
Short PCPs Verifiable in Polylogarithmic Time

Eli Ben-Sasson ∗ Oded Goldreich † Prahladh Harsha ‡ Madhu Sudan §

Salil Vadhan ¶

Abstract

We show that every language in NP has a proba-
bilistically checkable proof of proximity (i.e., proofs as-
serting that an instance is “close” to a member of the
language), where the verifier’s running time is polylog-
arithmic in the input size and the length of the prob-
abilistically checkable proof is only polylogarithmically
larger that the length of the classical proof. (Such a
verifier can only query polylogarithmically many bits of
the input instance and the proof. Thus it needs ora-
cle access to the input as well as the proof, and cannot
guarantee that the input is in the language — only that
it is close to some string in the language.) If the ver-
ifier is restricted further in its query complexity and
only allowed q queries, then the proof size blows up by
a factor of 2(log n)c/q

where the constant c depends only
on the language (and is independent of q). Our results
thus give efficient (in the sense of running time) ver-
sions of the shortest known PCPs, due to Ben-Sasson
et al. (STOC ’04) and Ben-Sasson and Sudan (STOC
’05), respectively. The time complexity of the verifier
and the size of the proof were the original emphases in
the definition of holographic proofs, due to Babai et al.

∗Computer Science Department, Technion, Haifa, Israel,
and Toyota Technological Institute at Chicago. Email:
eli@eecs.harvard.edu.

†Department of Computer Science, Weizmann
Institute of Science, Rehovot, ISRAEL. Email:
oded.goldreich@weizmann.ac.il.

‡Microsoft Research, 1065 La Avenida, Mountain View, CA
94041. Email: pharsha@microsoft.com

§Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139.
Email: madhu@mit.edu. Supported in part by NSF Award CCR-
0312575.
¶Division of Engineering and Applied Sciences,

Harvard University, Cambridge, MA 02138. Email:
salil@eecs.harvard.edu. Supported in part by ONR grant
N00014-04-1-0478, NSF grant CCR-0133096 and a Sloan
Research Fellowship.

0Work done when the first, second, fourth and fifth authors
were visiting Radcliffe Institute for Advanced Study and the
third author was at MIT and the Toyota Technological Insti-
tute, Chicago.

(STOC ’91), and our work is the first to return to these
emphases since their work.

Of technical interest in our proof is a new com-
plete problem for NEXP based on constraint satisfac-
tion problems with very low complexity constraints, and
techniques to arithmetize such constraints over fields of
small characteristic.

1 Introduction

The study of efficient probabilistic methods for ver-
ifying proofs was initiated in the works of Babai et
al. [BFLS91] and Feige et al. [FGL+96] with very dif-
ferent motivation and emphases. The work of Babai
et al. considered the direct motivation of verifying
proofs, and especially computations, highly efficiently.
Their motivation led them to emphasize the time taken
by the verifier and the length of the proof in the
new format. In contrast, Feige et al. established
a dramatic connection between efficient probabilisti-
cally checkable proofs (PCPs) and the inapproxima-
bility of optimization problems. This led them to fo-
cus on the amount of randomness used by the verifier,
and the number of bits of the proof that the verifier
queries. Most succeeding works have focused on the
latter choice of parameters, or variants thereof, and de-
rived many strong inapproximability results for a wide
variety of optimization problems (while often introduc-
ing improved PCP constructions). In contrast there
has been little subsequent work on the parameters
highlighted by Babai et al. Only a few works, specif-
ically [PS94, HS00, GS02, BSVW03, BGH+04, BS05],
have focused on the length of the PCP, while no later
work seems to have returned to the question of the
extreme efficiency of the verifier. This is unfortunate
because the latter efficiency parameters are significant
in the context of proof-verification, and are also impor-
tant in some of the applications of PCPs.

In this work we revisit the study of efficient PCP
verifiers. Our work is motivated by two recent devel-

opments. First is a technical one: The original re-
sult of Babai et al. [BFLS91] required the PCP to be
larger than the classical proof by a factor of Ω(nε) for
arbitrarily small but positive ε, where n denotes the
length of a classical proof. Recent constructions of
PCPs have, however, obtained a much smaller proof
length. Notably the blowup in the proof-length in the
work of Ben-Sasson et al. [BGH+04] is only 2(log n)ε

where the verifier is allowed to query O(1/ε) bits of
the proof. And if the verifier is allowed to make more
queries, polylogarithmic in the length of the proof, then
the blowup in the proof-length is only a polylogarith-
mic factor (cf. Ben-Sasson and Sudan [BS05]). These
improvements in the proof length raise the question
as to whether these can be accompanied with efficient
verifiers, which would lead to the first strict improve-
ments on the work of [BFLS91]; that is, reducing one
of the parameters (i.e., the length) without increasing
the other (i.e., verification time).

A second motivation to study efficient verifiers is an
aesthetic one. To motivate this, we recall the main
result of [BFLS91].

There exists a probabilistic verifier that
makes oracle access to an “encoded asser-
tion”, and a “purported proof”, and whose
running time is only polylogarithmic in the
length of the assertion and its proof, such that
the proper encoding of any valid assertion has
a proof that is accepted with probability one,
while if a supposedly “encoded assertion” is
not close to the proper encoding of a valid as-
sertion, then no proof is accepted with prob-
ability more than half.

One might contend that the power of this result is
somewhat diminished by the technical nature of the
statement and in particular the need to encode theo-
rems in error-correcting codes. Such a notion appears
necessary due to the sublinear running time of the ver-
ifier. However a recent notion, proposed independently
by Ben-Sasson et al. [BGH+04] and Dinur and Rein-
gold [DR04], suggests a more elegant characterization
to capture the power of efficient verifiers — one that is
similar to work in property testing [GGR98, RS96]. We
describe this notion, termed “probabilistically check-
able proofs of proximity” (by [BGH+04] and “assign-
ment testers” by [DR04]) below.

PCPs of Proximity. A PCP of Proximity verifier
accesses a pair of oracles, one for a string x (represent-
ing the assertion “x ∈ L”) and one for a proof π, and
probabilistically produces a Boolean verdict with the
property that true assertions x have a proof π that is

always accepted while for an assertion x that is far (in
relative Hamming distance) from any valid statement
has no proof that is accepted with high probability (say
greater than half).

On the one hand, PCPs of Proximity do not spec-
ify an error-correcting code, making a potential result
less cumbersome to state. On the other hand, a uni-
versal result of the form, “every language L in NP
has efficient PCPs of Proximity”, does subsume the
result of [BFLS91], since such a result includes lan-
guages that only contain (a subset of) codewords of
an error-correcting code. In principle, the techniques
of [BFLS91] could be converted to get such a result
(i.e., providing a PCP of proximity (for NP) whose
running time is polylogarithmic and where the proofs
are only n1+ε-bits long), but such a statement is not
explicit in the previous literature.

Our results. In this work, we derive PCPs of Prox-
imity for every NP language. These PCP systems have
highly efficient verifiers that match other parameters
of some of the best-known PCPs. Specifically, one of
our main results (see Theorem 2.5) gives a PCP of
Proximity for any language L ∈ NTIME(T (n)), with
poly log(T (n)) verification time for proofs of length
T (n) · poly log(T (n)). This PCP matches the query
complexity and proof length of the system of [BS05],
which was proved only for NP and uses a polynomial-
time verification procedure. Our second main result
focuses on the case where the query complexity of the
verifier is further restricted (to, say, a constant) and
gives a polylogarithmic time verifier making O(1/ε)
queries into a theorem and proof, whose proof length
is T (n) · 2(log T (n))ε

, again for verifying membership in
L ∈ NTIME(T (n)). This PCP matches the query com-
plexity and proof length of the system of [BGH+04],
which was proved only for NP and uses a polynomial-
time verification procedure. Both results improve
over [BFLS91] (and [PS94]), which obtains proofs of
length T (n)1+ε, for any constant ε > 0.

In terms of the length of the proof, a polylogarithmic
factor is perhaps the best one can hope for, given our
current inability to get tighter completeness results for
non-deterministic computation: E.g., even in a classi-
cal reduction to SAT, one loses a polylogarithmic fac-
tor in the length of the proof. Thus, our first result
achieves this “limit” in the length of the proof, while
maintaining the smallest possible running time (i.e.,
a verifier examining a proof of length T (n) needs at
least log T (n) time to index a random location of the
proof). Thus, with respect to the original parameters
of [BFLS91], our first result achieves limits of quali-
tative significance. Our second result (which also im-

proves upon [BFLS91]) is significant when query com-
plexity is also considered and then it matches the best
known PCP constructions, while maintaining efficient
verification.

Techniques. Naturally, our efficient PCPs of Prox-
imity are based upon the prior works of [BGH+04]
and [BS05]. However, we stress that efficiency (i.e.,
fast verification time, let alone polylogarithmic veri-
fication time) is not an immediate corollary of hav-
ing low query complexity. Indeed the FGLSS ver-
ifier [FGL+96] invests polynomial time to compute
low-degree extensions of its input. The Polishchuk-
Spielman verifier [PS94] invests polynomial time rout-
ing a permutation from n sources to n sinks in a sorting
network. And most known PCP constructions use re-
cursive composition, where the time to compose PCPs
is lower-bounded by the query complexity of the in-
gredient PCPs, which can be prohibitively large too.
Such operations abound in the recent constructions of
PCPs including those of [BGH+04] and [BS05] leading
to several barriers in any immediate translation. These
complications force us to tackle some new problems and
our solutions yield some new ingredients that may be
of independent interest.

