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Abstract. We study the round complexity of two-party protocols for generating a random
n-bit string such that the output is guaranteed to have bounded “bias,” even if one of the two
parties deviates from the protocol (possibly using unlimited computational resources). Specifically,
we require that the output’s statistical difference from the uniform distribution on {0, 1}n is bounded
by a constant less than 1. We present a protocol for the above problem that has 2 log∗ n + O(1)
rounds, improving a previous 2n-round protocol of Goldreich, Goldwasser, and Linial (FOCS ’91).
Like the GGL Protocol, our protocol actually provides a stronger guarantee, ensuring that the output
lands in any set T ⊆ {0, 1}n of density μ with probability at most O(

√
μ + δ), where δ may be an

arbitrarily small constant. We then prove a nearly matching lower bound, showing that any protocol
guaranteeing bounded statistical difference requires at least log∗ n−log∗ log∗ n−O(1) rounds. We also
prove several results for the case when the output’s bias is measured by the maximum multiplicative
factor by which a party can increase the probability of a set T ⊆ {0, 1}n.
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1. Introduction. One of the most basic protocol problems in cryptography and
distributed computing is that of random selection, in which several mutually distrust-
ing parties aim to generate an n-bit random string jointly. The goal is to design a
protocol such that even if a party cheats, the outcome will still not be too “biased.”
(There are many different choices for how to measure the “bias” of the output; the one
we use will be specified later.) Random selection protocols can dramatically simplify
the design of protocols for other tasks via the following common methodology: first,
design a protocol in a model where truly random strings are provided by a trusted
third party (generally a much easier task), and then use the random selection proto-
col to eliminate the trusted third party. Specific applications of this paradigm often
require random selection protocols with specific additional properties (such as “sim-
ulatability”), but the basic requirement of bounded “bias” in the face of adversarial
behavior is always present in some form and thus merits study on its own.

Because of their wide applicability, there is a large literature on random selection
protocols, both in the computational setting, where cheating parties are restricted
to polynomial time (starting with Blum’s “coin flipping by telephone” [Blu82]), and
in the information-theoretic setting, where security is provided even against com-
putationally unbounded adversaries. There has also been a significant amount of
recent work on random selection in the quantum setting, where the communication
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consists of quantum bits (qubits) and security is provided against a computationally
unbounded quantum adversary; see [Amb04] and the references therein.

In this paper, we focus on two-party protocols in the (classical) information-
theoretic setting (also known as the “full information model”). In addition to its
stronger security guarantees, the information-theoretic setting has the advantage
that protocols typically do not require complexity-theoretic assumptions (such as
the existence of one-way functions). Various such random selection protocols have
been used to construct perfectly hiding bit-commitment schemes [NOVY98], to con-
vert honest-verifier zero-knowledge proofs into general zero-knowledge proofs [Dam94,
DGW94, GSV98], to construct oblivious transfer protocols in the bounded stor-
age model [CCM98, DHRS04], and to perform general fault-tolerant computation
[GGL98]. There has also been substantial work in the k-party case for k ≥ 3, where
the goal is to tolerate coalitions of a minority of cheating players. This body of work in-
cludes the well-studied “collective coin-flipping” problem [BL89, Sak89, AN93, BN00,
ORV94, RZ01, Fei99] (closely related to the “leader-election” problem) and again the
use of random selection as a tool for general fault-tolerant computation [GGL98].

In most of the lines of work mentioned above (computational and information-
theoretic, two-party and k-party), the round complexity has been a major parameter of
interest. For some forms of random selection and their applications, constant-round
protocols have been found (e.g., [DGW94, GSV98] improving [Dam94], [DHRS04]
improving [CCM98], and [Lin01, KO04] improving [Blu82, Yao86]), but for others the
best known protocols have a nonconstant number of rounds, e.g., [Cle86, NOVY98,
GGL98, RZ01]. Lower bounds on round complexity, however, have proven much more
difficult to obtain. In the computational setting, Cleve [Cle86] proved that for two-
party random selection protocols, the number of rounds must grow linearly as the bias
of the output tends to zero. (See also [CI93].) Ambainis [Amb04] gave a similar kind
of result for two-party quantum protocols for leader election, a.k.a. weak coin flipping.
As far as we know, all other previous round complexity lower bounds impose additional
constraints on the protocol (beyond the basic security guarantee of bounded bias). For
example, in the computational setting, it has been recently shown that five rounds are
necessary and sufficient for random selection protocols satisfying a certain “black-box
simulation” condition [KO04]. In the information-theoretic setting, a long line of work
on the collective coin-flipping problem has culminated in the (log∗ n + O(1))-round
protocol of Russell and Zuckerman [RZ01] (see also Feige [Fei99]), but the only known
lower bound (of Ω(log∗ n) rounds), due to Russell, Saks, and Zuckerman [RSZ02], is
restricted to protocols where each party can communicate only a small number of bits
per round. Without this restriction, it is not even known how to prove that one round
is impossible.

