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Abstract

A theorem of Green, Tao, and Ziegler can be stated
(roughly) as follows: ifR is a pseudorandom set, andD is a
dense subset of R, then D may be modeled by a set M that
is dense in the entire domain such that D and M are indis-
tinguishable. (The precise statement refers to“measures”
or distributions rather than sets.) The proof of this theo-
rem is very general, and it applies to notions of pseudo-
randomness and indistinguishability defined in terms of any
family of distinguishers with some mild closure properties.
The proof proceeds via iterative partitioning and an energy
increment argument, in the spirit of the proof of the weak
Szemerédi regularity lemma. The “reduction” involved in
the proof has exponential complexity in the distinguishing
probability.

We present a new proof inspired by Nisan’s proof of Im-
pagliazzo’s hardcore set theorem. The reduction in our
proof has polynomial complexity in the distinguishing prob-
ability and provides a new characterization of the notion of
“pseudoentropy” of a distribution. A proof similar to ours
has also been independently discovered by Gowers [2].

We also follow the connection between the two theorems
and obtain a new proof of Impagliazzo’s hardcore set theo-
rem via iterative partitioning and energy increment. While
our reduction has exponential complexity in some parame-
ters, it has the advantage that the hardcore set is efficiently
recognizable.
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1. Introduction

Green and Tao [3], in one of the great mathematical
breakthroughs of this decade, have proved that there exist
arbitrarily long arithmetic progressions of primes. Some-
what imprecisely, their proof proceeds by establishing the
following two claims:

• Let R be a “pseudorandom” set of integers, and D be
a subset of R of constant density. Then D contains
arbitrarily long arithmetic progressions.

• There is a set R of integers that is pseudorandom and
such that the primes have constant density inside R.

The first claim is the hardest to establish, and its proof
is the most innovative part of the paper, blending combi-
natorial, analytic and ergodic-theoretic techniques. In turn
(and, again, this account is slightly imprecise), the proof of
the first claim proceeds by combining the following three
results.

• Dense Model Theorem: Let R be pseudorandom and
D a subset of R of constant density within R (both R
and D may be very sparse within the integers). Then
there is a set M that has constant density within the
integers and is “indistinguishable” from D. (We think
of M as a dense “model” of D.)

• Szemerédi’s Theorem [11]: If M is a set of integers
of constant density, then it contains a constant fraction
of all arithmetic progressions of any fixed length.

• Lemma: A set that contains a constant fraction of all
arithmetic progressions of some fixed length k is “dis-
tinguishable” from a set with no arithmetic progres-
sions of length k

The key new step of the Green–Tao proof is their Dense
Model Theorem. This theorem about dense subsets of pseu-
dorandom sets was originally stated in the specific setting of



sets of integers and for certain specific notions of pseudo-
randomness and indistinguishability. It is natural to ask if a
similar statement holds when we consider other domains,
like {0, 1}n, and for other notions of pseudorandomness
and indistinguishability such as those used in complexity
theory and cryptography. A very general Dense Model The-
orem, which has a complexity-theoretic version as a special
case, was in fact proven by Tao and Ziegler [12]. How-
ever, the “reduction” implicit in their proof has exponential
complexity in the distinguishing probability, making it inap-
plicable for common complexity-theoretic or cryptographic
settings of parameters.

In this paper, we provide a new proof of the Dense Model
Theorem, in which the reduction has polynomial complex-
ity in the distinguishing probability. Our proof is inspired
by Nisan’s proof of the Impagliazzo Hardcore Theorem [6],
and is simpler than the proofs of Green, Tao, and Ziegler.
A complexity-theoretic interpretation of our result yields
a new characterization of the “pseudoentropy” of a distri-
bution. We also exploit the connection between the two
theorems in the reverse direction to obtain a new proof of
the Hardcore Theorem based on iterative partitioning and
energy increments. While the reduction in this proof has
exponential complexity in some parameters, it has the ad-
vantage that the hardcore set is efficiently recognizable. It
was pointed out to us by Russell Impagliazzo [7] that the
connection between Dense Model Theorems and Hardcore
Theorems goes even further, and one can deduce the Dense
Model Theorem directly from a sufficiently strong version
of the Hardcore Theorem.

We find it intriguing that there is such an intimate con-
nection between ideas in the additive combinatorics litera-
ture and such central complexity-theoretic concepts as pseu-
dorandomness and indistinguishability. The fact that we can
translate the proofs in both directions, obtaining some new
properties in each case, suggests that both complexity the-
ory and additive combinatorics are likely to benefit from
this connection in the future.

1.1 Dense Model Theorems

Let us briefly recall how we define pseudorandomness
and indistinguishability in complexity theory (in the non-
uniform setting). We have a finite domain X , for exam-
ple {0, 1}n, and a collection F of “efficiently computable”
functions f : X → {0, 1}, for example all the functions
computed by circuits of size at most s(n) for some com-
plexity bound s(·). We say that a distribution R on X is
ε-pseudorandom for F if for every function f ∈ F we
have

|P[f(R) = 1]− P[f(UX) = 1]| ≤ ε

where UX is the uniform distribution over X .1 More
generally, we say that two distributions A and B are ε-
indistinguishable by a family F of bounded functions
f : X → [0, 1], if for every f ∈ F

|E[f(A)]− E[f(B)]| ≤ ε

We also need to specify what “density” means when we
refer to distributions rather than to sets. We say that a dis-
tribution A is δ-dense in B if, informally, it is possible to
describe the process of sampling from B as “with probabil-
ity δ, sample from A, with probability 1 − δ, (. . . )” which
is equivalent to the condition

∀x ∈ X, P[A = x] ≤ 1
δ
· P[B = x]

Given these definitions, a general Dense Model Theorem
would have the following form: Let X be a finite domain,
F a collection of boolean (or bounded) functions onX , and
ε, δ > 0 be real parameters. Then there exists an ε′ > 0
and a collection F ′ of boolean functions on X such that if
R is ε′-pseudorandom for F ′ and D is δ-dense in R, then
there is a model distribution M that is δ-dense in UX and
that is ε-indistinguishable from D for F . Ideally, ε′ should
not be too much smaller than ε, and the functions in F ′
should not be too much more “complex” than functions in
F . Indeed, in a complexity-theoretic setting, we’d like both
of these relations to be polynomial so that the distinctions
disappear when we consider asymptotic formulations with
1/poly(n) distinguishing probabilities and functions com-
puted by polynomial-size circuits.