First, we give a new problem that is NEXP-complete
under nearly linear-time reductions. This problem may
be described as a generalized graph coloring problem
(color the vertices of a graph subject to arbitrary con-
straints on the color of a vertex given its name and
the colors of its neighbors). We show that it is NEXP
hard to color an (exponentially large) deBruijn graph
with a constant number of colors, where the coloring
constraint function (determining the validity of the col-
oring of a vertex and its neighbors, depending on the
name of the vertex) is described by an extremely low-
complexity function; namely, an NC1 circuit. More-
over, the reduction from an instance of NTIME(T (n))
yields a deBruijn graph of size T (n)·logO(1) T (n). Both
the construction of such a low-complexity function (of
the coloring constraint) and such an efficient reduction
may be of independent interest. At a high level, our
reduction works by embedding the nearly linear-time
oblivious Turing machine simulation of Pippenger and
Fischer [PF79] on a deBruijn graph.

Next, we describe a general arithmetization tech-
nique that converts low-complexity functions into their
low-degree extensions that are computable by small al-
gebraic circuits, even when the degree of the extension
is very large. This part uses heavily the structure of
large finite fields of small characteristic, and may be
of independent interest. Applying the arithmetization
to our NEXP-complete coloring problem gives a fam-

ily of nearly linear-time reductions from NTIME(T) to
algebraic problems.

Finally, we extend standard notions of compositions
to verifiers that are specified implicitly, so as to obtain
by composition, efficient verifiers whose running time
complexity can be much smaller than the query com-
plexity of some of the ingredients in the composition.

Organization of this paper: In Section 2 we
present the main definitions underlying our work, and
provide a formal statement of our main results. In
Section 3 we provide an overview of the proofs of our
main results. The proof themselves appear in the rest
of the paper, and their organization is described in Sec-
tion 3.3.

2 Definitions and Main Results

We follow the general formulation of PCPs of Prox-
imity (PCPPs), as appearing in [BGH+04, DR04]. In
this formulation, the input comes in two parts (x, y),
where x is given explicitly to the verifier and y is given
as an oracle. (In addition, the verifier is given access
to a proof oracle.) The verifier is allowed to read x in
its entirety, but its queries to y are counted as part of
its query complexity (i.e., together with the queries to
the proof oracle). Natural special cases, where either
y = λ or x = |y| (i.e., x is the length of y in binary),
will be discussed below.

Definition 2.1 (Restricted PCPP) Let
r, q : Z+ → Z+ and t : Z+ × Z+ → Z+. An
(r, q, t)-restricted PCPP verifier is a probabilistic ma-
chine that, given a string x (called the explicit input)
and a number K (in binary) as well as oracle access to
an implicit input y ∈ ΣK and to a proof oracle π ∈ Σ∗,
tosses r(|x|+ K) coins, queries the oracles (y, π) for a
total of q(|x|+ K) symbols, runs in time t(|x|,K), and
outputs a Boolean verdict in {accept, reject}.

We stress that we deviate from the standard treatments
in not requiring the verifier to run in polynomial time,
but rather considering an explicit time bound, denoted
t. Furthermore, this time bound is expressed as a func-
tion of two parameters: the length of the explicit part
of the input (i.e., x) and the length of the implicit part
of the input (i.e., y). The reason for separating the
effect of the two parts is that, by definition, the verifier
must read the entire explicit input x and hence takes
time at least linear in its length but it can run for time
that is polylogarithmic in |y| = K (just K is needed for
reading |y| and indexing into y). In fact, obtaining such
running-time is the focus of the current work. Other

complexity measures (and parameters) are expressed
(as usual) as a function of the sum of these two parts
(i.e., the length of the entire input (x, y)). Recall that
our interest in the randomness complexity stems from
its effect on the proof length: the (“effective”) length
of the proof oracle of a (r, q, ·)-restricted PCPP verifier
is at most `(m) = 2r(m) · q(m).

In view of the above, PCPPs refer to languages con-
sisting of pairs of strings (where the elements in these
pairs refer to the two parts of the input in Defini-
tion 2.1). Thus, we define a pair language to be subset
of Σ∗ × Σ∗. For a pair language L and x ∈ Σ∗, we
define Lx

def= {y ∈ Σ∗ : (x, y) ∈ L}. We usually use the
notations n = |x|, K = |y| and m = n + K.

We will be interested in PCPP verifiers that can-
not afford to read their implicit input y in its en-
tirety. Such verifiers will not be able to exactly verify
membership of (x, y) in a language L, but will rather
test that y is “close” to Lx. Unless stated otherwise,
we use the relative Hamming distance as our distance
measure between x, x′ ∈ Σn, denoted δ(x, x′) = |{i :
xi 6= x′i}|/n. For x ∈ Σn and S ⊆ Σn, we define
δ(x, S) = minx′∈S{δ(x, x′)}. The string x is said to
be δ-far from (resp., δ-close to) S if δ(x, S) > δ (resp.,
δ(x, S) ≤ δ).

Definition 2.2 (PCPP for Pair Languages)
For functions r, q : Z+ → Z+, t : Z+ × Z+ → Z+,
s, δ : Z+ → [0, 1], a pair language L ⊆ Σ∗ × Σ∗ is
in PCPPs,δ[r, q, t] if there exists an (r, q, t)-restricted
verifier V with the following properties:

− Completeness: If (x, y) ∈ L then there exists a π
such that PrR[V y,π(x, |y|; R) accepts] = 1, where
V y,π(x, |y|;R) denotes the decision of V on input
(x, |y|), oracle access to (y, π) and coin tosses R.

− Soundness: If (x, y) is such that y is δ(|x| + |y|)-
far from Lx ∩ Σ|y|, then for every π it holds that
PrR[V y,π(x, |y|;R) accepts] ≤ s(|x|+ |y|).

If we specialize Definition 2.2 to pair languages where
the implicit input is the empty string λ (and constrain
the verifier to polynomial time), then we obtain the
standard definition of PCPs.

Definition 2.3 (PCP) A language L is in PCPs[r, q]
if there exists a function t(n,K) = t(n, 0) = nO(1) and
a constant δ < 1 such that the pair language L′ =
L× {λ} is in PCPPs,δ[r, q, t].

On the other hand, if we specialize Definition 2.2 to
pair languages where the explicit input only specifies
the length of the implicit input (and constrain the ver-
ifier again to polynomial time), then we obtain veri-
fiers that can check, in polylogarithmic time, whether a

string given as oracle is close to being in some (“pure”)
language. The special case where this language con-
tains error-correcting encodings of some NP-set was
studied in [BFLS91]. We generalize their definition as
follows:

Definition 2.4 (Efficient PCPP for pure lan-
guages) A language L is in eff-PCPPs,δ[r, q] if there
exists a function t(n, K) = t(0,K) = (log K)O(1)

such that the pair language L′ = {λ} × L is in
PCPPs,δ[r, q, t].

More generally, we may define efficient PCPP as ones
having a verifier that runs in time polynomial in
|(x,K)|; that is, having time complexity t(n,K) =
(n log K)O(1).

Recall that most PCP results (only) refer to NP,
but many of them can be scaled up to NTIME(T) for
any T : Z+ → Z+ such that T (m) < exp(poly(n)).
Note that such a scaling requires, as per Definition 2.3,
that the verifier run in polynomial-time (rather than
in time polynomial in T). The few works [PS94, HS00,
GS02, BSVW03, BGH+04, BS05] that focus on the
length of the PCP are an exception: their result refers
to NP and do not extend to NTIME(T), because the
resulting verifiers run in time polynomial in T (rather
than polynomial in its input length). Obtaining such
(polynomial-time) extensions is the goal of the current
paper.

Our results: The first main result of this paper is a
PCP verifier for NTIME(T) with query and random-
ness complexities analogous to those in [BS05]. Es-
sentially, for every L ∈ NTIME(T), where T (n) <
exp(poly(n)), we present a PCP for L using proof
length T (n) ·poly log T (n) verifiable in time poly log T ,
generalizing the results in [BS05] which refers to the
case T (n) = poly(n). We stress that our verifier runs in
time polynomial in n, log K and log T , and this should
be contrasted with the poly(T)-time verifier implicit in
works as [GS02, BSVW03, BGH+04, BS05] (as well as
in [PS94, HS00]) which refer explicitly only to the case
T (n) = poly(n). More generally, we have:

Theorem 2.5 (Efficient PCPPs with short
proofs) Suppose that L is a pair language in
NTIME(T) for some non-decreasing function
T : Z+ → Z+. Then, for every constant s > 0,
we have L ∈ PCPPs,δ[r, q, t], for

• Proximity parameter δ(m) = 1/poly log T (m),

• Randomness complexity
r(m) = log2 T (m) + O(log log T (m)),

• Query complexity q(m) = poly log T (m),

• Verification time
t(n,K) = poly(n, log K, log T (n + K)).