The problem and main results. As mentioned above, previous works on ran-
dom selection have considered a number of different measures of the bias of the output,
typically motivated by particular applications. Here we focus on what we consider
to be the most natural measure—the statistical difference (i.e., total variation dis-
tance) of the output from the uniform distribution. The statistical difference be-
tween two random variables X and Y taking values in a universe U is defined to be
maxS⊆U |Pr [X ∈ S] − Pr [Y ∈ S] |. We call the maximum statistical difference of
the output from uniform when a player is honest (but when the other may deviate
arbitrarily from the protocol) that player’s statistical guarantee. We seek a two-party
protocol that produces an output in {0, 1}n such that both players’ statistical guar-
antees are constant (i.e., bounded away from 1). Equivalently (see Lemma 2.4), we
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want to satisfy the following criterion.
Statistical Criterion: There are fixed constants μ > 0 and ε > 0 such that for every

n and every subset T ⊆ {0, 1}n of density at most μ, the probability that the
output lands in T is at most 1− ε, even if one party deviates arbitrarily from
the specified protocol.

In addition to being a natural choice, this criterion is closely related to others con-
sidered in the literature. In particular, the standard criterion for the “collective coin-
flipping” problem is that output bit B ∈ {0, 1} satisfies max{Pr [B = 0], Pr [B = 1]} <
p, where p is a constant less than 1; this is equivalent to B’s statistical difference from
uniform being bounded away from 1. (Here we see that the problem we consider is
in some sense “dual” to collective coin flipping—we restrict ourselves to two players,
but the output comes from a large set, whereas in collective coin flipping there are
many players, but the output has only two possibilities.)

Of course, the first question is whether or not the Statistical Criterion can be met
at all, regardless of round complexity. Indeed, being able to tolerate computationally
unbounded cheating strategies is a strong requirement. In fact, when n = 1 (i.e.,
the output is a single bit), it turns out that one of the two parties can always force
the outcome to be constant [Sak89]. This implies that the Statistical Criterion is
impossible to meet for μ = 1/2. Surprisingly, the criterion is achievable, however, for
some smaller constant μ > 0. This is implied by the following result of Goldreich,
Goldwasser, and Linial [GGL98].

Theorem 1.1 (see [GGL98]). For every n, there is a two-party protocol producing
output in {0, 1}n such that, as long as one party plays honestly, the probability that
the output lands in any set T ⊆ {0, 1}n of density μ is at most p = O(

√
μ). The

protocol has 2n rounds.
Notice that for sufficiently small μ, the probability p is indeed a constant less

than 1. This implies that the Statistical Criterion is achievable with a linear number
of rounds. Our goal is to determine the minimal round complexity of this problem.

First, we give a protocol achieving the Statistical Criterion with substantially
fewer rounds than the above.

Theorem 1.2. For every constant δ > 0, there is an efficient two-party protocol
producing output in {0, 1}n with 2 log∗ n+O(1) rounds such that, as long as one party
plays honestly, the probability that the output lands in any set T of density μ is at
most p = O(

√
μ + δ).

Our protocol is inspired by the log∗ n-round protocols for leader election [RZ01,
Fei99] and Lautemann’s proof that BPP is contained in the polynomial hierarchy
[Lau83]. Specifically, we exhibit a two-round protocol that reduces the universe of size
N = 2n to a universe of size polylog(N), while approximately preserving the density
of the set T with high probability. Repeating this protocol log∗ n times reduces the
universe size to a constant, after which point we apply the GGL Protocol.

Second, we prove a lower bound that matches the above up to a factor of 2+o(1).
Theorem 1.3. Any two-party protocol producing output in {0, 1}n that satisfies

the Statistical Criterion must have at least log∗ n− log∗ log∗ n−O(1) rounds.
Our proof of this theorem is a technically intricate induction on the game tree

of the protocol. Roughly speaking, we associate with each node z of the game tree
a collection H of very small sets such that if the protocol is started at z and R is a
random subset of the universe of density o(1), then one of the players X can force the
outcome of the protocol to land in R∪S with probability 1−o(1) for any S ∈ H. The
challenge is to keep the size of the sets in the collections H small as we induct up the
game tree (so that they remain of density o(1) when z is the root, which yields the
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desired lower bound). In particular, a node can have an arbitrary number of children,
and so we cannot afford to take unions of sets S occurring across all children. The
key idea that allows us to keep the sets small is the following: We consider two cases:
If we have a collection of sets that contains a large disjoint subcollection, then the
random set R will contain one of the sets with high probability, and so we do not need
to carry the set through the recursion. On the other hand, if the collection of sets has
no large disjoint subcollection, then we show how we can use this fact to construct a
successful strategy for the other player (based on how we inductively construct the
collections H).

We stress that our lower bound does not impose any additional constraint on
the protocol, such as the number of bits sent per round. Thus, we hope that our
techniques can help in establishing unrestricted lower bounds on round complexity
for other problems, in particular for the collective coin-flipping (and leader-election)
problem.

Results on multiplicative guarantees. A different measure of the quality of
random selection protocol is a multiplicative guarantee ρ, whereby we require that even
if one player cheats, the probability that the outcome lands in any set T of density
μ is at most ρ · μ. The goal, naturally, is for ρ to be as small as possible (ideally a
constant independent of n). Previous protocols, e.g., the one in [DGW94], have given
a multiplicative guarantee to one player, while the other has a statistical guarantee
(i.e., a bound on the output’s statistical difference from uniform if the other cheats).
Our observations and results on multiplicative guarantees are the following:

• If both parties have multiplicative guarantees ρA and ρB , then an argument
of [GGL98] implies ρA · ρB ≥ 2n, regardless of the number of rounds. On
the other hand, for any desired ρA, there is a simple two-round protocol with
multiplicative guarantees of ρA and 2n/ρA for the two players.