Tao and Ziegler [12] have proved such a result in broad
generality, albeit with an exponential loss in the distinguish-
ing probability. Formally, their theorem can be restated as
as follows.

Theorem 1.1 (Tao and Ziegler) Let X be a finite uni-
verse, F a collection of bounded functions f : X → [0, 1],
ε > 0 an accuracy parameter and δ > 0 a density pa-
rameter. Let R be a distribution over X and D a δ-dense
distribution in R.

Suppose thatD is distinguishable from all dense models.
That is, suppose that for every model distribution M that is
δ/2-dense in UX , there is a function f ∈ F such that

|E[f(D)]− E[f(M)]| ≥ ε

ThenR is not pseudorandom. That is, there are functions
f1, . . . , fk in F , with k = poly(1/ε, 1/δ) such that∣∣∣∣∣E
[∏

i

fi(R)

]
− E

[∏
i

fi(UX)

]∣∣∣∣∣ ≥ exp(−poly(1/ε, 1/δ))

1In the above expression, and in the rest of the paper, we use the same
notation for a distribution D over a sample space X , and for a random
variable ranging over X and taking on values of X according to D.
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Theorem 1.1 is a restatement of Theorem 7.1 in [12].2

To match it with the discussion above, take F ′ to be the set
of functions that are k-fold products of functions in F , and
ε′ = exp(−poly(1/ε, 1/δ)).

Theorem 1.1 can be applied to a computational set-
ting where F contains only Boolean functions, hence
E[f(A)] = P[f(A) = 1] for every distribution A. In such
a setting the theorem does imply that if a distribution D is
δ-dense in a distribution R that is ε′-pseudorandom for cir-
cuits of size s′, then D is ε-indistinguishable for circuits
of size s from some distribution M that is δ/2-dense in
the uniform distribution, where ε′ = exp(−poly(1/ε, 1/δ))
and s′ = s · poly(1/ε, 1/δ). The exponentially small
bound on the distinguishing probability ε′ for R, however,
is unsuitable for typical complexity-theoretic and crypto-
graphic settings that consider distinguishing probabilities of
1/poly(n) (where X = {0, 1}n). Reading into the Tao-
Ziegler proof and specializing it to the Boolean setting, it
is possible to improve the bound on ε′ to polynomial and
derive the following statement.

Theorem 1.2 (Tao and Ziegler – Boolean case) Let X be
a finite universe, F a collection of Boolean functions f :
X → {0, 1}, ε ∈ (0, 1/2) an accuracy parameter and δ ∈
(0, 1/2) a density parameter. Let R be a distribution over
X and D a δ-dense distribution in R.

Suppose thatD is distinguishable from all dense models.
That is, suppose that for every model distribution M that is
δ/4-dense in UX there is a function f ∈ F such that

|E[f(D)]− E[f(M)]| ≥ ε

Then R is not pseudorandom. That is, there are func-
tions f1, . . . , fk in F , with k = poly(1/ε, 1/δ), and
g : {0, 1}k → {0, 1} such that if we define h(x) :=
g(f1(x), . . . , fk(x)) we have

|E[h(R)]− E[h(UX)]| ≥ (εδ)O(1)

It seems that, in such a statement, everything has polyno-
mial efficiency as required, but unfortunately the function g
in the conclusion can be arbitrary. In particular, its circuit
complexity cannot be bounded any better than by an expo-
nential in k, and hence exponential in 1/ε and 1/δ. The

2The two statements of the theorem are completely equivalent, with the
following translation. Our functions f are called dual functions in [12],
where they are allowed to range over a bounded interval instead of [0, 1],
but one can restrict to [0, 1] with no loss of generality after scaling. Our
distribution R plays the role of the measure ν in the Tao–Ziegler formu-
lation, under the normalization P[R = a] = ν(a)/

∑
z ν(z). Our dis-

tribution D is their measure g() after the normalization P[D = a] =
g(a)/

∑
z g(z). Our distribution M is their function g1, after similar

normalization, and their g2 equals g − g1. This translation applies if
E[g(UX)] ≥ δ, but the general case reduces to the case of g having suf-
ficiently large average; otherwise, we can simply set their g1 and g2 to be
identically zero.

conclusion that we can derive is that if a distribution D is
δ-dense in a distribution R that is ε′-pseudorandom for cir-
cuits of size s′, then D is ε-indistinguishable from a distri-
bution δ/4-dense in the uniform distribution by circuits of
size s, where ε′ = (εδ)O(1) and s′ = s · poly(1/ε, 1/δ) +
exp(poly(1/ε, 1/δ)).

In this paper we present a new proof of a Dense Model
Theorem, in the spirit of Nisan’s proof of the Impagliazzo
Hardcore Theorem [6], where all parameters are polynomi-
ally bounded. The key change will be that the combining
function g will be a linear threshold function, and hence
can be implemented by a circuit of size O(k).

Theorem 1.3 (Main) Let X be a finite universe, F a col-
lection of Boolean functions f : X → {0, 1}, ε > 0 an
accuracy parameter and δ > 0 a density parameter. Let R
be a distribution over X and D a δ-dense distribution in R.