In particular, we obtain PCPPs for pure languages in
NP (i.e., L′ = {λ} × L) that meet the query and ran-
domness complexities of [BS05], while using a verifier
that runs in time that is polylogarithmic in its (im-
plicit) input. Likewise, we obtain PCPs for languages
in NEXP, with a randomness and query complexities
that generalize the PCPs of [BS05] (which refer only
to languages in NP).

Our second main result provides similar efficiency
improvements to the PCPs of [BGH+04]. The proofs
are somewhat longer than in Theorem 2.5, but the
number of queries is much smaller.

Theorem 2.6 (Efficient PCPPs with small
query complexity]) Suppose that L is a pair lan-
guage in NTIME(T) for some non-decreasing function
T : Z+ → Z+. Then, for every function ε : Z+ → (0, 1)
such that ε(m) ≥ log log log T (m)/2 log log log T (m)
and every two constants s, δ > 0, we have
L ∈ PCPPs,δ[r, q, t], for

• Randomness complexity
r(m) = log2 T (m) + Aε(m), where m = n + K
and Aε(m) = O

(
log T (m)2ε(m)

)
+(

1
ε(m) + log T (m)ε(m)

)
· log log T (m),

• Query complexity q(m) = O(1/ε(m)),

• Verification time
t(n,K) = poly(n, log K, log T (n + K)).

In particular, we obtain PCPPs for pure languages in
NP (i.e., L′ = {λ} × L) that meet the query and ran-
domness complexities of [BGH+04], while using a veri-
fier that runs in time that is polylogarithmic in its (im-
plicit) input. Likewise, we obtain PCPs for languages
in NEXP, with a randomness–query complexity trade-
off that generalize the PCPs of [BGH+04] (which refer
only to languages in NP).

Two special cases of interest are:

1. Letting ε(m) be an arbitrarily small constant,
yields query complexity O(1/ε(m)) and random-
ness complexity log2 T (m) + log2ε T (m), which in
turn means proof length T (m) · exp(log2ε T (n)).

2. Setting ε(m) = log log log T (m)/2 log log T (m),
yields query complexity o(log log T (m))
and randomness complexity is log2 T (m) +
o((log log T (m))2), which in turn means proof
length T (m) · exp(o(log log T (m))2).

3 Overview of our proofs

Our main results are obtained by applying a com-
mon collection of ideas to two previous PCP construc-
tions. Specifically, Theorem 2.5 is obtained by con-
structing an efficient verifier that is patterned after the
verifier of [BS05], while Theorem 2.6 is obtained based
on the work of [BGH+04]. Here we describe the main
ideas used to get our improvements.

For starters, we focus on the construction of PCPP
for pure languages (i.e., PCPP that only refer to an
implicit input, and no explicit input). In both the
aforementioned constructions, there is a main con-
struct (a “robust” PCPP) that is composed with it-
self (double-logarithmically) many times. Two issues
arise. The first issue is to obtain such a main construct
(i.e., a robust PCPP with adequate query and random-
ness complexities) that supports polylogarithmic time
(rather than polynomial-time) verification. Loosely
speaking, this requires a more efficient reduction from
NP (or NTIME(T)) to an algebraic constraint satis-
faction problem (CSP) (of the type used in [BGH+04]
and [BS05], resp.). In particular, we obtain a succinct
representation (of polylogarithmic length) of the con-
straints. The second issue is the use of the proof com-
position paradigm in a context (indeed ours) where one
cannot afford verification time that is as high as the
query complexity of the intermediate verifiers used in
the construction. (Needless to say, the verification time
will be lower-bounded by the query complexity of the
final verifier.) Loosely speaking, addressing this issue
requires working with succinct representations of the
sequence of queries and decision predicate of the inter-
mediate verifiers. When proving Theorem 2.6 we intro-
duce a general formulation (of so-called “verifier spec-
ifications”) supporting this process, whereas the proof
of Theorem 2.5 capitalizes on properties of the special
algebraic problem used in [BS05]. Below, we present
more detailed overviews of the two proofs, starting with
the proof of Theorem 2.5.

Let us start by justifying our focus on PCPPs for
pure languages (or, equivalently, PCPPs without ex-
plicit inputs). Recall that our final goal is to obtain
PCPPs for general languages (e.g., PCPPs for circuit-
value where the circuit is given as explicit input and the
assignment is an implicit input). Instead, for sake of
simplicity, we wish to carry out the construction when
only referring to PCPPs that have no explicit input.
We cannot just move the explicit input x to the im-
plicit part (i.e., replace the implicit input y by (x, y)),
because this will not maintain the desired guarantees
(i.e., that y is close to some ŷ such that (x, ŷ) that is
in the language since soundness only guarantees that

(x, y) is close to some (x̂, ŷ) is in the language, where it
may be that x 6= x̂..) Instead, we should incorporate in
the implicit input an error correcting encoding of the
explicit input, That is, for a language L, rather than
verifying that the implicit input y is close to some ŷ
such that (x, ŷ) ∈ L, we verify that the implicit input
(ECC(x), y) is close to some ECCx̂, ŷ) where ECC is an
error-correcting code and the two components ECC(x)
and y are given equal weight when measuring Hamming
distance.

3.1 Proof of Theorem 2.5

The proof modifies the construction of Ben-Sasson
and Sudan [BS05]. We thus start by describing the ver-
ifier of [BS05], hereafter referred to as the BS-verifier.

The BS-Verifier. The first step in the construction
of the BS-verifier reduces the problem at hand to an
instance of a “Constraint Satisfaction Problem on a
De-Bruijn graph”: that is, a problem where the goal is
to color the vertices of a DeBruijn graph such that the
coloring of any single vertex is “consistent” with the
coloring of its neighbors. Consistency is given by a list
of legal values for every neighborhood, and varies from
neighborhood to neighborhood. Thus, an instance of
the problem is represented by such a sequence of sets
(or constraints), where each set represents the legal
values for a given vertex and its neighbors. The sec-
ond step in the construction of the BS-verifier consists
of an arithmetization of the DeBruijn-CSP, resulting
in a “univariate algebraic CSP”: a problem where the
goal is to determine if there exists a low-degree uni-
variate polynomial A over a finite field F such that
applying a given “local” operator C to A results in a
polynomial B = C(A) that is zero on a prespecified set
H ⊆ F. Thus, the operator C specifies an instance of
this problem, and is determined from the constraints
of the DeBruijn-CSP by a straightforward univariate
interpolation. The third step in the construction of
the BS-verifier is designing a verifier for the univari-
ate algebraic CSP. A special ingredient in this verifier
is a recursive procedure to verify whether a low-degree
(univariate) polynomial B, given by a (possibly slightly
corrupted) table of its values, is zero on every α ∈ H.
This recursive verification constitutes a special-purpose
proof composition technique. (It is special-purpose in
the sense that it refers to PCPPs for a specific language
rather than all of NP.)

It turns out each of these three steps relies on
the fact that the resulting BS-verifier is allowed
polynomial-time computations. For example, given an
instance y (of the original problem), the constraints

in the DeBruijn-CSP are determined in poly(|y|)-time,
and each constraint depends on the entire y. Seeking
polylogarithmic verification time, we need to find an al-
ternative reduction and an adequate arithmetization.

Getting an efficient BS-type verifier. Recall that
given an implicit input y and we need to verify mem-
bership in some (adequate universal) language L. Re-
ferring to the first step in the construction, we wish
to transform y into a succinct representation of an in-
stance of DeBruijn-CSP, but need to do so without
knowing the entire y. In such a succinct DeBruijn-
CSP, the constraint associated with a vertex v (i.e.,
placing conditions on the coloring of v and its neigh-
bors) can be computed in time poly(|v|) possibly us-
ing oracle access to y. Furthermore, for subsequent
arithmetization, even such efficient computation is not
sufficient; we require the constraint to be computed
extremely efficiently, e.g., by an NC1 circuit (applied
to the vertex name). To this end, we define Succinct
DeBruijn-CSP (see Definition 4.3 (where we use the
term generalized coloring)) in a way that makes such
efficient computation a requirement; and reduce the
universal problem to this problem (see Theorem 4.4).
This reduction revisits a classical reduction of general
Turing machine computations to Turing machine com-
putations on oblivious machines due to Pippenger and
Fischer [PF79]. This replaces the first step in the BS-
construction.

Next we jump to the third step of the BS-
construction, namely of verifying that a univariate
polynomial B, given by a (slightly corrupted) table of
the associated function B : F → F, is zero on a given
set S ⊆ F. In order to perform this verification, the BS-
verifier considers the polynomial ZS(x)def=

∏
e∈S(x−e),

and evaluates ZS(r) at a random r ∈ F. The BS-verifier
performs this computation in the straightforward way,
taking O(|S|) field operations, which turns out to be
polynomially related to the length of the (implicit) in-
put (i.e., y). For our purposes such running-time is too
expensive; recall, we need a verifier running in poly-
logarithmic (in |y|) time. In particular, we wish to
evaluate ZS in poly log |F| time. To this end we exploit
the fact that we (as designers of the PCP) have (al-
most full) control on the choice of the set S for which
the verifier needs to evaluate the polynomial ZS . We
now use the fact that if F has small (i.e., constant)
characteristic (e.g., two), and S is a linear subspace of
F (where we view F as a vector space), then the poly-
nomial ZS is log |S|-sparse (i.e., has only log |S| terms)
and thus ZS can be evaluated in poly log |S| field oper-
ations. (The relevant algebraic facts are described and
proved in Section 5.1.) We mention that the compu-

tational advantages of working with linear subspaces
of finite fields is one of the main contributions of this
work (even though the underlying algebraic facts are
well-known and were used, though not computation-
ally, in [BS05, BGH+04]).