• If one party has a multiplicative guarantee ρ and the other has a statistical
guarantee ε, then ε ≥ 1/ρ − 1/2n. This explains inverse relationships in
existing protocols of [DGW94] (where ε = 1/poly(n) and ρ = poly(n)) and
[GSV98] (where ε = poly(n) · 2−k and ρ = 2k for any k).1

• There is a protocol with 2 log∗ n + O(1) rounds that provides a constant
statistical guarantee to one player and a 1+ δ multiplicative guarantee to the
other, for an arbitrarily small constant δ. Theorem 1.3 implies that this round
complexity is tight up to a constant factor, because a constant multiplicative
guarantee implies a constant statistical guarantee.

Notation for logarithms. As in other work [RZ01], for the purposes of this paper,

we define log
(k)
b n to be k base-b iterated logarithms of n, with 1 being a minimum

value:

log
(k)
b n =

{
1 : if log

(k−1)
b n < b,

logb

(
log

(k−1)
b n

)
: otherwise,

with log
(0)
b n = n. Moreover, for n ≥ 1, we define log∗b n to be the least natural number

k such that log
(k)
b n = 1. Throughout the paper, we take the base of the logarithms

to be b = 2 unless otherwise specified.

1Actually, the protocol of [GSV98] does not provide a multiplicative guarantee of 2k but rather
ensures that the probability that the output lands in any set T of density μ is at most 2k · μ + o(1).
Our lower bound also applies to this more general type of guarantee.
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2. Defining random selection protocols. Although we introduced the prob-
lem for a universe {0, 1}n, for the rest of the paper we assume we have an arbitrary
universe U . We can formally characterize a random selection protocol as follows.

Definition 2.1. A random selection protocol Π = (A,B, f) over a universe
U consists of a pair of programs A and B and a function f such that we have the
following:

• Both A (Alice) and B (Bob) alternately output strings (“messages”) mi of
arbitrary length that are a function of the conversation thus far and their
sequences of random coin tosses rA and rB, respectively. That is, m1 =
A(rA), m2 = B(rB ,m1), m3 = A(rA,m1m2), etc.

• The conversation between Alice and Bob is the transcript (A,B) = (m1,m2,
. . . ,mr), where r is a parameter defining the number of messages (also called
the number of “rounds” or “turns”) of the protocol.

• The output of the protocol is f((m1,m2, . . . ,mr)), which is some element
of U .

We are interested in the behavior of the protocol when one of these programs is
replaced with an arbitrary “cheating” program A∗ or B∗, which may send its messages
as an arbitrary function of the conversation and input length. If the cheating program
“aborts” or sends an irregular message (too long, ill-formed, etc.), the protocol can
assume it has sent the empty string.

Although the formulation we have provided assumes a protocol operates over a
single fixed universe, in general we will be interested in studying asymptotic behavior
of protocols as the universe size increases. Thus, we define a random selection protocol
ensemble to be a sequence (Π(1),Π(2), . . . ) where each Π(N) is a protocol over U =
{1, . . . , N}. From now on, we blur the distinction between random selection protocols
over a fixed universe and random selection protocol ensembles.

Two additional desirable properties of random selection protocols are the follow-
ing: (a) the output is uniformly distributed in U assuming honest players; (b) in a
protocol ensemble, honest strategies can be computed in time polynomial in the out-
put length, logN . Our protocols will have these properties, but our lower bounds will
apply even to protocols without them.

We now introduce a formalism that will be essential in the proofs in this paper.
Definition 2.2. Given a protocol Π over universe U , define the game tree T as

follows:
• A set of nodes V , each representing a partial transcript of messages, (m1, . . . ,

mi).
• A set of edges E, defined by (u, v) ∈ E if and only if u = (m1, . . . ,mi) and

(abusing notation) v = (u,mi+1), for some message mi+1. That is, u has v
as a child if v is a potential protocol state one message after state u. Note
that this makes T a tree, rooted at the empty transcript.

• For each node z, a distribution Dz over the children zi whereby A or B chooses
the next message (where the children are all nodes zi such that (z, zi) ∈ E).

• For every leaf z = (m1, . . . ,mr), a label equal to f((m1, . . . ,mr)), the output
of the protocol ending at node z.

One can verify that this formalism produces an equivalent specification to Defi-
nition 2.1 of a random selection protocol.

Just as any node of a tree can be viewed as the root of another tree, any node of
a protocol’s game tree induces its own random selection protocol starting from that
state. We simply fix the messages leading to that node and have the players choose
the remaining messages as in the original protocol. This observation is one of the
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main reasons that the abstraction of a random selection protocol as a tree will prove
useful.

Evaluating a random selection protocol. We evaluate random selection pro-
tocols with metrics measuring how “close” the output is to the uniform distribution
on U . The primary metric we use is the following.