Suppose thatD is distinguishable from all dense models.
That is, suppose that for every model distribution M that is
δ-dense in UX there is a function f ∈ F such that

|E[f(D)]− E[f(M)]| ≥ ε

ThenR is not pseudorandom. That is, there are functions
f1, . . . , fk in F , with k = poly(1/ε, log 1/δ), and a linear
threshold function g : {0, 1}k → {0, 1} such that if we
define h(x) := g(f1(x), . . . , fk(x)) we have

|E[h(R)]− E[h(UX)]| ≥ Ω(εδ)

Our proof can also recover Theorem 1.1 in full general-
ity. When we apply our proof to the setting of Theorem 1.1
(where we require the distinguishing function to be a prod-
uct of fi rather than a low-complexity combination of fi)
we too incur an exponential loss in the distinguishing prob-
ability, but our proof is simpler than the original proof of
Tao and Ziegler.

Gowers [2] independently discovered a simplified proof
of Theorem 1.1 that is similar to ours.

1.2 Applications

The min-entropy of a distribution D is defined as
H∞(D) := mina log(1/P[D = a]), and it can be seen that
a distribution D ranging over {0, 1}n has min-entropy at
least n − t if and only if it is 2−t-dense in the uniform dis-
tribution. Following Håstad et al. [4], we say that a distribu-
tion has pseudoentropy at least k if it is computationally
indistinguishable from some distribution of min-entropy at
least k.3 It follows from our main theorem that if a distribu-
tion is 2−t-dense inside a pseudorandom distribution then it

3Håstad et al. actually only require that the distribution is computa-
tionally indistinguishable from some distribution with Shannon entropy at
least k, but it is common to work with min-entropy instead. Indeed, even
the constructions of Håstad et al. work by first converting Shannon entropy
into min-entropy by taking many independent copies of the distribution.
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has pseudoentropy at least n− t, provided δ = 2−t is non-
negligible (i.e. t = O(log n) when considering 1/poly(n)
distinguishing probabilities). The converse can also be eas-
ily seen to be true, and thus our main result characterizes
pseudoentropy in terms of density in pseudorandom distri-
butions.

An example of this application is the following. Sup-
pose that G : {0, 1}m → {0, 1}n is a good pseudorandom
generator, and that B is a biased, adversarially chosen, dis-
tribution over seeds, about which we do not know anything
except that its min-entropy is at least m − t. Then it is not
possible any more to guarantee that the output of G(B) is
pseudorandom. In fact, if 2−t is negligible (i.e. smaller than
the distinguishing probability) then it is possible that G(B)
is constant.Our main result, however, implies that if 2−t is
nonnegligible then there is a distribution M of min-entropy
at least n − t such that G(B) and M are indistinguishable.
This application works most naturally in the non-uniform
setting, where we take F to be the set of functions com-
putable by bounded size circuits, but using ideas of Barak,
Shaltiel, and Wigderson [1] we can show that a distribution
dense inside a pseudorandom distribution must have large
pseudoentropy even in the uniform setting.

The versatility of the Tao-Ziegler result and ours seems
to go even beyond number theory and complexity theory,
and it seems likely that more applications will be found. As
an illustration, we describe a corollary in graph theory. Con-
sider the case where X is the set of edges of the complete
graph Kn; we think of a distribution over X as a (scaled)
weighted graph, and we let F be the set of predicates that
check whether a given edge belongs to a particular cut. In
this set-up, two graphs are “indistinguishable” if every cut
is crossed by approximately the same fraction of edges, and
a graph is “pseudorandom” if it obeys an expansion-like
property. The Tao-Ziegler result thus shows that a dense
subgraph of an expander is “modeled” by a truly dense
graph. This is interesting because, for example, by apply-
ing the Szemerédi Regularity Lemma to the model one can
recover known Regularity Lemmas for dense subgraphs of
expanders [8].4

1.3 The Green–Tao–Ziegler Proof, and a
New Construction of Hardcore Sets

The original proofs by Green, Tao and Ziegler [3, 12] are
based iteratively constructing a partition of X so that D is
“regular” with respect to the partition. (Very roughly speak-

4We discuss this application purely as an illustration of the generality
of the principle that “dense subsets of pseudorandom objects have a dense
model,” but we make no new claim. As mentioned, Regularity Lemmas for
dense subsets of pseudorandom graphs were known, due to Kohayakawa
and Rödl (see [8]); also, the connection between Green-Tao-Ziegler style
arguments and Regularity Lemmas is well known in the additive combina-
torics community.

ing, the condition is that for most blocks, D conditioned on
the block is indistinguishable from the uniform distribution
on the block.) As in the proof of the Szemerédi Regular-
ity Lemma, one starts from the trivial one-block partition
and then, as long as the partition is not regular, one uses a
“counter-example” to the regularity condition to refine the
partition. A potential function (or “energy increment” in the
finitary ergodic-theoretic language used by Green, Tao and
Ziegler) argument is used to bound the number of steps that
such a process can take until it terminates.

It is intriguing that such a technique can prove a result
like Theorem 1.2, which is genuinely complexity-theoretic,
and we believe it could be useful in other settings as well.
As a proof of concept, we provide a new proof the Impagli-
azzo Hardcore Theorem [6] using these techniques. While
our proof incurs an exponential loss in terms of one of the
parameters, the proof gives a “constructive” statement that
does not seem to follow from other approaches.

Informally, the Hardcore Theorem says that if a function
g is mildly hard to compute in the sense that every efficient
algorithm errs on a noticeable fraction of inputs, then there
is a relatively large ‘hardcore’ set H of inputs on which g
is very hard to compute. We prove the following version of
this theorem. Suppose that every efficient algorithm fails in
computing g on at least a δ fraction of inputs. Then there is
an efficiently recognizable set H of density at least δ such
that δ/2 ≤ P[g(UH) = 1] ≤ 1− δ/2, and it is intractable to
have advantage ε over a constant predictor in computing g
onH . This is true for every ε and δ, but the relation between
the notions of “efficiency” in the premise and the conclusion
depends exponentially on 1/ε and 1/δ.