Finally we move to the second step of the BS-
construction, where we transform DeBruijn-graph CSP
to (univariate) algebraic CSPs. It is shown in [BS05]
how to embed1 the DeBruijn graph into a Cayley-like
graph over any sufficiently large field of characteristic
two (where the vertices of the Cayley-like graph are
elements of the field and adjacency is given by a con-
stant number of affine functions over the field). We use
the same embedding, and arithmetize the constraint
function over the same embedding. For this part, we
need to transform the “constraint” function C, where
C(v, · · ·) describes the constraint on the neighborhood
of the vertex v, into a polynomial of moderately low-
degree that can be computed by a very small circuit
over F. More specifically, if we let S ⊆ F be the image
of the embedding, then we would like the polynomi-
als to have degree Õ(|S|), while the size of the circuits
should be poly log |S|. This is a non-trivial challenge,
since all we know about the function C is that it is a
small depth circuit when its input is viewed as a se-
quence of bits, whereas now we want to view the input
as an element of S ⊆ F and perform only F operations
on it.

Once again we bring in the fact that S is selected to
be a linear subspace of F. We also use the fact that the
bits of the natural representations of v ∈ S are projec-
tion functions, which in turn are linear maps of S to
F. We prove and use the fact that, when S is a linear
subspace of F, any linear map f : S → F can be repre-
sented by a (log |S|)-sparse polynomial f̂ : F→ F of de-
gree |S| that extends f (see Proposition 5.1). This im-
plies that any bit in the natural representation of v ∈ S
can be computed efficiently by a small algebraic cir-
cuit of low-degree. We conclude that any small-depth
small-size circuit can be arithmetized naturally to get a
small-degree small-algebraic circuit (see Theorem 5.5).
Thus, we get a low-degree polynomial that is computed
by a small algebraic circuit that represents, for every
v ∈ S, the constraint associated with v’s neighborhood.

1The notion of embedding used here is that of an injective
homomorphism, where a vertex u is mapped to f(u) such that
the existence of a directed edge u → v in the image graph implies
that f(u) → f(v) is an edge of the graph used for embedding.
Note that f is not necessarily surjective and that non-edges need
not map to non-edges.

3.2 Proof of Theorem 2.6

The proof modifies the construction of Ben-Sasson
et al. [BGH+04]. We thus start by describing the veri-
fier of [BGH+04], hereafter referred to as the BGHSV-
verifier. Recall that the BGHSV-verifier has lower
query complexity than the BS-verifier, though it uti-
lizes slightly longer proofs. These features are inherited
by Theorem 2.6 (as compared to Theorem 2.5).

The BGHSV verifier. The BGHSV-verifier is built
by repeated composition of an atomic verifier, which
we’ll call the Basic-Verifier. The ingredients going
into the Basic-Verifier are similar to the ingredients
of the BS-verifier: i.e., there is a reduction of SAT to
DeBruijn-CSP; a reduction of DeBruijn-CSP to an al-
gebraic problem (though this time, the reduction is to
problems involving multivariate polynomials), and fi-
nally a construction of a (robust) PCPP verifier for
the algebraic problem.

Getting an efficient BGHSV-type verifier. Em-
ploying similar (and sometimes, the same) ideas as
those described in Section 3.1, we can improve the run-
ning time of this verifier also, and make it comparable
to its query complexity. Unfortunately this falls (well)
short of our goals of polylogarithmic time verification.
This is because we later employ composition to reduce
the query complexity of the PCP system. However the
query complexity at the Basic-verifier could be as large
as
√

K, for theorems of size K. The problem is that
composition does not reduce the running time of the
composed verifier: the running time of the composed
verifier is the sum of the running times of the ingredient
verifiers.

Thus the main additional challenge in reducing the
time-complexity of the BGHSV-verifier is in redesign-
ing the ingredients of PCP composition such that the
verifiers used in composition have significantly smaller
running times than their query complexity! We do so
in the usual spirit of “implicit” computations: Rather
than building a circuit that describes the computa-
tions of the Basic-verifier, we describe its computa-
tions by Turing machines. Rather than listing all the
queries that the Basic-verifier would make, we describe
a function that when given an index i, returns the ith

query that the verifier would make (if allowed to run
fully). Put together this gives a specification of a ver-
ifier rather than the actual verifier itself. We then de-
scribe how composition works for verifier specifications
. Due to space constraints, we defer the definition of a
verifier specifications and the corresponding composi-
tion theorem to the full version of the paper. Finally,

we show how to construct an adequate verifier specifi-
cation based on the techniques described above. Com-
bining all of these gives a proof of Theorem 2.6.

3.3 Organization of the presentation of the proofs

In Section 4 we show how to reduce any language
in NTIME(T), for T (m) ≤ exp(poly(m)), to a gener-
alized coloring problem referring de-Brujin graphs. (In
the above overview, we have referred to this general-
ized coloring problem as to a Constraint Satisfaction
Problem, where constraints are applied only to local
neighborhoods consisting of a vertex and its neighbors.)
In Section 6, following adequate algebraic complexity
preliminaries presented in Section 5, we present arith-
metizations of the generalized de-Brujin coloring prob-
lem. The complexity bounds for the arithmetizations
follow from facts that are proven in Section 5. As men-
tioned in the overview, proving Theorem 2.6 requires a
general proof composition technique that supports im-
plicit specifications of verifiers. For want of space, we
defer this composition technique and the actual con-
structions of the PCPPs (using the above mentioned
ingredients) to the full version of the paper [BGH+05].

4 A Universal Graph Coloring Problem

Our universal problem refers to a family of graphs
that are related to deBruijn graphs. Let ⊕ denote the
bitwise exclusive-or operation. We use commas to de-
note concatenation of binary strings.

Definition 4.1 The extended deBruijn graph DBk,l

is a directed graph with l layers each containing 2k

nodes, which are represented by k-bit strings. The
layers are numbered 0, 1, . . . , l − 1. The node repre-
sented by v = (b0, . . . , bi∗ , . . . , bk−1) in layer i has
edges pointing to the nodes represented by Γi,0(v) =
(b0, . . . , bi∗ , . . . , bk−1) and Γi,1(v) = (b0, . . . , bi∗ ⊕
1, . . . , bk−1) in layer i + 1 mod l, where i∗def= i mod k.

Let M be any fixed Turing machine . The bounded
halting problem BHM for machine M , is defined as
below.

Definition 4.2 (Bounded Halting Problem) The
bounded halting problem for the Turing machine M ,
indicated by BHM has instances of the form (y, t)
where y is an instance of the language recognised
by M and t is any positive integer. The instance
(y, t) ∈ BHM iff the machine M accepts the instance
y within 2t steps.

We show how to reduce the bounded-halting problem
for M to the following constraint satisfaction problem
on (extended) deBruijn graphs. Following [VL88], we
actually prefer to present the local constraints as a gen-
eralized coloring problem.

Definition 4.3 (Generalized deBruijn Graph
Coloring) The problem is defined with respect to the
infinite family of extended deBruijn graphs, {Gt =
DBt+3,(t+3)2 = (Vt, Et)}t∈N, from Definition 4.1, and
is parameterized by five (fixed) finite objects:

1. a finite color-set C,
2. an extraction function fextract : C → {0, 1} ∪ {⊥},
3. a finite vertex-type set V,

4. a type-coloring constraint fcolor : V × C3 → {0, 1},
and

5. a uniform NC1 family of type-assignments
fv−type = {fv−type

(t) : Vt → V}t∈N; (that is,
a logspace machine that on input 1t, outputs a
boolean formula computing fv−type

(t)),

Given an input y ∈ {0, 1}∗, the problem is to determine
whether, for t = dlog2 |y|e, there exists a coloring C :
Vt → C such that the following two conditions hold

1. for all vertices v in Gt, we have
fcolor(fv−type(v), C(v), C(Γi,0(v)), C(Γi,1(v))) = 0.

In such a case, we say that C satisfies the coloring
constraints, which are induced by fv−type and fcolor.

2. for all 1 ≤ i ≤ K = |y|, we have yi =
fextract(C(vi)), where vi is vertex number 2 · 2t + i
in layer 0 of Gt.

In such a case, we say that C is consistent with the
input (or with y).