Definition 2.3. The statistical difference from uniform of a distribution X over
universe U is defined to be

max
T

∣∣∣ Pr
x←X

[x ∈ T ] − μ(T )
∣∣∣ = max

T

(
Pr

x←X
[x ∈ T ] − μ(T )

)
,

where T ⊆ U and μ(T ) is the density of T in U , |T |/|U|.
It can be verified that this distance is in the interval [0, 1− 1/N ], where N is the

size of the universe U . A statistical difference of 0 implies that X is uniform, and
1 − 1/N implies X is concentrated on a single point. It is equal to one-half of the �1
distance between X and the uniform distribution, where we view each as a vector in
[0, 1]N .

We will want to avoid output distributions X whose statistical difference from
uniform is very close to 1. The following lemma demonstrates that this (undesirable)
property is equivalent to X landing in a small set with high probability.

Lemma 2.4. If X has statistical difference at least 1− ε from uniform, then there
exists a set T such that μ(T ) ≤ ε and Prx←X [x ∈ T ] ≥ 1 − ε. Conversely, if there
exists such a set T , then X has statistical difference at least 1 − 2ε from uniform.

Proof. If X has statistical difference at least 1− ε from uniform, then there exists
a set T such that Pr[x ∈ T ] − μ(T ) ≥ 1 − ε. Since Pr[x ∈ T ] ≤ 1, we can conclude
that μ(T ) ≤ ε, and since μ(T ) ≥ 0, we can conclude that Pr[x ∈ T ] ≥ 1 − ε. The
second statement follows directly from the definition of statistical difference.

Given these metrics, we can define the following.
Definition 2.5. Let Π = (A,B, f) be a random selection protocol. The statisti-

cal guarantee for Alice playing honest strategy A in Π, denoted εA, is the maximum
over all B∗ of the statistical difference between the distribution of f((A,B∗)) and the
uniform distribution over U . The guarantee for Bob is defined analogously.

Intuitively, the guarantee of a protocol for a player bounds the damage that the
opponent can effect on the distribution by deviating from the protocol. Unfortunately,
the terminology here is a bit counterintuitive—the lower the number, the better the
guarantee. We will try to avoid confusion by saying a guarantee is “at best x,” rather
than “at least x.”

Armed with this notion of a guarantee, we can state the following important
equivalence, following directly from Lemma 2.4.

Proposition 2.6. The Statistical Criterion is equivalent to both of the statistical
guarantees of a protocol being bounded away from 1.

Later on, we will prove the following proposition, which lower bounds the ability
of any protocol to provide strong statistical guarantees to both players simultaneously.

Proposition 2.7. In any random selection protocol Π over universe U achieving
statistical guarantees εA and εB, εA + εB ≥ 1 − 1/N , where N = |U|.

In addition to statistical guarantees, we also consider multiplicative guarantees,
which come from bounds on multiplicative difference.

Definition 2.8. The multiplicative ratio of a distribution X is

max
T

Pr
x←X

[x ∈ T ]/μ(T ),
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where T ranges over all nonempty subsets of U . Similarly to Definition 2.5, for a
random selection protocol Π = (A,B, f), we define the multiplicative guarantee ρA
(resp., ρB) for Alice (resp., Bob) by taking the maximum multiplicative ratio over all
cheating strategies B∗ (resp., A∗).

The multiplicative ratio is always a rational in [1, N ], where 1 implies the uniform
distribution, and N implies one element is chosen with probability 1. The multiplica-
tive ratio of a distribution is actually equal to the factor by which a single element’s
probability of being the protocol’s output can be increased from uniform. Formally,
we have the following lemma.

Lemma 2.9. The multiplicative ratio of a distribution X is equal to

max
s∈U

(
N · Pr

x←X
[x = s]

)
.

Later on, we will prove the following result from [GGL98].
Theorem 2.10 (see [GGL98]). For any protocol Π, we have ρA · ρB ≥ N .
When the universe is {0, 1}n (i.e., N = 2n), this theorem implies that one player

can always increase the probability that a single element is chosen by an exponential
factor—namely, 2n/2.

While both measures bound the deviation of a distribution from uniform, mul-
tiplicative ratio tends to focus on the concentration of probability into small sets
(indeed, by Lemma 2.9, sets of size 1), while statistical difference will prove more
useful when considering larger subsets (e.g., a constant fraction of the universe).

This said, we can prove some basic relationships between the two metrics that
will prove useful.

Lemma 2.11. Let X be an arbitrary distribution over universe U , with N = |U|.
Denote by ε the statistical difference of X from uniform and by ρ the multiplicative
difference from uniform. Then

1. ρ ≤ Nε + 1,
2. ε ≤ 1 − 1/ρ.

Part 2 of Lemma 2.11 implies that a distribution with a constant multiplicative
ratio will have a constant statistical difference, though the converse is not necessarily
true. Put another way, a strong multiplicative guarantee is harder to achieve than a
strong statistical guarantee.

Proof of Lemma 2.11. By Lemma 2.9, we have ρ = N · maxs∈U Prx←X [x = s].
But by the definition of statistical difference, we have for any x ∈ U , Prx←X [x = s] ≤
ε + 1/N , by setting T = {s}. Part 1 of the lemma follows.

For part 2, it suffices to show that for all T , Prx←X [x ∈ T ] − μ(T ) ≤ 1 − 1/ρ. If
μ(T ) ≥ 1/ρ, then this certainly holds. Otherwise, Prx←X [x ∈ T ] ≤ |T | · (ρ/N) =
μ(T )ρ, which implies that Prx←X [x ∈ T ] − μ(T ) ≤ Prx←X [x ∈ T ](1 − 1/ρ) ≤
1 − 1/ρ.