In Impagliazzo’s proof, the relation is polynomial in 1/ε
and 1/δ and g is nearly balanced on H , meaning that is in-
tractable to compute g any more reliably than by making a
uniform random guess. The efficient recognizability of the
set H , however, is new, and it is a property that is incom-
patible with the requirement of being balanced.

2 Proof of the Main Theorem

In this section we prove a result, which is a common gen-
eralization of our Main Theorem 1.3 and of the Tao-Ziegler
Theorem 1.1. We state our result for a more general class
of distributions than the ones which are dense in a pseudo-
random distribution. We call these distributions (as defined
below) pseudodense.

Definition 2.1 Let X be a finite universe, F a collection
of boolean functions f : X → [0, 1], ε > 0 an accuracy
parameter and δ > 0 a density parameter. We say that D
has pseudo-density δ w.r.t. F , with error ε, if for all f ∈ F

δ · E[f(D)] ≤ E[f(X)] + ε

and δ · E[(1− f)(D)] ≤ E[(1− f)(X)] + ε

4



It is easy to see that if a distribution D is δ-dense in a
distribution R which ε-pseudorandom with respect F , then
D has pseudo-density δ w.r.t. F .

We can now state the general result in terms of pseudo-
dense distributions.

Theorem 2.2 Let X be a finite universe, F a collection of
bounded functions f : X → [0, 1], ε > 0 an accuracy
parameter and δ > 0 a density parameter. Let D be a dis-
tribution over X .

Suppose thatD is distinguishable from all dense models.
That is, suppose that for every model distribution M that is
δ-dense in UX there is a function f ∈ F such that

|E[f(D)]− E[f(M)]| ≥ ε (1)

Then D is not pseudo-dense. That is,

1. There are functions f1, . . . , fk ∈ F , with k =
O((1/ε2) · log(1/εδ)), and parameters a1, . . . , ak ∈
{−1,+1} and t ∈ R such that if we define h : X →
{0, 1} by

h(x) = 1⇔
∑
i

aif(xi) ≥ t,

then we have

δ · E[h(D)] ≥ E[h(UX)] + Ω(εδ)

2. There are functions f1, . . . , fk ∈ F , with k =
poly(1/ε, 1/δ), such that if we define h : X → [0, 1]
by h(x) := Πifi(x) we have

δ · E[h(D)] ≥ E[h(UX)] + exp(−poly(1/ε, 1/δ))

Proof: For a function f : X → [0, 1], we define its com-
plement to be the function 1 − f and its negation to be
the function −f , and we let 1−F (resp., −F) be the set of
complements (resp., negations) of functions in F . Observe
that if allow f to range over F ∪ (1 − F), we may remove
the absolute value in (1).

Intuition. Consider any distribution M that is δ-dense in
UX . By hypothesis, there is a function f ∈ F ∪ (1 − F)
such that E[f(D)]−E[f(M)] ≥ ε. We would be done if we
could replace E[f(M)] in this inequality by 1

δ E[f(UX)].
But the fact thatM is δ-dense in UX only gives us the in-

equality in the other direction, i.e. E[f(M)] ≤ 1
δ E[f(UX)],

which is inadequate. Ideally, we would like to choose M to
consist of the inputs on which f is largest; this would guar-
antee that the average of f on M is large. However, this
approach is circular — according to our hypothesis, f may
depend on the choice of M .

Thus, the first step in our proof is to “switch quantifiers”
in our hypothesis, and to exhibit a single function f̄ that
distinguishes every M from D. The price that we pay is
that f̄ is no longer (guaranteed to be) an element of F ∪
(1 − F), but is rather a convex combination of elements of
F ∪ (1−F).

Claim 2.3 There exists a function f̄ : X → [0, 1] that is a
convex combination of functions in F ∪ (1 − F) and such
that for every distribution M that is δ-dense in UX we have

E
[
f̄(D)

]
− E

[
f̄(M)

]
≥ ε

Proof: This is an application of duality of linear program-
ming or, equivalently, of the min-max theorem in game the-
ory. In the latter language, we think of a zero-sum game
where the first player picks a function f ∈ F , the second
player picks a distribution M that is δ-dense in UX , and
the payoff is E[f(D)] − E[f(M)] for the first player, and
−(E[f(D)]− E[f(M)]) for the second player.

By the min-max theorem, the game has a “value” α for
which the first player has an optimal mixed strategy (a dis-
tribution over strategies) f̄ , and the second player has an
optimal mixed strategy M̄ , such that

∀M δ-dense in UX , E[f̄(D)]− E[f̄(M)] ≥ α (2)

and

∀f ∈ F ∪ (1−F), E[f(D)]− E[f(M̄)] ≤ α (3)

Since M̄ is a distribution over δ-dense distributions, M̄
is δ-dense as well. The hypothesis of the theorem tells us
that there exists a function f distinguishingD from M̄ with
advantage at least ε. Taking this f in inequality (3), we get
that α ≥ ε. The claim now follows from Equation (2).

Now, following the earlier intuition, we consider the set
S consisting of the δ · |X| elements of X with the largest
value of f̄(), and take the uniform distribution over S, de-
noted US , as our model distribution 5. Since US is δ-dense
in UX , we have that E[f̄(D)] ≥ E[f̄(US)] + ε. In other
words, the function f̄ “distinguishes” D from US in the
sense that f̄ is a bounded function and its average is no-
ticeably larger over D versus over US . Now we would like
to use f̄ to “prove” that D is not pseudodense.

First, however, we show that D and US can also be dis-
tinguished via a Boolean function, which is in fact a thresh-
olded version of f̄ . This will follow from the following
claim (whose proof is omitted). A similar step, of using a
threshold function (with a randomly chosen threshold) also
appears in Holenstein’s proof of the hardcore lemma [5].

5In case δ|X| is not an integer, we define US to be uniform on the
bδ|X|c inputs that maximize f(), to have probability 0 on the |X| −
dδ|X|e inputs that minimize f(), and to have an appropriate probability
value on the remaining elements in order to make US δ-dense.

