantities. Let (c1, c2, . . . , c`) be an arbitrary `-tuple
of codewords in C ′. We will keep track of the average plurality count #plur(c1, . . . , ci) as we add
each codeword to this sequence. To describe how this quantity can change at each step, we need a
couple of additional definitions. We say a sequence (a1, . . . , ai) ∈ [q]i has a plurality tie if at least
two symbols occur #plur(a1, . . . , ai) times among a1, . . . , ai. For vectors c1, . . . , ci ∈ [q]n, we define
#ties(c1, . . . , ci) to be the fraction of coordinates j ∈ [n] such that (c1j , . . . , cij) has a plurality tie.
Then:

Claim 8 For every c1, . . . , ci ∈ [q]n, #plur(c1, . . . , ci) ≤ #plur(c1, . . . , ci−1)+agr(ci, plur(c1, . . . , ci−1))+
#ties(c1, . . . , ci−1).

Proof of claim: Consider each coordinate j ∈ [n] separately. Clearly,

#plur(c1j , . . . , cij) ≤ #plur(c1j , . . . , c(i−1)j) + 1 .

Moreover, if (c1j , . . . , c(i−1)j) does not have a plurality tie, then the plurality increases
iff cij equals the unique symbol plur(c1j , . . . , c(i−1)j) achieving the plurality. Thus,

#plur(c1j , . . . , cij) ≤ #plur(c1j , . . . , c(i−1)j) + Aj + Tj ,

where Tj is the indicator variable for (c1j , . . . , c(i−1)j) having a plurality tie, and Aj for
cij agreeing with plur(c1j , . . . , c(i−1)j). The claim follows by averaging over j = 1, . . . , n.

2

Thus, our task of bounding #plur(c1, . . . , c`) reduces to bounding
agr(ci, plur(c1, . . . , ci−1)) and #ties(c1, . . . , ci−1) for each i = 1, . . . , `. The first term we bound using
the list-decodability of C and the random choice of the subcode C ′.

Claim 9 There exists a choice of the subcode C ′ such that |C ′| = m and for every i ≤ t and every
(ordered) sequence c1, . . . , ci ∈ C ′, we have

agr(ci, plur(c1, . . . , ci−1)) ≤ 1/q + (1− 1/q) · ε .

Proof of claim: We choose the subcode C ′ uniformly at random from all m-subsets
of C. We view C ′ as a sequence of m codewords selected randomly from C without
replacement. Consider any i of the codewords c1, . . . , ci in this sequence. By the list-
decodability of the C, for any c1, . . . , ci−1, there are at most L choices for ci having
agreement larger than (1/q + (1 − 1/q) · ε) with plur(c1, . . . , ci−1). Conditioned on
c1, . . . , ci−1, ci is distributed uniformly on the remaining |C| − i + 1 elements of C, so
the probability of ci being one of the ≤ L bad codewords is at most L/(|C| − i + 1).

7

By a union bound, the probability that the claim fails for at least one subsequence
c1, . . . , ci of at most t codewords in C ′ is at most

t∑

i=1

m!
(m− i)!

· L

|C| − i + 1
≤ t · m!

(m− t)!
· L

|C| − t + 1
< 1.

Thus, there exists a choice of subcode C ′ satisfying the claim. 2

For the #ties(c1, . . . , ci−1) terms, we consider the codewords c1, . . . , c` in a random order.

Claim 10 For every sequence of c1, . . . , c` ∈ [q]n, there exists a permutation σ : [`] → [`] such that

∑̀

i=1

#ties(cσ(1), . . . , cσ(i)) = O(q3/2 ·
√

`).