3. The Iterated Random Shift Protocol. In this section, we describe the
main protocol of this paper, the Iterated Random Shift Protocol, and prove its main
properties. That is, we show that for any constant δ, Iterated Random Shift is a
(2 log∗ N + O(1))-round protocol where the probability that the output falls in a set
of density μ is at most O(

√
μ + δ). It follows that the protocol satisfies the Statistical

Criterion given above.

3.1. The GGL Protocol. We begin by briefly describing the 2 logN -round
protocol satisfying the Statistical Criterion given by Goldreich, Goldwasser, and Linial
[GGL98], which we will use in the construction of our protocol.
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The GGL Protocol (idealized). Let U be a universe of size N , where N is a power
of 2.

1. Alice randomly divides U into two equal-sized halves and sends this partition
to Bob.

2. Bob randomly selects one of the halves, randomly divides it, and sends the
resulting partition to Alice.

3. This process continues until one element remains: this element is the output
of the protocol.

Actually, to obtain a protocol with computation time polylogarthmic in N , the
authors use pairwise independent partitions of the universe. They first prove that
this protocol achieves that, as long as one party plays honestly, the probability that
the output lands in any set T ⊆ U of density μ is at most p = O(μ1/4).

They go on to improve this result by using a slightly different protocol to achieve
Theorem 1.1 (Theorem 23 in [GGL98]), which improves the bound to p = O(

√
μ).

3.2. The Random Shift Protocol. The Iterated Random Shift Protocol is
inspired by the log∗ n-round protocols for leader election [RZ01, Fei99] and Laute-
mann’s proof that BPP is contained in the polynomial hierarchy [Lau83]. It is built
by iteration of the following two-round protocol, which we will call the Random Shift
Protocol.

The Random Shift Protocol. Given a universe U of size N and m ∈ N,
1. Alice uniformly randomly selects and sends a sequence of elements a1, . . . , am ∈

U ;
2. Bob uniformly randomly selects and sends a sequence of elements b1, . . . , bm ∈

U ;
3. output the sequence (ai + bj)1≤i,j≤m, where + is a group operation over U .

Note that the Random Shift Protocol is not, strictly speaking, a random selection
protocol over U : its output is a sequence of elements from the universe. In using it,
we will typically choose the parameter m so that the number of output elements,
m2, is much smaller than N (e.g., m = polylog(N)) and recursively use our random
selection protocol to select one of the m2 output elements. To show that this approach
yields a protocol with bounded statistical guarantees, we argue that even if one of the
players cheats, any subset T of the universe is unlikely to appear in much more than
a μ(T ) fraction of the outputs of the Random Shift Protocol. This is formalized by
the following lemma.

Lemma 3.1. Let T be an arbitrary subset of U . Let μ(T ) = |T |/N , and let
μ′(T ) denote the density of T in the sequence output by the Random Shift Protocol:
μ′(T ) = #{(i, j) : ai + bj ∈ T}/m2. Then as long as one player plays honestly (i.e.,
chooses elements uniformly at random) and m ≥ (1/2δ2) · log(N/ε), we have

Pr[μ′(T ) ≥ μ(T ) + δ] ≤ ε.

That is, when one player is honest, the sequence (ai + bj)ij will be sufficiently
random so that it is very unlikely that the density of T in the output sequence will
increase substantially.

Proof. Suppose Alice plays honestly and chooses her elements a1, . . . , am uni-
formly at random from U . The lemma certainly holds a fortiori for an honest Alice,
as a cheating Bob can see what elements Alice has selected.

For each element b ∈ U , define the random variables

X
(b)
i =

{
1 if (ai + b) ∈ T,
0 otherwise.
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Then define X(b) = (1/m)
∑m

i=1 X
(b)
i . Notice that E[X

(b)
i ] = μ(T ) and, for each b,

the random variables X
(b)
1 , . . . , X

(b)
m are mutually independent.

By a Chernoff bound, we may conclude the following for any δ:

Pr[X(b) ≥ μ(T ) + δ] ≤ e−2δ2m ≤ 2−2δ2m ≤ ε/N.

Using a union bound, we conclude that

Pr[∃b ∈ U such that X(b) ≥ μ(T ) + δ] ≤ N · ε/N = ε.

But if for all b we have X(b) < μ(T )+ δ, then no matter what elements b1, . . . , bm
Bob chooses, we have

μ′(T ) = (1/m)

m∑
j=1

X(bj) < μ(T ) + δ.

It follows that Pr[μ′(T ) ≥ μ(T ) + δ] ≤ ε as desired.
Remark 3.2. We note that the number of elements sent by Bob need only be

(1/2δ2) · log(1/ε) (i.e., the logN factor can be eliminated), since there is no need to
do a union bound as in the above proof when proving Bob’s guarantee. However, the
symmetry of the protocol as presented above has the advantage that it can actually be
implemented in one round in a model of simultaneous communication (where honest
parties can send messages at the same time, but a cheating party may wait to see
the other party’s message before sending its own message), as is typically used in
many-party protocols (e.g., leader election and collective coin flipping). This reduces
the round complexity of our Iterated Random Shift Protocol below to log∗ N + O(1)
in the simultaneous communication model. It is interesting to know whether our
lower bound of log∗ N − log∗ log∗ N −O(1) rounds (in section 4.2) can be extended to
the simultaneous communication model (without paying the factor of 2 in the trivial
reduction to our nonsimultaneous model), since we would then have bounds in that
model that are tight up to a factor of 1 + o(1).