5



Claim 2.4 Let F : X → [0, 1] be a bounded function, let Z
andW be distributions such that E[F (Z)] ≥ E[F (W )]+ ε.
Then there is a real number t ∈ [ε/2, 1] such that

P [F (Z) ≥ t] ≥ P [F (W ) ≥ t− ε/2] + ε/2

By applying the claim with F = f̄ , Z = D and W =
US , we obtain a probability q and a threshold t such that

P
[
f̄(US) ≥ t− ε/2

]
= q

P
[
f̄(D) ≥ t

]
≥ q + ε/2

In particular, these conditions imply that the event that f̄ is
above the threshold t distinguishes between US and D. We
will now show that this event also distinguishes UX from
R. For this, we will use the fact that US is the δ-dense
distribution that maximizes f̄ .

Since q < 1 (as q+ ε/2 ≤ 1), we have that the condition
f̄(x) ≥ t − ε/2 fails for some elements of S. By the def-
inition of S, this condition also fails everywhere outside of
S. Recalling that S was chosen to contain a δ fraction of
the elements of X , we have

P
[
f̄(UX) ≥ t− ε/2

]
= δq. (4)

while, δ · P
[
f̄(D) ≥ t

]
≥ δq + δε/2. (5)

We have just shown that the indicator for the event that
f̄ is above the threshold t proves that D is not pseudo-
dense, with some additional slackness (in the sense that for
f(UX) we consider the smaller threshold t − ε/2). This
slackness will allow us to replace the threshold version of f̄
with low-complexity approximations, thus establishing the
theorem. We will use different approximations for Parts 1
and 2 of the theorem. In both cases, it will be useful to
assume that f̄ is a convex combination of (i.e. distribu-
tion on) functions in F ∪ −F rather than F ∪ (1 − F);
for f̄ =

∑
i cifi +

∑
j dj(1 − fj), this can be achieved by

reducing the threshold t by
∑
j dj .

Proof of Part (1). Viewing f̄ as a distribution over func-
tions f ∈ F ∪ −F , Chernoff bounds imply that it will
be well-approximated by the average of a few functions
sampled randomly from the distribution. We can get k =
O((1/ε2) · log(1/εδ)) functions f1, . . . , fk ∈ F ∪−F such
that

∑
i fi(x)/k is a good approximation of f̄(x) in the

sense that both

P

[∑
i

fi(UX) ≥ kt− .4kε

]
≤ δq + .1εδ

and also

P

[∑
i

fi(D) ≥ kt− .1kε

]
≥ q + .4ε

This means that if we define Boolean h by

h(x) = 1⇔

(∑
i

fi(x) ≥ kt− .4kε

)

we will have that h satisfies δ·E[h(D)]−E[h(UX)] ≥ Ω(εδ)
as required by the theorem.

3 Hardcore Theorems via Iterative Partition-
ing

Impagliazzo’s Hardcore Theorem [6] and its variants say
that if a function g : {0, 1}n → {0, 1} is “mildly hard”,
meaning that every “efficient” algorithm f errs in comput-
ing g on at least some δ fraction of inputs inX , then there is
a “hardcore” set H ⊂ {0, 1}n of inputs, of density roughly
δ, on which g is “very hard” to compute. In Impagliazzo’s
original formulation, “very hard” means that no efficient f
can compute g on a random input in H much better than
random guessing, i.e. f(x) = g(x) with probability at most
1/2 + ε on a random x ∈ H . This conclusion implies the
following three properties:

1. g is nearly balanced on H , i.e. Px∈H [g(x) = 1] ∈
[1/2 − ε, 1/2 + ε]. (Otherwise, a trivial constant pre-
dictor f would compute g with probability larger than
1/2 + ε.)

2. No efficient f can compute g on a random in-
put in H much better than a constant predictor,
i.e. Px∈H [f(x) = g(x)] ≤ max{Px∈H [g(x) =
0],Px∈H [g(x) = 1]}+ ε. (Indeed, the right-hand side
is always at least 1/2 + ε.)

3. No efficient f can distinguish a random element ofH∩
g−1(0) from a random element of H ∩ g−1(1), except
with probability O(ε). That is, for every efficient f ,∣∣∣∣ E

x∈H∩g−1(0)
[f(x)]− E

x∈H∩g−1(1)
[f(x)]

∣∣∣∣ ≤ O(ε)

(Using the fact that g is nearly balanced on H , it can
be shown that if f distinguishes the two distributions
with probability greater than 4ε, then either f or its
negation computes g correctly with probability greater
than 1/2 + ε on a random element of H .)

When g is nearly balanced on H (as in Property 1), then
Properties 2 and 3 are actually equivalent to the original
conclusion of the Hardcore Theorem (up to a constant fac-
tor change in ε). However, when g is not balanced on H ,
then they are weaker. Indeed, in the extreme case that g
is constant on H , then Property 2 trivially holds (because
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a constant predictor succeeds with probability 1) and Prop-
erty 3 is not even well-defined. But as long as we require
that g is not extremely biased on H , then both Properties 2
and 3 are already nontrivial and interesting (even if weaker
than the conclusion original Hardcore Theorem).

In this section, we will show how iterative partitioning
arguments, in the spirit of the proofs of the Szemerédi’s
Regularity Lemma [11] and the Green–Tao–Ziegler of the
Dense Model Theorems [3, 12], can be used to prove Hard-
core Theorems (albeit with a loss in efficiency that is expo-
nential in ε and δ). These will include one with a conclusion
of the same type as in Impagliazzo’s original result [6], as
well as ones establishing Properties 2 and 3 where we do
not guarantee g is nearly balanced (but only that it is not
extremely biased). The novel feature of our results estab-
lishing Properties 2 and 3 is that the hardcore set H is effi-
ciently recognizable. This feature is impossible to achieve
in general if we require that g be nearly balanced on H . In-
deed, if we select a random function g in which each input
is set to 1 independently with probability 1 − δ, then with
high probability, g will be mildly hard to compute, but will
be biased on every efficiently recognizable set of noticeable
density.6

We begin with our version of the Hardcore Theorem
where it is hard to compute g on H better than a constant
predictor. Let F be a class of functions and k be an integer
parameter. Then we denote by C(F , k) the class of func-
tions of the form h(f1(x), . . . , fk(x)), where fi ∈ F and
h : {0, 1}k → {0, 1} is arbitrary.