We show that for any Turing machine M , there exist
a setting of the five finite parameters of the General-
ized deBruijn Graph Coloring problem that makes it
universal. That is:

Theorem 4.4 (Universality of Generalized de-
Bruijn Graph Coloring) For any Turing machine
M , there exist finite parameters C, fextract, V, fcolor and
fv−type, such that the bounded-halting problem for M is
reducible via the identity mapping2 to the corresponding

2We say that a problem A is reducible to another problem
B via the identity mapping if the following holds: For every
instance x of the problem A, x is an YES-instance (similarly
NO-instance) of A iff x is an YES-instance (NO-instance) of B.

Generalized deBruijn Graph Coloring problem. Fur-
thermore, for every y ∈ {0, 1}K , where K < 2t, ma-
chine M halts on y within 2t steps if and only if there
exists a coloring C : Vt → C that satisfies the coloring
constraints and is consistent with y.

Note that the size of Gt is (t + 3)2 · 2t+3, which is
O(T · log2 T), where T = 2t bounds the running time of
M . Theorem 4.4 is stronger than the related result of
Polishchuk and Spielman [PS94] in the sense that the
coloring problem uses a fixed set of coloring constraints,
which can be generated very efficiently (i.e., it admits
a succinct description by uniform NC1 circuits). In
contrast, the reduction of [PS94] uses constraints that
are computed in time poly(T) based on the original
instance.

Our proof of Theorem 4.4 combines the ideas
of [PS94] with the oblivious TM simulation of Pip-
penger and Fischer [PF79]. Actually, it is simpler to
bypass oblivious Turing machines and rather just show
how to describe valid computations of M in a recursive
manner (which is indeed the basis for the oblivious sim-
ulation). For simplicity, we only show how to do this
for a 1-tape TM, but the proof is easily extended to
handle multi-tape TMs (which is needed, because we
will eventually work with a 2-tape universal Turing ma-
chine).

Proof of Theorem 4.4: Say M has state set Q, con-
taining a start state qstart and an accept state qaccept,
tape alphabet Γ = {0, 1} ∪ {t}, and transition func-
tion δM : Q×Γ → Q×Γ×{−1, 0, +1}. Assuming that
⊥6∈ Q, we represent configurations of machine M by se-
quences over Λ = Γ×({⊥}∪Q), where each symbol in Λ
represents a tape symbol, and indicates whether or not
the head of M is in that position, and if so the state
of M . A (partial) configuration of length L is a func-
tion σ : [0, L − 1] → Λ, representing a L-cell window
of M ’s computation. Specifically, σ(i) = (σs(i), σq(i))
says that σs(i) ∈ Γ is the tape symbol in the ith cell
of the window, σq(i) =⊥ indicates that the head of M
is not in the ith cell, whereas σq(i) 6=⊥ indicates that
the head of M is in the ith cell and that state of M is
σq(i). We say that σ is a valid configuration if there is
exactly one cell i such that the second component of
σ(i) is in Q, and we denote this cell by head(σ) = i.
For configurations σ and σ′ both of length L, we call σ′

the successor of σ if σ′ is obtained from σ by one step
of M and this step does not move the head outside the
specified window. In particular, if 0 < head(σ) < L,
then σ has a (unique) successor. Similarly, σ′ is the tth

successor of σ if σ′ is obtained from σ by t steps of M ,
none of which leave the tape window of length L.

We say that a valid 8L-symbol long configuration σ
is safe if the head is in the “middle half” of σ; that is,
head(σ) ∈ [2L, 6L−1]. A triple of 8L-symbol long con-
figurations (σI , σM , σF) (where the subscripts stand for
“initial,” “middle,” and “final”) is defined to be good
if σI is a safe configuration of length 8L, configuration
σM is the Lth successor of σI , and σF is the Lth suc-
cessor of σM . (Note that the fact that σI ’s head is
in the middle half implies that the head cannot move
outside the window within 2L steps, so σM and σF are
well-defined.)

The key observation underlying the Pippenger–
Fischer oblivious TM simulation is that computations
of 2L steps in a window of size 8L can be recursively
simulated by two computations of L steps each in win-
dows of size 4L. The following lemma formulates this
idea in a way convenient for our purposes.

Lemma 4.5 (implicit in [PF79]) Let (σI , σM , σF)
be a triple of 8L-symbol long configurations, and sup-
pose that σI is safe. The triple (σI , σM , σF) is good
if and only if there exist numbers h, h′ ∈ [0, 4] and
two good triples of 4L-symbol long configurations,
(σ′I , σ

′
M , σ′F) and (σ′′I , σ′′M , σ′′F), such that the following

holds:

1. For every i ∈ [0, 4L− 1],

• σ′I(i) = σI(h · L + i),

• σ′F (i) = σM (h · L + i),

• σ′′I (i) = σM (h′ · L + i), and

• σ′′F (i) = σF (h′ · L + i).

2. σM (i) = σI(i) for every i ∈ [0, 8L − 1] \ [h · L, h ·
L + 4L− 1], and

3. σF (i) = σM (i) for every i ∈ [0, 8L− 1] \ [h′ ·L, h′ ·
L + 4L− 1].

The forward direction of the the lemma implies that
during the first L steps succeeding σI the head remains
in the interval [hL, hL + 4L], and the during the next
L steps it remains in the interval [h′L, h′L + 4L].

We now use this to express M ’s acceptance criterion
as a constraint satisfaction problem (using an instance
of size Õ(2t) to encode 2t steps). Our focus is on the
simplicity of the rule determining the unknowns that
are considered in each constraint.

In the following lemma, T0 represents the initial
contents of M ’s tape as well as its contents after 2t

and 2 · 2t steps. The other Ti’s represent numerous
partial configurations that arise in the computation.
Specifically, Ti(j, ·) represents some window of length
2t−i after j · 2t−i (as well as after (j + 1) · 2t−i and

(j +2) · 2t−i) computation steps. The correspondances
between the various Ti’s are given by the functions Hi’s
that correspond to the h’s used in Lemma 4.5. The
fixed Boolean functions ψ0, ψ1, ψ2 and ψ3 will capture
the straightforward conditions that should hold for the
aforementioned variable functions to encode a possible
computation of M .

Lemma 4.6 (Reduction to a CSP) For every
Turing machine M , there exist fixed func-
tions ψ0, ψ1 : Λ(5+1)·3 × [0, 4]2 → {0, 1}, and
ψ2 : Λ3 × [0, 4]2 → {0, 1} and ψ3 : Λ8·3 → {0, 1}
such that for every t ∈ N and K < 2t, machine M
accepts the input y ∈ {0, 1}K within 2t steps if and
only if there exist functions T0, . . . ,Tt and H0, . . . ,Ht

satisfying the following conditions:

1. Ti : {0, ..., 2i − 1} × {0, ..., 8 · 2t−i − 1} → Λ3,for
every i = 0, . . . , t.
The 3 components will be indexed by I, M and F .

2. Hi : {0, ..., 2i − 1} → [0, 4]2, for every i = 0, . . . , t.

3. T0(0, ·)I encodes the initial configuration with in-
put y. That is, T0(0, 2 · 2t)I = (t, qstart),
T0(0, 2 · 2t + k)I = (yk,⊥) for k = 1, . . . ,K, and
T0(0, k)I = (t,⊥) for all other values of k.

4. T0(0, ·)F encodes an accepting configuration. That
is, T0(0, 2 · 2t)F = (·, qaccept).

5. For every i = 0, . . . , t − 1, j = 0, . . . , 2i − 1 and
k = 0, . . . , 4 · 2t−i − 1,

ψ0

(
〈Ti(j, k + h · 2t−i)〉h∈[0,4],

Ti+1(2j, k),Hi(j)
)

= 1

and

ψ1

(
〈Ti(j, k + h · 2t−i)〉h∈[0,4],

Ti+1(2j + 1, k),Hi(j)
)

= 1

In other words, For every i = 0, . . . , t− 1 and j =
0, . . . , 2i − 1, the functions Ti(j, ·)I and Ti(j, ·)M

fit Ti+1(2j, ·)I and Ti+1(2j, ·)F , whereas Ti(j, ·)M

and Ti(j, ·)F fit Ti+1(2j + 1, ·)I and Ti+1(2j, ·)F ,
where the fitting is with respect to adequate shifts
in Ti, which in turn are given by Hi.

6. For every i = 0, . . . , t−1 and j = 0, . . . , 2i−1, the
“unfitted” portions of Ti(j, ·) remain unchanged.
That is, for every i = 0, . . . , t−1, j = 0, . . . , 2i−1,
and k = 0, . . . , 8 · 2t−i − 1,

ψ2(Ti(j, k),Hi(j)) = 1.

7. Tt(j, ·) encodes single computation steps of M .
That is, for every i = 0, 2t − 1, it holds that
ψ3({Tt(x, k) : k ∈ [0, 7]}) = 1.

Note that Lemma 4.6 asserts a reduction, via the iden-
tity transformation, from the Bounded Halting (BHM)
problem (of M) to a Constraint Satisfaction Problem
(CSP). Indeed, the instance (y, t) of BHM (represent-
ing the question of whether M accepts y within 2t

steps) is mapped to the instance (y, t) of CSP (rep-
resenting the question of whether there exist functions
that satisfy some set of conditions that depend on t
and y).