Proof of claim: We choose σ uniformly at random from all permutations σ : [`] → [`]
and show that the expectation of the left side is at most O(q3/2 ·

√
`). By linearity of

expectations, it suffices to consider the expected number of plurality ties occurring in
each coordinate j ∈ [n]. That is, we read the symbols c1j , . . . , c`j ∈ [q] in a random order
σ and count the number of prefixes cσ(1)j , . . . , cσ(i)j having a plurality tie. If this prefix
were i symbols chosen independently according to some (arbitrary) distribution, then it
is fairly easy to show that the probability of a tie is O(1/

√
i) (ignoring the dependence

on q), and summing this from i = 1, . . . , ` gives O(
√

`) expected ties in each coordinate.
Since they are not independently chosen, but rather i distinct symbols from a fixed
sequence of ` symbols, the analysis becomes a bit more involved, but nevertheless the
bound remains essentially the same. Specifically, in Lemma 17, the expected number
of ties is shown to be O(q3/2 ·

√
`), yielding the claim. 2

Now to complete the proof of Lemma 7, let C ′ be as in Claim 9, and let c1, . . . , c` be an arbitrary
sequence of distinct codewords in C ′. Let σ be permutation guaranteed by Claim 10. Then, by
Claim 8, we have

#plur(c1, . . . , c`) = #plur(cσ(1), . . . , cσ(`))

≤
∑̀

i=1

[
agr(cσ(i), plur(cσ(1), . . . , cσ(i−1))) + #ties(cσ(1), . . . , cσ(i−1))

]

≤ ` · (1/q + (1− 1/q) · ε) + O(q3/2 ·
√

`),

as desired. The equivalent reformulation in terms of correlation again follows from Lemma 5 and
the definition of correlation in terms of agreement (Definition 3).

The following corollary of Lemma 7 will be useful in proving our main result.

Corollary 11 Let L, t, m, q, ε, C, and C ′ be as in Lemma 7 for a choice of parameters satisfying
t ≥ L. Then for all z ∈ [q]n and all D ≥ 2,

∑

c∈C′
corr(z,c)≥Dε

corr(z, c) ≤ O
(q3

Dε

)
. (3)

8

Proof: Let c1, c2, . . . , cr be all the codewords of C ′ that satisfy corr(z, c) ≥ Dε. Since C, and
hence C ′, is (1− ε, L)-list-decodable, we have r ≤ L ≤ t. Using (2) for the codewords c1, c2, . . . , cr,
we have

Dε ≤ 1
r

r∑

i=1

corr(z, ci) ≤ ε + O
(q3/2

√
r

)

which gives r = O(q3/((D − 1)2ε2)) = O(q3/(D2ε2)), since D ≥ 2. Applying (2) again,

∑

c∈C′
corr(z,c)≥Dε

corr(z, c) =
r∑

i=1

corr(z, ci)

≤ εr + O(q3/2√r)

≤ O
(q3

D2ε

)
+ O

(q3

Dε

)

≤ O
(q3

Dε

)
.

We are now ready to prove our main result, Theorem 2, which restate (in slightly different form)
below.

Theorem 12 (Main) There exist constants c > 0, d < ∞, such that for all small enough ε > 0,
the following holds. Suppose C is a q-ary (1 − ε, L)-list-decodable code with |C| > 1/(qε2)d/(qε2)

Then L ≥ c/(q5ε2).

Proof: Let T be a large enough constant to be specified later. Let t = b 1
Tqε2 c. If L > t, then

there is nothing to prove. So assume that t ≥ L ≥ 1 and set m = 2t. Then

2L · t · m!
(m− t)!

≤ 2t2 · (2t)t =
(

1
qε2

)O(1/(qε2))

< |C|,

for a sufficiently large choice of the constant d. Let C ′ be a subcode of C of size m = 2t guaranteed
by Lemma 7.

By Lemma 6, there exist t codewords ci, 1 ≤ i ≤ t, in C ′, and a center z ∈ [q]n such that

t∑

i=1

corr(z, ci) = Ω
(√

t

q

)
. (4)

Also, for any D ≥ 2, we have
∑t

i=1 corr(z, ci) equals
∑

i:corr(z,ci)<ε

corr(z, ci) +
∑

i:ε≤corr(z,ci)<Dε

corr(z, ci) +
∑

i:corr(z,ci)≥Dε

corr(z, ci)

≤ εt + DεL + O
(q3

Dε

)
(5)

where to bound the second part we used that C ′ is (1−ε, L)-list-decodable, and to bound the third
part we used the fact that C ′ satisfies (3).