Theorem 3.1 Let F be a class of boolean functions, g :
{0, 1}n → {0, 1} be a function, ε, δ > 0 be given param-
eters. Then there is a k ≤ 1/δε2 such that the following
holds.

Suppose that for every f ∈ C(F , k) we have P[f(x) 6=
g(x)] > δ. Then there is a set H ⊆ {0, 1}n of density at
least δ — indeed, with both |H ∩ g−1(0)| and |H ∩ g−1(1)|
being of density at least δ/2 — such that, for every f ∈ F ,

Px∈H [f(x) = g(x)]
≤ max{Px∈H [g(x) = 1],Px∈H [g(x) = 0]}+ ε (6)

Furthermore, the characteristic function ofH is inC(F , k).

Note that since |H ∩ g−1(b)| ≥ (δ/2) · 2n for b = 0, 1,
it follows that g is not too biased on H . Specifically,
Px∈H [g(x) = b] ≥ δ/2 for both b = 0, 1. The main ineffi-
ciency in the theorem is that in order to derive the conclu-
sion, the function g must be mildly hard for all of C(F , k),

6Alternatively, we can set g(x) to be the first bit of x with probability
1− δ, independently for each x. Then g will be nearly balanced globally,
and can be computed with probability nearly 1 − δ on every efficiently
recognizable set. Thus, additionally requiring that g be globally balanced
does not help in strengthening the conclusion of the theorem.

which contains functions of circuit complexity exponential
in k.

Proof: Let P = (P1, . . . , Pm) be a partition of {0, 1}n.
Then we let Y (P) be the union of the sets Pi where g()
equals 1 on a majority of elements, and N(P) be the
union of the remaining sets. We say that a partition P =
(P1, . . . , Pm) satisfies the stopping condition if at least one
of the following conditions holds

• Y (P) ∩ g−1(0) has density at least δ/2 in {0, 1}n and
for every f ∈ F we have

Px∈Y (P)[g(x) = f(x)] ≤ Px∈Y (P)[g(x) = 1] + ε .

• N(P)∩ g−1(1) has density at least δ/2 in {0, 1}n and
for every f ∈ F we have

Px∈N(P)[g(x) = f(x)] ≤ Px∈N(P)[g(x) = 0] + ε .

Note that ifP satisfies the stopping condition, then either
Y (P) or N(P) have all the properties we require of the set
H in the statement of the theorem, except the efficient com-
putability. We will now show that we can find a partition
that satisfies the stopping condition and where Y (P) and
N(P) are efficiently computable.

First we introduce some terminology: the minority in-
puts in Y (P) are the inputs x ∈ Y (P) such that g(x) = 0;
similarly, the minority inputs in N(P) are the inputs x ∈
N(P) such that g(x) = 1

We construct the partition iteratively. We begin at the
0-th step with the trivial partition P := ({0, 1}n). We
maintain the invariant that, at step i, there are functions
f1, . . . , fi in F such that the partition at step i is gener-
ated by f1, . . . , fi in the following sense: the partition has
a set Pb1,...,bi for each bit string b1, . . . , bi, defined as

Pb1,...,bi
:= {x : f1(x) = b1 . . . fi(x) = bi} (7)

Note that the union of any subset of the sets in the partition
is computable in C(F , i). So we are done if, at some step
i ≤ 1/ε2δ, the partition satisfies the stopping condition.

Suppose then that the partition at step i does not satisfy
the stopping condition. Provided i ≤ k, we claim that the
total number of minority inputs in Y (P) andN(P) must be
at least δ · 2n. If not, consider the function that, on input x,
computes f1(x), . . . , fi(x), and then outputs the majority
answer in Pf1(x),...,fi(x); such a function is in C(F , i) and
it would compute g correctly on greater than a 1−δ fraction
of inputs.

This means that, if the partition does not satisfy the stop-
ping condition and i ≤ k, then there is a set H , which is
either Y (P) and N(P), that contains at least (δ/2) · 2n mi-
nority elements and such that there is a function f ∈ F
that has advantage ε over the constant predictor. We then
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refine our partition according to f . That is, at step i+ 1 our
partition is the one generated by f1, . . . , fi, f .

We want to show that this process terminates after no
more than k ≤ 1/ε2δ steps. To this end, we associate a
potential function to a partition, observe that the value of
the potential function is at most 1 and at least 0, and show
that at each step of the argument the value of the potential
function increases by at least ε2δ.

For a partition P = (P1, . . . , Pt), we define its potential
function as

E(P) :=
∑
P∈P

|P |
2n
· Px∈P [g(x) = 1]2 = E

P

[
E
x∈P

[g(x)]2
]
,

where the latter expectation is taken over a random block
P ∈ P chosen with probability |P |/2n. That is, we com-
pute the average over the blocks of the partition of the
square of the density of the YES instances of g inside each
blocks. Up to an additive term, this is the variance of the
density of YES instances of g across blocks. It is clear by
definition that this quantity is positive and at most 1.

The following claim (proof omitted) shows that if we
further divide every block in the partition according to the
value of f , then the energy increases.

Claim 3.2 Refining P according to f increases the E(P)
by at least δε2.

This means that the process we described above finds
a partition that satisfies the stopping condition after no
more than 1/δε2 steps. The theorem follows by setting
k = b1/δε2c.