We now show how the above CSP can be embed-
ded in a extended deBruijn graph, establishing Theo-
rem 4.4. Recall that the extended deBruijn graph has
(t + 3)2 layers, each with 8 · 2t vertices represented
by bit-strings in {0, 1}t+3. We will only use the first
(t + 1) · (t + 3) layers, which we will view as being
numbered (0, 0), . . . , (0, t + 2), . . . , (t, 0), . . . , (t, t + 2).
We will interpret a coloring of vertex in layer (i, 0) as
giving the functions Ti and Hi. Specifically, viewing a
vertex v ∈ {0, 1}t+3 in layer (i, 0) as a pair (j, k), where
j ∈ {0, ..., 2i − 1} and k ∈ {0, ..., 8 · 2t−i − 1}, we inter-
pret v’s color as a pair (Ti(j, k),Hi(j, k)) ∈ Λ3× [0, 4]2.
Note, however, that in Lemma 4.6, the function Hi

only depends on j. Thus, in addition to the conditions
listed in Lemma 4.6, we will need to enforce the con-
dition Hi(j, k) = Hi(j, k′) for all k, k′. To enforce all
of these conditions, we will use the intermediate layers
between layer (i, 0) and layer (i + 1, 0). Specifically,
we will route information between layer (i, 0) and layer
(i+1, 0), using easily constructible routes. We will use
the coloring constraints to guarantee proper routing of
information (through the intermediate vertices) as well
as to enforce the conditions listed in Lemma 4.6 (at the
end vertices, i.e., at layers (·, 0)). Actually, to allow for
this routing, we use a larger set of color such that each
intermediate vertex is colored by a O(1)-long sequence
of “basic colors” (i.e., of the type used for vertices at
layers (·, 0)). Indeed, the coloring constraints will de-
pend on the vertex, and typically most conspiciously
on the layer of the vertex.

Lemma 4.7 (Reducing CSP to deBrujin Color-
ing) For every quadruple of functions (ψ0, ψ1, ψ2, ψ3),
there exist finite parameters C, fextract, V, fcolor and
fv−type, such that the following holds: For every t ∈
N, K < 2t, and y ∈ {0, 1}K there exist functions
T0, . . . ,Tt and H0, . . . ,Ht satisfying the conditions of
Lemma 4.6 if and only if there exists a coloring C :
Vt → C that satisfies the coloring constraints and is
consistent with y.

Lemma 4.7 reduces the CSP (of Lemma 4.6) to the
Generalized deBruijn Graph Coloring. Again, the re-
duction is by the identity mapping (applied to the in-
stance (y, t)).

Proof Sketch: Referring to the aforementioned cor-
respondance between colors and the functions T0, ...,Tt

and H0, ...,H0, we need to show how the parameters of
the coloring problem can enforce the conditions of the
CSP. Recall that we need to deal with conditions of
three types:

1. The CSP conditions listed in Lemma 4.6, which
typically refer to Ti(j, k+h·2t−i) and Ti(2j+h, k)
for a constant number of values of h as well as to
Hi(j, k).

2. The auxiliary conditions Hi(j, k) = Hi(j, k′), for
all j, k, k′.

To enforce all of these conditions, we will use the inter-
mediate layers between layer (i, 0) and layer (i + 1, 0).
Specifically, we will “route” the (Ti,Hi) values assigned
to vertices in layer (i, 0) through these intermediate lay-
ers so that each of the constraints can be checked by a
coloring condition that refers to the values that reach
each vertex of layer (i+1, 0): For each vertex v = (j, k)
in layer (i + 1, 0) we check (via a coloring condition)
its value (i.e., color) against the values assigned to ver-
tices (bj/2c, k), ..., (bj/2c, k + 4 · 2t−i) of layer (i, 0).
This is done by ensuring that only a constant number
of values are routed through any intermediate vertex
and that the routing is simple enough. It suffices to
consider each of the above five required routings seper-
ately. That is, for some h ∈ [0, 4], we wish to determine
a set of simple routes such that each vertex v = (j, k) of
layer (i+1, 0) is reached from the corresponding vertex
u = (bj/2c, k + h · 2t−i) of layer (i, 0).

Let us take a closer look at these two (generic)
vertices. Denoting by bin`(q) the `-bit long bi-
nary representation of the integer q ∈ {0, ..., 2` − 1},
we observe that v = bini+1(j)bint−i+2(k) whereas
u = bini(bj/2c)bint−i+3(k + h · 2t−i), where j ∈
{0, ..., 2i+1 − 1} and k ∈ {0, ..., 2t−(i+1) − 1}. Thus,
letting α = bini(bj/2c) and τ = j mod 2, we have
v = ατ03bint−(i+1)(k) and u = αbin3(h)bint−(i+1)(k).
We infer that v and u differ only in a constant num-
ber of positions, and furthermore these positions are
easy to determine (because they depend merely on h
and the (i + 1)st most significant bit of v, which is the
least significant bit of j). Thus for any n, there exists a
constant number of patterns p ∈ {0, 1}t+3 (in our case
two) such that routing each u to u ⊕ p, for each pat-
tern p, will serve all routes we need. We note that for
each destination vertex, only one of the two incoming

routes will be relevant. But we can ignore the infor-
mation coming from the irrelevant route. Determining
which route is relevant can be done by just looking at
the (i+1)th most significant bit of v and thus, certainly
by a uniform NC1 of the vertex name (i + 1, v). The
destination vertex (of layer (i + 1, 0)) also needs to ap-
ply the relevant ψq’s (from Lemma 4.6) to the values
contained in the colors available to it. This can be done
by a fixed coloring constraint (which will be applied at
vertices of layer (i + 1, 0)).

For any fixed p, routing u of layer (i, 0) to u ⊕ p
of layer (i + 1, 0) is done in a straightforward manner.
That is, each intermediate vertex w = w1 · · ·wt+3 in
layer (i, i′) routes to vertex w′ = w′1 · · ·w′t+3 such that
w′i′ = wi′ ⊕ pi′ and w′t = wt for all other t, where
p = p1 · · · pt+3. This routing can be enforced by a fixed
coloring constraint (which will be applied at vertices of
intermediate layers).

We still need to impose the (auxiliary) constraint
Hi(j, k) = Hi(j, k′) for all k, k′. It suffices to impose
this constraint for all k, k′ that differ in one bit posi-
tion; that is, it suffices to verify that, for every string
α ∈ {0, 1}t−i+3 of Hamming weight one, Hi(j, k) =
Hi(j, int(bint−i+3(k)⊕α)), for every (j, k), where int(β)
is the integer represented by β. This can be achieved by
routingHi(j, k) (from vertex (j, k) of layer (i, 0)) to ver-
tex (j, k) of layer (i+1, 0), via the “identity route” (i.e.,
without flipping bits), and letting vertex (j, k) of layer
(i+1, i+ i′) compare Hi(j, k) (which is routed through
it) to Hi(j, int(bint−i+3(k) ⊕ 0i′−110t+3−i−i′)), which
can be obtained from one of its neighbors. Again, this
only blows up our sets of colors and vertex types by
a constant, and the vertex types can be specified by a
uniform NC1 circuit.

The above refers to the Items 5, 6 and 7 of
Lemma 4.6. Dealing with Items 3 and 4, is much eas-
ier. In particular, for Item 3, we should require that the
color of vertex (0, 2 · 2t + k) of layer (0, 0) corresponds
to the kth bit of y. Recall that the aforementioned
color encodes T0(0, 2 · 2t + k)I , which is required to
equal (yk,⊥). This correspondence is enforced by an
adequate choice of the function fextract.

Combining Lemmas 4.6 and 4.7, Theorem 4.4 follows.

5 Linear Maps and Efficient Algebraic
Computation

In this section, we show that linear maps over
GF(2)-vector spaces can be expressed as sparse poly-
nomials over some extension field of GF(2). We then
show how the sparsity of these polynomials can be used

to construct small-sized algebraic circuits from small-
sized boolean circuits (for the corresponding func-
tions).

Motivation: As hinted above, we do not need sparse
polynomial representation per se, but rather use it
to provide small circuits for computations that arise
in our PCPP constructions. Specifically, the work
of [BS05] refers to univariate polynomails of degree K
(and [GS02, BGH+04] refers to multivariate polynomi-
als of degree 2

√
log K or so). Some of the PCPP verifi-

cation relies on the ability to evaluate such polynomial
at a given input, and in our context we wish to perform
this task in time poly log K. For a large degree d (e.g.,
d > 2

√
log K), this is possible in case the polynomial is

sparse. Specifically, if a polynomial of degree d has t
terms (with all coefficients being known), then it can
be evaluated in time t · poly log d.

5.1 Linear Maps are Sparse Polynomials

We first prove some general results about the sparse
polynomial representation of linear maps over vector
spaces over any finite field (not necessarily GF(2)).
These will be specialized to GF(2) and used in Sec-
tion 5.2 (to obtain efficient algebraic circuits).

For an elaborate discussion of linear maps over vec-
tor spaces over finite fields, refer the excellent book
on finite fields by Lidl and Niederreiter [LN94, Chap-
ter 3.4]. The results presented in this section can be
proven using the techniques mentioned in [LN94].