3.3. The Iterated Random Shift Protocol. We now describe our Iterated
Random Shift Protocol satisfying Theorem 1.2, which consists of recursively applying
the Random Shift Protocol until the universe size is small (say, less than a fixed con-
stant), after which we apply the GGL Protocol from [GGL98] discussed in section 3.1.
Formally, we have the following.

The Iterated Random Shift Protocol. Given a universe U of size N and M ∈ N

being a sufficiently large “cutoff parameter” that is a power of 2, we have the following
three cases:

1. If N > M2, then letting m = max{M, 	log3 N
}, execute the following:
(a) Alice uniformly randomly selects and sends a sequence of elements a1, . . . ,

am ∈ U .
(b) Bob uniformly randomly selects and sends a sequence of elements b1, . . . ,

bm ∈ U .
(c) Recursively execute the protocol on universe U ′ = [m] × [m] to obtain

result (i, j) and output ai + bj .
2. If N = M2, run the GGL Protocol on U and output its result.
3. If N < M2, recursively use the protocol on universe U ′ = U × [M2] to obtain

result (x, y) and output x.
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First, we observe that, assuming M is chosen sufficiently large, the recursion will
always terminate with an application of case 2 (the GGL Protocol): When we run
case 1, we have |U ′| = m2 = max{M2, 	log3 N
} ≤ max{M2, N − 1} for sufficiently
large N , and so eventually the universe size will equal M2, provided M is large enough.
Case 3 will be executed at most once and is present only to avoid running the GGL
Protocol immediately if the universe size is not a power of 2.

Observe that the output of this protocol is uniform if both players are playing
honestly—by symmetry, all elements of the universe are equally likely to be selected.
We note also that, by inspection, the honest players’ strategies and the output of the
protocol can certainly be computed in polynomial time.

We now analyze the round complexity of the Iterated Random Shift Protocol.
Proposition 3.3. For all sufficiently large M and all N , the Iterated Ran-

dom Shift Protocol over a universe U of size N with parameter M takes 2 log∗ N +
O(logM) rounds. Moreover, the strategies of the players are computable in time
poly(logN, logM).

Proof. Each application of the Random Shift Protocol (except for the last) reduces
the universe size from N to 	log3 N
2 < log7 N for sufficiently large N and takes two
rounds. A lemma proven in [RZ01] states that if f(n) ≤ loga n for some constant a,
then f (log∗ n)(n) ≤ b for some constant b depending only on a, where f (k) represents
k repeated applications of f . This implies that if M is sufficiently large and the
initial universe size is N ≥ M2, the Random Shift Protocol is applied at most log∗ N
times. (If N < M2, then we apply the Random Shift Protocol at most log∗(NM2) =
log∗ N + O(logM) times.) By Theorem 1.1, the GGL Protocol on a universe of size
at most M2 takes at most 4 logM rounds.

As for the efficiency of the protocol, note that the players need only generate
in each round a number of random bits that is polylogarithmic in the size of the
universe.

3.4. The statistical guarantees of the Iterated Random Shift Protocol.
Theorem 3.4. If M ≥ 1/δ3, then for any set T ⊆ U , the probability that

the output of the Iterated Random Shift Protocol lands in T is O(
√
μ + δ), where

μ = μ(T ), assuming at least one player plays honestly.
Corollary 3.5. For a sufficiently large constant M , the Iterated Random Shift

Protocol satisfies the Statistical Criterion. Equivalently, there exists a constant ε > 0
such that the Iterated Random Shift Protocol achieves max{εA, εB} ≤ 1 − ε.

Observe that Theorem 3.4 is much stronger than what we need to show Corol-
lary 3.5. Using Theorem 3.4, we know that when one player is honest, for any “small”
set T , the probability that the output falls in T is close to zero. The Statistical
Criterion requires only that this probability is not arbitrarily close to 1.

Proof of Theorem 3.4. The key idea is that in the ith application of the Random
Shift Protocol, we can bound the increase in density of any particular set T by at most
some small δi (with high probability) and these δi’s can be chosen so that

∑
i δi ≤ δ.

The Iterated Random Shift Protocol concludes by applying the GGL Protocol to this
small universe, and then Theorem 1.1 gives us the result.

We first note that the modification of the protocol in case N < M2, selecting
from U × [M2] and taking the first component, does not affect the property claimed
in the theorem (because the density of T × [M2] in U × [M2] equals the density of T
in U). Thus we assume that N ≥ M2, and let N0, N1, . . . , Nk∗ be the universe sizes
in an execution of the Iterated Random Shift Protocol, where k∗ is the first value of
k such that Nk = M2. That is,
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N0 = N,

Nk = m2
k for mk = max{M, 	log3 Nk−1
}.

Note that for sufficiently large M , the sequence of Ni’s is strictly decreasing, and
there exists a finite k∗ such that Nk∗ = M2.