We now state a more general result that implies the above
Hardcore Theorem, one of the original flavor (where g can-
not be computed on H with probability more than 1/2 + ε),
as well as one achieving Property 3 mentioned above (where
H∩g−1(0) andH∩g−1(1) are indistinguishable from each
other). The proof of the theorem is deferred to the full ver-
sion of the paper.

For a fixed function g : {0, 1}n → {0, 1}, and P ⊆
{0, 1}n, we write maj(P ) to denote the majority value of
g on P , min(P ) for the minority value, Pmaj to be the set
of elements of P on which g takes on value maj(P ), and
similarly Pmin.

Theorem 3.3 Let F be a class of boolean functions, g :
{0, 1}n → {0, 1} be a function, ε, δ > 0 be given param-
eters. Then there is a k ≤ 1/δ2ε2 such that the following
holds.

Suppose that for every f ∈ C(F , k) we have P[f(x) 6=
g(x)] > δ. Then there is a partition P = (P1, . . . , Pm) of
{0, 1}n such that such that

1.
⋃
P∈P P

min is of size at least δ · 2n, and

2. For every f ∈ F ,

E
P∈Dmin

[∣∣∣∣ E
x∈Pmaj

[f(x)]− E
x∈Pmin

[f(x)]
∣∣∣∣] ≤ ε,

where Dmin is the distribution that selects P ∈ P with
probability proportional to |Pmin|.

Moreover, the partition P is defined by k functions
f1, . . . , fk ∈ F (in the sense of Equation (7)).

From the above theorem implies a Hardcore Theorem of
the original form, giving a 2δ-dense H on which g is hard
to predict with probability greater than 1/2 + ε.

Corollary 3.4 Let F be a class of boolean functions, g :
{0, 1}n → {0, 1} be a function, ε, δ > 0 be given param-
eters. Then there is a k ≤ 1/δ2ε2 such that the following
holds.

Suppose that for every f ∈ C(F , k) we have P[f(x) 6=
g(x)] > δ. Then there is a distributionH that is 2δ-dense in
{0, 1}n such that for every f ∈ F , we have Px∈H [f(x) =
g(x)] < (1 + ε)/2.

4 Applications

In this section we discuss some additional applications
to of the Dense Model Theorems proved earlier.

We first show that if a distribution is pseudo-dense, then
it has large “pseudoentropy” in the sense of Håstad, Im-
pagliazzo, Levin and Luby [4]. In the non-uniform setting
(i.e. when the distinguishers are circuits), the implication
is an easy consequence of our main result. Using the tech-
niques of Barak, Shaltiel, and Wigderson [1], a form of this
implication can also be proved in the uniform case, when
the distinguishers are probabilistic algorithms instead of cir-
cuits.

We then apply a Dense Model Theorem to graphs, tak-
ing our universe X to be the set of all edges in the com-
plete graph on n vertices and distinguishers to be cuts in
the graph. In this setting, a graph is “pseudorandom” if
the probability that a random edge in the graph crosses a
given cut is approximately the same as in case of the com-
plete graph. Sparse expanders do satisfy this property, and
actually a slightly weaker condition suffices for our pur-
poses. We show that the Tao-Ziegler Dense Model Theo-
rem directly implies an analogue of Szemerédi’s Regularity
Lemma for dense subgraphs of such pseudorandom graphs.
Regularity Lemmas in the context of sparse graphs were
first proved by Kohayakawa and Rödl (for a survey, see [8]).

4.1 Characterizing Pseudoentropy

Recall that two distributions X and Y are ε-
indistinguishable for a class of (boolean) distinguishers F
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if
∀f ∈ F |E[f(Y )]− E[f(X)]| < ε.

(In this section, we are interested in the class Fs consist-
ing of all boolean circuits of size at most s.) We say that
a distribution X on {0, 1}n is ε-pseudorandom for F if
X is ε-indistinguishable from Un, the uniform distribution
on {0, 1}n. Håstad, Impagliazzo, Levin, and Luby [4] gen-
eralized the concept of pseudorandomness to the following
more general notion of pseudoentropy.

Definition 4.1 ([4]) 7 A distribution D on {0, 1}n has ε-
pseudoentropy k for F if there exists a distribution M on
{0, 1}n such that

1. H∞(M) ≥ k. That is, P[M = x] ≤ 2−k for all x.

2. M and D are ε-indistinguishable for F .

Since Un is the unique distribution on {0, 1}n with min-
entropy at least n, having ε-pseudoentropy n is equivalent to
being ε-pseudorandom. Now, to see the connection of this
notion with Dense Model Theorems, observe that a distribu-
tionM is δ-dense in Un iff H∞(M) ≥ n−log(1/δ). Dense
Model Theorems say that if a distribution D has pseudo-
density δ, then D has pseudoentropy n− log(1/δ). Specif-
ically, using Theorem 2.2, we get:

Corollary 4.2 Let D be a distribution on {0, 1}n that has
pseudodensity δ with respect to circuits of size s, with er-
ror ε. Then D has Ω(ε/δ)-pseudoentropy n − log(1/δ) for
circuits of size Ω(s · ε2/ log(1/εδ)).

We observe that the reverse implication also holds:

Proposition 4.3 If a distribution D on {0, 1}n has ε-
pseudoentropy n − log 1

δ for circuits of size s, then D is
δ-dense in some distribution R that is ε/δ-pseudorandom
for circuits of size s (and hence D has pseudo-density δ).

Thus, we have an equivalence between having pseudo-
density δ and having pseudoentropy n− log(1/δ). One im-
portant comment, however, is that both directions only give
nontrivial results when δ � ε. Typically, ε > 1/poly(s)�
1/2n, so the equivalence only characterizes the case when
discussing pseudoentropy n − log(1/δ) that is very high
(and says nothing about, say, pseudoentropy n/2). We de-
fer the analogue the above characterization for uniform dis-
tinguishers to the full version of the paper.

7Håstad et al. actually only require that the distribution is computa-
tionally indistinguishable from some distribution with Shannon entropy at
least k, but it is common to work with min-entropy instead. Indeed, even
the constructions of Håstad et al. work by first converting Shannon entropy
into min-entropy by taking many independent copies of the distribution.