Let B ⊂ F be two fields of sizes |B| = q and |F| = qf

respectively. Let H ⊆ F be a vector space of dimension
h over the (smaller) field B; that is, H is a vector space
B-spanned by h elements of F, i.e., there exists a basis
{e1, . . . , eh} of h elements in F such that every element
of H can be expressed as

∑h
i=1 ciei with c1, ..., ch ∈ B.

(For example, we may take H = F (in which case h =
f).) A B-linear map of H to F is a function f : H →
F that satisfies f(ax + by) = af(x) + bf(y) for every
x, y ∈ H and a, b ∈ B.

The following result shows that any linear map has
a sparse polynomial representation.

Proposition 5.1 Let H ⊆ F be a vector space of di-
mension h over the (smaller) field B, and f : H → F be
B-linear map. Then there exists a unique polynomial
f̂ : F→ F of the form

f̂(x) =
h−1∑

i=0

cix
qi

, where c0, . . . , ch−1 ∈ F

such that f̂ agrees with f on all of H. Moreover, given
the evaluations of f on any basis for H, the coefficients

c0, . . . , ch−1 can be found with poly(h, log q) arithmetic
operations over F.

Since f̂ is of degree at most |H|/q, we call f̂ the low-
degree extension (LDE) of the linear map f .

We will be particularly interested in the following
“S-vanishing polynomial”, which can be defined for any
S ⊆ F = GF(qf), but we will focus on the case that S
is a vector space over the base field B.

Definition 5.2 (The S-Vanishing Polynomial)
Consider an arbitrary subset of F, denoted S. The
S-vanishing polynomial is defined to be the polynomial
whose zeros are precisely the elements of S. That is:

ZS(x) =
∏

s∈S

(x− s).

Proposition 5.3 If S is a vector space over the base
field B then ZS : F→ F is a B-linear map; that is:

(a) For all u, v ∈ F, ZS(u + v) = ZS(u) + ZS(v).

(b) For all a ∈ B, v ∈ F, ZS(av) = a · ZS(v).

Proposition 5.4 If S is a d-dimensional vector space
over the base field B then there exist c0, . . . , cd−1inF
such that

ZS(x) = xqd

+
d−1∑

i=0

cix
qi

Moreover, the coefficients c0, . . . , cd−1 can be computed
with poly(d, log q) arithmetic operations over F, when
given as input a basis for S.

5.2 Efficient Algebraic Computation

For the purpose of this section, we will interpret the
results of the earlier section (Section 5.1) for the case
when the smaller field is B = GF(2). Hence, in the
notation of the earlier section, q = 2. Recall that the
larger field F, which is an extension field of GF(2), can
be viewed as a vector space over GF(2). Let H be an
h-dimensional subspace of F, spanned by the vectors
{e1, . . . , eh}.

Define bin : H → {0, 1}h to be the function that
provides the representation of elements in H in terms
of the aforementioned basis; that is, for any x =∑h

i=1 λiei ∈ H, it holds that bin(x) = (λ1, . . . , λh).
Note that bin is a one-to-one function, as so referring
to it as a representation of elements in H is indeed jus-
tified. The function bin can be naturally generalized
to multiple inputs; that is, bin : Hm → {0, 1}mh satis-
fies bin(x1, . . . , xm) = bin(x1)◦bin(x2)◦· · ·◦bin(xm),
where ◦ is the concatenation operator.

It is natural to call bin(x) a binary representation of
x ∈ H. Our main theorem shows that any small-depth,
small-size Boolean circuit operating on the binary rep-
resentation of Hm can be converted into an equivalent
arithmetic circuit of small size and moderate degree
(exponential in the depth) over F. In particular it says
that any bit of the binary representation of an element
of Hm can be computed efficiently.

Theorem 5.5 Let B,F,H and bin be as above. For
any Boolean function f : {0, 1}mh → {0, 1} computed
by a circuit C of size s and depth d, there exists a
polynomial f̂ : Fm → F of degree at most |H| · 2d com-
putable by an F-algebraic circuit C ′ of size O(s+mh2)
such that for all (x1, . . . , xm) ∈ Hm,

bit(f̂(x1, . . . , xm)) = f(bin(x1, . . . , xm)),

where bit : F→ {0, 1,⊥} is defined such that bit(0) =
0, bit(1) = 1 and bit(x) = ⊥ for every x ∈ F \ B.
Moreover, C ′ can be constructed in polynomial-time,
when given C, m, and a basis {e1, . . . , eh} for H.

Recall that |H| = 2h. Thus, although the degree of
f̂ may blow-up by a factor of 2h+d, the size of the
algebraic circuit remains almost unchanged if s > mh2

(which will be the case in our applications).
Proof: For simplicity, we will abuse notation and
omit the application of bit to the output of f̂ . We
start by considering the special case when the function
f is a projection function to a bit. In this case, we
will show that there exists a polynomial f̂ of degree
|H|/2 that agrees with f on Hm, and is computed by
an F-algebraic circuit of size O(h).

We first prove this special case for m = 1. Without
loss of generality, suppose f : {0, 1}h → {0, 1} is the
projection to the first bit function x 7→ x1. Consider
the function f̃ : H → F defined by f̃(x) = f(bin(x))
(or rather satisfying bit(f̃(x)) = f(bin(x))). Thus,
actually f̃ : H → B. Furthermore, f̃ is a GF(2)-
linear map, because for any x =

∑h
i=1 λiei and x′ =∑h

i=1 λ′iei it holds that f(bin(x + x′)) = λ1 + λ′1 =
f(bin(x)) + f(bin(x′)). Hence, by Proposition 5.1,
there exists a unique low-degree extension f̂ : F→ F of
f̃ that agrees with f̃ on all of H and has the following
form

f̂(x) =
h−1∑

i=0

cix
2i

for some c0, ..., ch−1 ∈ F. Observe that f̂ can be com-
puted by an F-algebraic circuit of size O(h): the cir-
cuit first computes the powers x, x2, . . . , x2h−1

, by re-
peated squaring, and then computes the appropriate

linear combination. Also note that the degree of f̂ is
at most 2h−1 = |H|/2. This proves the result for pro-
jections when m = 1 (because, for all x ∈ H, it holds
that f̂(x) = f̃(x) = f(bin(x))).

The case for larger m is identical. The algebraic
circuit only works with that component of Fm in which
the projected bit is present, and ignores the remaining
components of Fm.

The above special case shows that any individual
bit can be extracted by a polynomial of degree at most
|H|/2 that is computable by a F-algebraic circuit of
size at most O(h). The general claim (of the theorem)
is then obtained by constructing an arithmetic circuit
that first extracts all individual bits, and then applies
(to them) a straightforward arithmetization of the orig-
inal circuit C. For example, the arithmetization of the
and and not gates is performed as follows:

not(x) = 1− x

and(x, y) = x · y
where the result maintains the intended value for x, y ∈
B. (More generally, any binary gate G(x, y) is replaced
by an appropriate multilinear polynomial x and y,
which extends the corresponding mapping B×B→ B.)
Thus, the size of the resulting F-algebraic circuit is at
most a constant factor larger than the size of origi-
nal circuit C plus the size of the algebraic circuits ex-
tracting the individual bits, resulting in a total size of
O(s) + mh ·O(h). The degree of the polynomial com-
puted by this circuit is at most 2d times the degree
of the algebraic circuit extracting the individual bits.
The theorem follows.

6 Algebraic Constraint Satisfaction
Problems

In this section, we arithmetize the universal graph
coloring problem (Theorem 4.4) to obtain an algebraic
constraint satisfaction problem that is easily amenable
to PCP constructions. Recall that we desire to con-
struct efficient (wrt to running time) versions of the
short PCPs of [BS05, BGH+04]. The PCP construc-
tions of [BS05] require a univariate algebraic CSP with
just one constraint polynomial while that of [BGH+04]
require a multivariate algebraic CSP involving a log-
arithmic number of constraint polynomials. For this
purpose, we construct two different (univariate and
multivariate) algebraic constraint satisfaction problems
for which PCPs can be constructed along the lines
of [BS05] and [BGH+04]. The key difference be-
tween the algebraic CSPs constructed in this paper
and the ones in [BGH+04, BS05] (as well as those of

[PS94, HS00, BSVW03]) is that the constraint poly-
nomials in the CSPs constructed here can be obtained
very efficiently. More specifically, the verifier can eval-
uate the constraint polynomial (at any point it wishes)
in time polylogarithmic in the proof size. Verifiers in
earlier constructions of nearly linear-sized PCPs re-
quired polynomial time for the same task.

Due to space constraints, we present only the
multivariate algebraic constraint satisfaction problem
and defer the univariate problem to the full ver-
sion [BGH+05].

6.1 Multivariate Algebraic CSP

The arithmetization to a multivariate algebraic CSP
is performed along the lines of [BGH+04]. Specifically,
we reduce (via the identity maping) the Generalized
deBruijn Graph Coloring to the following multivariate
algebraic CSP.

Definition 6.1 (Multivariate Algebraic CSP)
The Multivariate Algebraic CSP (MultiAlgCSPt,m)
of dimension m and size t > m is parametized by
a constant number α and seven (fixed) objects that
are constructible in uniform poly(t)-time.3 The
parameters are

1. A family of fields, Ft = GF(2f), where f =
d(t + 3)/me + α log2 t, each specified by an irre-
ducible polynomial of degree f .