Given a subset T ⊆ U , we track how T evolves through an execution of the
Iterated Random Shift Protocol using the following notation for k = 0, . . . , k∗:

U0 = U , Uk = [mk] × [mk],

T0 = T, Tk = {(i, j) ∈ Uk : (ai + bj) ∈ Tk−1, 1 ≤ i, j ≤ mk} ,
μ(Tk) = |Tk|/|Uk|,

where in the definition of Tk, (ai) and (bj) are the sequences of elements of Uk−1

chosen by Alice and Bob in the kth application of the Random Shift Protocol, and +
is the group operation over Uk−1 used in the protocol.

Intuitively, Uk is the remaining universe (of size Nk) after k iterations, and Tk

represents the portion of the remaining universe such that choosing (i, j) ∈ Tk will
lead to an element of T being the output of the whole protocol. We call μ(Tk) the
“effective density” of T in the kth iteration.

Claim 3.6. There is a finite constant C independent of N and M such that we
have

Pr
[
μ(Tk∗) ≥ μ(T ) + C ·M−1/3

]
≤ C · 2−M1/3

,

provided at least one party plays honestly.
Proof. Recall that in the kth iteration, we are applying the Random Shift Protocol

with parameter m = mk = max{M, 	log3 Nk−1
}. Define εk = 2−m
1/3
k , and δk =

1/m
1/3
k . Notice that mk ≥ (1/2δ2

k) · log(Nk−1/εk).
Using Lemma 3.1 repeatedly in an induction and using a union bound, we have

that for any k,

Pr

[
μ(Tk) ≥ μ(T ) +

k∑
i=1

δi

]
≤

k∑
i=1

εi.

Since the Nk’s are decreasing exponentially fast, we have

k∗∑
i=0

δi = O(δk∗)

= O(1/m
1/3
k∗ )

= O(1/M1/3).

Similarly,

k∗∑
i=1

εi = O(2−m
1/3
k∗ ) = O(2−M1/3

).

This completes the proof.
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Applying Claim 3.6 and using Theorem 1.1, we deduce that the probability that
the output lands in T is at most

O

(√
μ(T ) + C ·M−1/3

)
+ C · 2−M1/3

= O

(√
μ(T ) + M−1/3

)
= O

(√
μ(T ) + δ

)
,

using M ≥ 1/δ3. Theorem 3.4 is proven.

Recalling Proposition 3.3, and taking M to be a sufficiently large constant, we
obtain a protocol with 2 log∗ N + O(1) rounds satisfying the Statistical Criterion,
thereby proving Theorem 1.2. More generally, we obtain a protocol of 2 log∗ N +
O(log(1/δ)) rounds such that the output lands in a sets of density μ with probability
at most O(

√
μ + δ). Note that we can take δ to be a slowly vanishing function of N

and still have O(log∗ N) rounds.

3.5. The multiplicative guarantees of the Iterated Random Shift Proto-
col. In this section, we discuss the multiplicative guarantees provided by the Iterated
Random Shift Protocol. Later, we will see how lower bounds require that one of the
players (in this case, Alice) receives a very poor multiplicative guarantee; however, we
will see that Bob receives a very strong guarantee. In this way, we can say something
about the ability of a protocol to provide a strong multiplicative guarantee to one
player, while providing a strong statistical guarantee to the other. Specifically, we
establish the following theorem.

Theorem 3.7. There exist constants ε < 1 and ρ such that the Iterated Random
Shift Protocol with the cutoff parameter M taken to be a sufficiently large constant
achieves guarantees ρB ≤ ρ and εA ≤ ε.

This is the first protocol achieving constant statistical and multiplicative guar-
antees that we know of, and later we will prove Theorem 1.3, which, together with
Lemma 2.11, implies that it has optimal round complexity (up to a factor of 2+o(1)).
(See Corollary 5.2.)

Given Corollary 3.5, to prove Theorem 3.7, it suffices to show the following.

Proposition 3.8. Let Π be a Iterated Random Shift Protocol defined with con-
stant cutoff parameter M . Then Π provides a constant multiplicative guarantee to
Bob: there exists constant ρ such that, as long as Bob plays honestly, the output
of the Iterated Random Shift Protocol will fall in a set T with probability at most
M2 · μ(T ), for any set T .

Proof of Proposition 3.8. Fix an arbitrary set T ⊆ U . We use the notation from
the proof of Theorem 1.2; in particular, Uk is the remaining universe after k iterations,
and Tk is the set of elements of Uk corresponding to elements of T . The following is
the key lemma.

Lemma 3.9. Assuming Bob plays honestly, E[μ(Tk)] = E[μ(Tk−1)] for all k =
1, . . . , k∗.

Proof. Consider the Random Shift Protocol. Let a1, . . . , am be given. Then if
b1, . . . , bm are chosen uniformly at random, it follows that for each i, j, the element
ai + bj is uniform over U (since + is a group operation), and thus Pr[ai + bj ∈ T ] =
μ(T ). By linearity of expectations, we can conclude that E[#(ai+bj) ∈ T ] = μ(T )·m2

(where m2 is the size of the new universe), and thus E[μ(T ′)] = μ(T ), where μ(T ′) is
the residual density of T in the resulting universe.