4.2 Regularity Lemma for Sparse Graphs

We start by defining our family of distinguishers and
what it means to be pseudorandom with respect to those
distinguishers. We view an undirected graph G = (V,E)
as a subset of the universe X = V × V . An edge {u, v}
in the graph is counted as both pairs (u, v) and (v, u). We
refer to the uniform distribution over all the ordered pairs
corresponding to edges in G as UG. Our family of distin-
guishers F will consist of functions fS,T : V ×V → {0, 1}
for S, T ⊆ V, S ∩ T = ∅ defined as

fS,T (u, v) = 1⇔ u ∈ S and v ∈ T

Note that the class of distinguishers is closed under prod-
ucts since fS1,T1 · fS2,T2 = fS1∩S2,T1∩T2 . Thus, a distribu-
tion that fools all distinguishers in F also fools products of
functions from F .

Intuitively, the distinguishers check how often a pair
(u, v) selected according to some distribution crosses a cut
from S and T . Hence, for a graph G to be pseudoran-
dom, this probability must be the same whether we draw
the pairs from the distribution UG defined by the edges of
the graph or from the uniform distribution over X . When
the probability differs by at most η, we call the graph η-
pseudorandom.

Definition 4.4 We say a graph G is η-pseudorandom if
for every pair of disjoint sets S and T∣∣∣∣eG(S, T )

2|E(G)|
− |S||T |

n2

∣∣∣∣ < η

where e(S, T ) denotes the number of edges in G with one
endpoint in S and the other in T and E(G) denotes the set
of edges in G.

Note that the quantity on the left in the definition of pseu-
dorandomness is exactly the probability with which fS,T
distinguishes UG and UX and hence η-pseudorandomness
is equivalent to being η-indistinguishable by functions in
F .

We now prove a Dense Model Theorem for dense sub-
graphs of pseudorandom graphs.

Theorem 4.5 (Dense Model Theorem for Graphs) Let G
be an η-pseudorandom graph and let H be a subgraph of
G with δ|E(G)| edges. Then there exists a graph H ′ with
at least δn2/2 edges such that for all pairs of disjoint sets
S, T ⊆ V ∣∣∣∣eH(S, T )

2|E(H)|
− eH′(S, T )

2|E(H ′)|

∣∣∣∣ < ε

provided η = exp(−poly(1/ε, 1/δ)).
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We now proceed to variants of the regularity lemma
for subgraphs of pseudorandom graphs described earlier.
Roughly speaking, regularity lemmas state that a graph can
be divided into a constant number of “pieces” such that the
edges between most pairs of pieces are very uniformly dis-
tributed. This uniformity is measured by the concept of reg-
ularity.

Definition 4.6 Given a graph H and ε > 0, we say that a
pair of disjoint subsets A,B ⊆ V is ε-regular in H if for
every S ⊆ A, |S| ≥ ε|A| and T ⊆ B, |T | ≥ ε|B|, we have∣∣∣∣eH(A,B)

|A||B|
− eH(S, T )
|S||T |

∣∣∣∣ ≤ ε|E(H)|
n2

When G is the complete graph and H is any δ-dense
subgraph (i.e. any graph with δn2/2 edges), we are in the
setting of Szemerédi’s regularity lemma, which says that H
can be partitioned into a constant number of subsets such
that most pairs of subsets are regular.

Theorem 4.7 (Regularity lemma for dense graphs)
Let ε, δ > 0 and k0 ≥ 1 be given. Then there exists a
constant K = K(ε, δ, k0) ≥ k0 such that if H is graph
|EH | ≥ δn2, then there exists a partition of V into disjoint
sets A0, . . . , Ak for k0 ≤ k ≤ K with the following
properties

1. |A0| ≤ εn

2. |A1| = . . . = |Ak|

3. At most ε
(
k
2

)
pairs (Ai, Aj) for 1 ≤ i < j ≤ k are not

ε-regular (w.r.t the complete graph)

We now state (without proof) our version of the regular-
ity lemma for sparse graphs. For simplicity, we only state
the non-bipartite version.

Theorem 4.8 (Regularity lemma for sparse graphs) Let
ε, δ > 0 and k0 ≥ 1 be given. Then there exist constants
η = η(ε, δ, k0) > 0 and K = K(ε, δ, k0) ≥ k0 such
that if G is η-pseudorandom and H is any subgraph of G
with |EH | ≥ δ|EG|, then there exists a partition of V into
disjoint setsA0, . . . , Ak for k0 ≤ k ≤ K with the following
properties

1. |A0| ≤ ε1n

2. |A1| = . . . = |Ak|

3. At most ε
(
k
2

)
pairs (Ai, Aj) for 1 ≤ i < j ≤ k are not

ε-regular with respect to G.

Using the Dense Model Theorem, we can also show
sparse analogues of the weak regularity lemma. As op-
posed to Theorem 4.8 which requires most pairs in the par-
tition to be regular, weak regularity only requires that pairs
be regular on average.

A more complete discussion including the statements
and proofs of different variants the sparse regularity lemma
can be found in the full version of the paper.

Acknowledgments

We thank Terence Tao, Avi Wigderson, Noga Alon, Rus-
sell Impagliazzo, Yishay Mansour, and Timothy Gowers for
comments, suggestions and references. We also thank the
anonymous reviewers for their feedback.

References

[1] B. Barak, R. Shaltiel, and A. Wigderson. Computational
analogues of entropy. In Proceedings of RANDOM’03,
pages 200–215, 2003.

[2] T. Gowers. Decompositions, approximate structure, trans-
ference, and the Hahn-Banach theorem. Preprint, 2008.

[3] B. Green and T. Tao. The primes contain arbitrarily long
arithmetic progressions. To appear in Annals of Mathemat-
ics. math.NT/0404188, 2004.
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