9

Putting these together, and setting D = q4 · T , we have

Ω
(√

t

q

)
≤ εt + DεL + O

(q3

Dε

)

≤
√

t

T q
+ DεL + O

(√
t

T q

)
.

For a sufficiently large choice of the constant T , this gives

L ≥ 1
Dε

· Ω
(√

t

q

)
= Ω

(
1√

T · q5 · ε2

)
.

as desired.

3 Open questions

Several questions are open in the general direction of exhibiting limitations on the performance of
list-decodable codes. We mention some of them below.

• We have not attempted to optimize the dependence on the alphabet size q in our bound
on list size (i.e. the constant cq in Theorem 2), and this leaves a gap between the upper
and lower bounds. The probabilistic code construction of [Eli2, GHSZ] achieves a nearly
linear dependence on q (specifically, list size L = O(log q/(qε2)), whereas our lower bound
(Theorem 12) has a polynomial dependence on q (namely, it shows L = Ω(1/(q5ε2)).

• It should be possible to use our main result, together with an appropriate “filtering” argument
(that focuses, for example, on a subcode consisting of all codewords of a particular Hamming
weight) to obtain upper bounds on rate of list-decodable q-ary codes. In particular, can one
confirm that for each fixed L, the maximum rate achievable for list decoding up to radius p
with list size L is strictly less than the capacity 1−Hq(p)? Such a result is known for binary
codes [Bli]. Also, it is an interesting question whether some of the ideas in this paper can be
used to improve the rate upper bounds of Blinovsky [Bli] for the binary case.

• Can one prove a lower bound on list size as a function of distance from “capacity”? In
particular, does one need list size Ω(1/γ) to achieve a rate that is within γ of capacity?

• Can one prove stronger results for linear codes?

Acknowledgments

We thank Michael Mitzenmacher, Madhu Sudan, and Amnon Ta-Shma for helpful conversations.

References

[Bli] V. M. Blinovsky. Bounds for codes in the case of list decoding of finite volume. Problems
of Information Transmission, 22(1):7–19, 1986.

10

[DS] D. Dubhashi and S. Sen. Concentration of Measure for Randomized Algorithms: Tech-
niques and Analysis. In S. R. et al., editor, Handbook of Randomized Computing, Vol. I.,
chapter 3, pages 35–100. Kluwer, 2001.

[Eli1] P. Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of
Electronics, MIT, 1957.

[Eli2] P. Elias. Error-correcting codes for list decoding. IEEE Transactions on Information
Theory, 37:5–12, 1991.

[Gur] V. Guruswami. List decoding from erasures: Bounds and code constructions. IEEE
Transactions on Information Theory, 49(11):2826–2833, 2003.

[GHSZ] V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman. Combinatorial bounds for list
decoding. IEEE Transactions on Information Theory, 48(5):1021–1035, 2002.

[GV] V. Guruswami and S. Vadhan. A Lower Bound on List Size for List Decoding. In Proceed-
ings of the 8th International Workshop on Randomization and Computation (RANDOM
‘05), number 3624 in Lecture Notes in Computer Science, Berkeley, CA, August 2005.
Springer. To appear.

[LTW] C.-J. Lu, S.-C. Tsai, and H.-L. Wu. On the complexity of hardness amplification. In
Proceedings of the 20th Annual IEEE Conference on Computational Complexity, San Jose,
CA, June 2005. To appear.

[RT] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2–24 (electronic), 2000.

[TZ] A. Ta-Shma and D. Zuckerman. Extractor codes. IEEE Transactions on Information
Theory, 50(12):3015–3025, 2004.

[Tre] L. Trevisan. Extractors and Pseudorandom Generators. Journal of the ACM, 48(4):860–
879, July 2001.