2. A family of GF(2)-linear spaces Ht ⊂ Ft of dimen-
sion h

def= d(t + 3)/me, each specified by a basis that
spans it.

3. A family of affine (neighborhood) maps Lt =
〈Γi,b : Fm

t → Fm
t 〉i=0,...,(t+3)2−1 , b∈{0,1} such that

Γi,0 is the identity function, for all i, whereas Γi,1

flips the ith bit in the binary representation of its
input.4

4. A family of (type-assignment) polynomials Tt =
〈Ti : Fm → F〉i=0,...,(t+3)2−1, each of degree at
most tα−1 · 2h, specified by algebraic circuits (of
size poly(t)).

5. A family of (constraint) polynomials ψt : F4
t →

F2
t of constant degree κ. The polynomials ψt are

specified by an algebraic circuit.
3In each case, there exists a uniform poly(t)-time that given

(m, t) produces the corresponding output.
4Since Ft = GF(2)f , we can view Fm

t as mf -dimensional
space over GF(2). Hence, any vector (z0, . . . , zm−1) ∈ Fm

t can be
written as b = (b0,0, ..., b0,f−1, ..., bm−1,0, ..., bm−1,f−1). Then
Γi,1(b) = (b′0,0, ..., b′m−1,f−1), where b′j,k = bj,k + 1 if j = bi/hc
and k = i mod m and b′j,k = bj,k otherwise.

6. A family of (extraction) functions f t
extract : Ft →

{0, 1} ∪ {⊥} specified by a polynomial-time evalu-
ation procedure.

7. A family of bijections It : [2t] → Ht specified by
polynomial-time procedures for evaluating It and
its inverse.

Given an input y ∈ {0, 1}K , for K < 2t, the prob-
lem is to determine whether there exists a sequence
of assignment polynomials Ai : Fm

t → Ft, for i =
0, . . . , (t + 3)2 − 1, each of degree at most m · 2h such
that the following two conditions hold

1. For all i ∈ {0, . . . , (t + 3)2 − 1} and x ∈ Hm
t ,

ψt

(
Ti(x), Ai(x), Ai+1(Γi,0(x)),

Ai+1(Γi,1(x))
)

= (0, 0).

In this case, we say that the assignment polyno-
mials A = {Ai} satisfy the constraint polynomials
ψt.

2. For all 1 ≤ k ≤ K we have yk =
f t
extract(A0(It(k))). In this case, we say that the

assignment polynomials A are consistent with the
input y.

Theorem 6.2 (Universality of Multivariate Al-
gebraic CSP) For every Turing machine M , there ex-
ist a setting of the parameters for the Multivariate Al-
gebraic CSP (of Definition 6.1) such that the bounded-
halting problem for M is reducible via the identity map-
ping to the corresponding Multivariate Algebraic CSP
(i.e., the reduction is by the identity mapping). Fur-
thermore, for every m < t and y ∈ {0, 1}K , where
K < 2t, machine M halts on y within 2t steps if and
only if there exists a set of assignment polynomials
A = {Ai}, each of degree at most m · 2d(t+3)/me, that
satisfies the constraint polynomials and is consistent
with y.

Proof Sketch: Using Theorem 4.4, it suffices to re-
duce the Generalized deBruijn Graph Coloring problem
to the Multivariate Algebraic CSP. The constant α is
determined by the depth of the NC1 circuit computing
fv−type (used in Theorem 4.4): specifically, α = c + 4,
where the aforemention circuit for inputs of length `
has depth c log2 `.

The constructions of the first three objects is
straightforward, using the fact that an irreducible poly-
nomial of degree f over GF(2) can be found in time
polynomial in f [LN94]. Specifically, we set h =

d(t + 3)/me, which guarantees that |Ht|m = 2hm ≥
8 · 2t.

The other objects are obtained by low-degree exten-
sion of the corresponding objects in the Generalized
deBruijn Graph Coloring problem. The bounds on the
size of circuits and the degree of the polynomials com-
puted by them (especially, the polynomials Tt) are ob-
tained using Theorem 5.5.

References

[AS98] Arora, S., and Safra, S. Probabilistic
checking of proofs: A new characterization
of NP. Journal of the ACM 45, 1 (Jan. 1998),
70–122. (Preliminary Version in 33rd FOCS,
1992).

[BFLS91] Babai, L., Fortnow, L., Levin, L. A.,
and Szegedy, M. Checking computations
in polylogarithmic time. In Proc. 23rd ACM
Symp. on Theory of Computing (New Orleans,
Louisiana, 6–8 May 1991), pp. 21–31.

[BG02] Barak, B. and Goldreich, O. Universal
Arguments and their Applications. In Proc.
17th IEEE Conference on Computational Com-
plexity (Montréal, Québec, Canada, 21–24 May
2002), pp. 75–81.

[BGH+04] Ben-Sasson, E., Goldreich, O., Harsha,
P., Sudan, M., and Vadhan, S. Robust
PCPs of proximity, shorter PCPs and appli-
cations to coding. In Proc. 36th ACM Symp.
on Theory of Computing (Chicago, Illinois, 13-
15 June 2004), pp. 1–10.

[BGH+05] Ben-Sasson, E., Goldreich, O., Harsha,
P., Sudan, M., and Vadhan, S. Short
PCPs verifiable in polylogarithmic time. (To
be posted in ECCC.)

[BS05] Ben-Sasson, E., and Sudan, M. Simple
PCPs with polylog rate and query complexity.
To appear in Proc. 37th ACM Symp. on The-
ory of Computing, Baltimore, Maryland, 21–
24 May 2005.

[BSVW03] Ben-Sasson, E., Sudan, M., Vadhan, S.,
and Wigderson, A. Randomness-efficient low
degree tests and short PCPs via epsilon-biased
sets. In Proc. 35th ACM Symp. on Theory of
Computing (San Diego, California, 9–11 June
2003), pp. 612–621.

[DR04] Dinur, I., and Reingold, O. Assignment-
testers: Towards a combinatorial proof of the
PCP-Theorem. In Proc. 45rd IEEE Symp. on
Foundations of Comp. Science (Rome, Italy,
17–19 Oct. 2004), pp. 155-164.

[EKR99] Ergün, F., Kumar, R., and Rubinfeld,
R. Fast approximate PCPs. In Proc. 31st
ACM Symp. on Theory of Computing (Atlanta,
Georgia, 1–4 May 1999), pp. 41–50.

[FGL+96] Feige, U., Goldwasser, S., Lovász, L.,
Safra, S., and Szegedy, M. Interactive
proofs and the hardness of approximating
cliques. Journal of the ACM 43, 2 (Mar. 1996),
268–292. (Preliminary version in 32nd FOCS,
1991).

[GGR98] Goldreich, O., Goldwasser, S., and Ron,
D. Property testing and its connection to
learning and approximation. Journal of the
ACM 45, 4 (July 1998), 653–750. (Preliminary
Version in 37th FOCS, 1996).

[GS02] Goldreich, O., and Sudan, M. Locally
testable codes and PCPs of almost linear
length. In Proc. 43rd IEEE Symp. on Founda-
tions of Comp. Science (Vancouver, Canada,
16–19 Nov. 2002), pp. 13–22. (See ECCC Re-
port TR02-050, 2002).

[HS00] Harsha, P., and Sudan, M. Small PCPs
with low query complexity. Computational
Complexity 9, 3–4 (Dec. 2000), 157–201. (Pre-
liminary Version in 18th STACS, 2001).

[Kil92] Kilian, J. A note on efficient zero-knowledge
proofs and arguments (extended abstract). In
Proc. 24th ACM Symp. on Theory of Comput-
ing (Victoria, British Columbia, Canada, 4–6
May 1992), pp. 723–732.

[LN94] Lidl, R., and Niederreiter, H. Introduction
to Finite Fields and their applications. Cam-
bridge University Press, Cambdridge, United
Kingdom, 1994.

[Mic00] Micali, S. Computationally sound proofs.
SIAM Journal of Computing 30, 4 (2000),
1253–1298. (Preliminary Version in 35th
FOCS, 1994).

[PF79] Pippenger, N., and Fischer, M. J. Rela-
tions among complexity measures. Journal of
the ACM 26, 2 (Apr. 1979), 361–381.

[PS94] Polishchuk, A., and Spielman, D. A.
Nearly-linear size holographic proofs. In Proc.
26th ACM Symp. on Theory of Computing
(Montréal, Québec, Canada, 23–25 May 1994),
pp. 194–203.

[RS96] Rubinfeld, R., and Sudan, M. Robust char-
acterizations of polynomials with applications
to program testing. SIAM Journal of Comput-
ing 25, 2 (Apr. 1996), 252–271. (Preliminary
Version in 23rd STOC, 1991 and 3rd SODA,
1992).

[VL88] Venkatesan, R., and Levin L.A. Random
Instances of a Graph Coloring Problem are
Hard. In Proc. 20th ACM Symp. on Theory
of Computing , (White Plains, New York, 24–
26 Oct 1988), pp 217–222.