[Vad] S. P. Vadhan. Randomness Extractors and their Many Guises. Tutorial at IEEE
Symposium on Foundations of Computer Science, November 2002. Slides available at
http://eecs.harvard.edu/~salil.

[Woz] J. M. Wozencraft. List Decoding. Quarterly Progress Report, Research Laboratory of
Electronics, MIT, 48:90–95, 1958.

A Appendix

Lemma 13 For all integers n, k such that 0 < k < n, we have
(

n

k

)
= Θ

(√
n

k · (n− k)
· 2H(k/n)·n

)
.

Proof: Use Stirling’s approximation for the factorials.

11

Lemma 14 For all positive integers t, s ≤ t/2,

b√sc∑

i=b√s/2c

(
t

s+i

)(
t

s−i

)
(
2t
2s

) = Ω(1)

Proof: Without loss of generality, we may assume that s ≤ t/2 (otherwise replace s with t− s).
Let Ai =

(
t

s+i

)(
t

s−i

)
/
(
2t
2s

)
. Using Lemma 13, we see that

A0 = Θ

(√
t

s · (t− s)

)

= Ω
(

1√
s

)

For 0 < i ≤ b√sc, we have

Ai =
(t− s− i + 1) · (s− i + 1)

(s + i) · (t− s + i)
·Ai−1

=
(

1− 2i− 1
t− s + i

)
·
(

1− 2i− 1
s + i

)
·Ai−1

≥
(

1− 2√
s

)2

·Ai−1

≥
(

1− 2√
s

)2i

A0

= Ω(A0)

Therefore,
b√sc∑

i=b√s/2c
Ai = (b√sc − b√s/2c) · Ω(A0) = Ω(1).

Lemma 15 Let t, q be integers such that q ≥ 2 and t ≥ 37q. Let a1, . . . , a2t ∈ [q], and let T be
chosen uniformly at random from all subsets of [2t] of size t. Then

E
T
[#plur(aj : j ∈ T)] =

t

q
+ Ω

(√
t

q

)
.

Proof: Notice that #plur(aj : j ∈ T) is always at least t/q. Thus it suffices to show that with
constant probability over the choice of T , there exists an α ∈ [q] such that #{i ∈ T : ai = α} ≥
t/q + Ω(

√
t/q). In fact, we restrict our attention to a single value of α, namely the most frequent

symbol among a1, . . . , a2t. Then setting s = bt/qc, α occurs at least 2s times among a1, . . . , a2t, so
let S ⊆ [2t] be any set of 2s indices j such that aj = α. Then,

Pr
T

[#{j ∈ T : aj = α} = s + i] ≥ Pr
T

[|T ∩ S| = s + i] =

(
t

s+i

)(
t

s−i

)
(
2t
2s

) .

12

(To see the last equation, note that |T ∩ S| has the same distribution whether T is a random and
S is fixed, or T is fixed and S is random.) Thus by Lemma 14, with probability Ω(1) over T , we
have:

#{j ∈ T | aj = α} ≥ s + b√s/2c

≥ t

q
+

√
t/q

2
− 3

≥ t

q
+ Ω

(√
t

q

)
,

where in the last inequality we use the fact that t ≥ 37q.

Lemma 16 For integers 0 < i < a, 0 < j < b,
(
a
i

)(
b
j

)
(
a+b
i+j

) ≤ O

(√
a · b · (i + j) · (a + b− i− j)
i · (a− i) · j · (b− j) · (a + b)

)
.

Proof: Applying Lemma 13 to each of the binomial coefficients yields the bound above times 2t,
where

t = H(i/a) · a + H(j/b) · b−H((i + j)/(a + b)) · (a + b) ≤ 0,

where the last inequality follows by concavity of the entropy function.

Lemma 17 Let b1, b2, . . . , bk be a sequence of elements from the universe [q]. Recall that a prefix
of such a sequence has a plurality tie if there are at least two elements of [q] that occur the same
number of times in the prefix, and no other element occurs a strictly greater number of times in
the prefix. Let Y be the random variable counting the number of prefixes with a plurality tie in a
random permutation of the bi’s. Then E[Y] = O(q3/2

√
k).

Proof: Assume k ≥ q, or else Y ≤ k < q and the claimed bound holds trivially. For α ∈ [q], let Yα

be a random variable (over the choice of the permutation π of the sequence) counting the number
of i ∈ [k] such that the prefix (bπ(1), . . . , bπ(i)) has a plurality tie, α achieves the plurality, and
bπ(i) 6= α. Then Y ≤ ∑

α Yα. (For every prefix with a plurality tie, at least one of the two symbols
achieving the plurality must be different from the last symbol in the prefix.) Thus, it suffices to
show that E[Yα] = O(

√
qk) for every α.

Fix α. Let ` be the number of occurrences of α in the sequence b1, . . . , bk. We can obtain a
random permutation of b1, . . . , bk by randomly ordering the m = k − ` elements of the sequence
other than α, and then randomly merging the ` occurrences of α into this sequence (uniformly out
of all

(
`+m

`

)
ways). In fact we will bound the expectation of Yα for every fixed ordering c1, . . . , cm

of the elements other than α, and thus the only randomness is over the merging.
For each r = 1, . . . , m, let ur = #plur(c1, . . . , cr). Notice that r ≥ ur ≥ r/(q − 1). Let Xr

be the indicator random variable for whether upon merging, α occurs exactly ur times before cr

(equivalently, occurs vr = `− ur times after cr). Then Yα =
∑m

r=1 Xr.
Fix r ∈ [m], let s = m − r, u = ur, v = vr = ` − u. Our aim is to bound Pr[Xr = 1]. Notice

that the merging can be viewed as uniformly choosing a set S of ` out of m + ` locations to place
the α’s (and putting the ci’s in the remaining m locations). Observe that Xr = 1 only if S contains

13

exactly u of the first u + r locations (and thus exactly v of the last v + s locations); let Er denote
this event. (Xr = 1 also implies that S does not contain location u + r, but we will not make use
of that.)

We bound Pr[Er] for r ∈ {q, q + 1, . . . , m− 1} by considering two cases. (For r < q and r = m,
we will use the trivial bound Pr[Er] ≤ 1.) First, suppose that u/r > 2v/s. Intuitively, this means
that, for Er to occur, S must be disproportionately partitioned in the merging. Specifically, the
expected number of elements of S among the first u + r locations is

u + r

u + r + v + s
· (u + v) <

u

2
.

By Chernoff bounds, the probability that the first u + r locations contain more than u elements of
S is at most 2−Ω(u) ≤ 2−Ω(r/q) ≤ O(

√
q/r) for r ≥ q. (The indicators for whether each location

contains an element of S satisfy “negative dependence”, and thus Chernoff bounds apply [DS].)
The second case is that

v

s
≥ u

2r
≥ 1

2(q − 1)
. (6)

Then, by Lemma 16,

Pr[Er] =
(

u + r

r

)(
v + s

s

)
/

(
u + v + r + s

r + s

)

= O

(√
(u + r) · (v + s) · (u + v) · (r + s)

r · u · s · v · (u + r + v + s)

)
. (7)

Now for positive integers x, y, we have

x · y
x + y

=
min{x, y} ·max{x, y}

x + y
= Θ(min{x, y}) . (8)

From (7) and (8), we conclude

Pr[Er] = O

(√
min{u + r, v + s}

min{u, v} ·min{r, s}

)

= O

(√
q

min{r, s}
)

(using (6)).

Thus, in both cases we have Pr[Er] = O(
√

q/min{r, s}) for r ∈ {q, q + 1, . . . , m}. Therefore

E[Yα] ≤ q +
m−1∑
r=q

Pr[Er]

= q +
m−1∑

r=1

O

(√
q

min{r,m− r}
)

= O(q +
√

qm)

= O(
√

qk),

since m ≤ k and q ≤ k. This gives the desired bound on E[Yα] for each α ∈ [q].

14