Applying this logic within the Iterated Random Shift Protocol, the lemma is
proven (since for given μ(Tk−1), we know E[μ(Tk)] = μ(Tk−1)).
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By induction, we then have that for all k, E[μ(Tk)] = μ(T ). In particular, this is
true for k = k∗. We can then derive

μ(T ) = E[μ(Tk∗)]

≥ (1/M2) · E[|Tk∗ |]
≥ (1/M2) · Pr[|Tk∗ | > 0].

Since if |Tk∗ | = 0, the protocol’s output cannot possibly fall in T , we conclude
that the probability the output falls in T is at most M2 · μ(T ). This proves the
proposition and thus Theorem 3.7.

As an aside, notice that by using Lemma 2.11, Proposition 3.8 allows us to con-
clude one half of Theorem 1.2: the Iterated Random Shift Protocol provides a constant
statistical guarantee to Bob.

We can conclude that the Iterated Random Shift Protocol has the following prop-
erties:

• It has only 2 log∗ N + O(1) rounds.
• It provides both Alice and Bob with constant statistical guarantees (equiva-

lently, it satisfies the Statistical Criterion).
• It provides Bob with a constant multiplicative guarantee.

Notice that in the above proof, we never used the multiplicative guarantee prop-
erties of the GGL Protocol—we simply relied on the initial recursions of Random
Shift to provide the strong guarantee to Bob.

In fact, by changing the protocol used when the universe size becomes of size M2

in the definition of the Iterated Random Shift Protocol, we can improve even further
the multiplicative guarantee given to Bob. The current protocol implies only that
Bob gets some constant multiplicative guarantee. Specifically, consider the following
simple two-round protocol.

The Random Set Protocol. Given universe U of size N and parameter K,

1. Alice selects a subset S of U of size K, uniformly at random, and sends S to
Bob;

2. Bob selects an element x ∈ S, uniformly at random;
3. the output is x.

It is straightforward to prove the following.

Proposition 3.10. For all positive integers N ≥ K, the Random Set Protocol
provides multiplicative guarantees ρA = K and ρB = N/K.

Thus, by using the Random Set Protocol on the universe of size M2 with param-
eter K = M2/(1 + γ) instead of GGL, Bob can achieve a multiplicative guarantee
1+γ, while still keeping Alice’s statistical guarantee constant (when γ is constant—if
the residual density of Bob’s target set T is smaller than 1 − 1/(1 + γ), there is a
nonzero probability that Alice will choose a set S disjoint from T ).

In the next section, we will prove that the Iterated Random Shift Protocol has
optimal round complexity, up to a factor of 2 + o(1), among protocols achieving the
Statistical Criterion.

4. Lower bounds on statistical guarantees.

4.1. Tradeoffs between statistical guarantees. As a warmup to our main
lower bound, in this section we present a tradeoff between the statistical guarantees
εA and εB of Alice and Bob, respectively.
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Proposition 4.1 (Proposition 2.7, restated). In any random selection protocol
Π over universe U achieving statistical guarantees εA and εB, εA + εB ≥ 1 − 1/N ,
where N = |U|.

Corollary 4.2. In any random selection protocol Π, max{εA, εB} ≥ 1/2 −
1/(2N).

Proof. Suppose we have a protocol (A,B, f), where εA + εB < 1 − 1/N . Then
we can partition the universe into two sets, S and U \ S, where |S| > εAN and
|U \ S| > εBN . Now, the argument follows logic similar to the impossibility result of
Saks [Sak89] for collective coin flipping when at least half of the players are dishonest
(where we think of outcomes in S as “heads” and U \ S as “tails”).

Specifically, we view the protocol as a game where Alice wins if the output lands
in S and Bob wins if the output lands in U \S. A well-known result in game theory is
Zermelo’s theorem: it implies that one of the players will have a winning strategy (one
that wins regardless of how the other player plays). The basic reasoning is backwards
induction on the game tree: every leaf node can be labeled a-win or b-win, depending
on whether the output is in S or U \S, respectively, and then we can inductively label
the remaining nodes depending on whether there exists a winning child for the current
player to select. If there is, the current player can choose that child and will thus have
a winning strategy from the current node. If there is not, then the opposing player
can certainly win from the current node, as he or she has a winning strategy from all
the children of the node.

This result implies one of the following:
• There exists strategy A∗ where Pr[f((A∗, B∗)) ∈ S] = 1, for any B∗. Taking

B∗ = B (Bob’s honest strategy), we have Pr[f((A∗, B)) ∈ S] − μ(S) =
1 − μ(S) > εB . This contradicts the guarantee of εB for Bob.

• There exists strategy B∗ where Pr[f((A∗, B∗)) ∈ U \S] = 1, for any A∗. This
similarly contradicts guarantee εA.

The main intuition behind the above proof is that, at every stage, either there
exists a move that is good for the current player or all moves are good for the other
player. In either case, the result is good for one of the two players. All that is needed
is a way to make sure that every node on the bottom level can be defined as “winning”
for someone and that this notion can propagate up the tree. As we will see, this type
of reasoning will figure strongly in the proof of our main lower bound. There, the
primary challenge will be to handle the cases when some nodes do not appear to be
“winning” for either player.

4.2. The main lower bound. In this section, we prove Theorem 1.3, giving a
lower bound on round complexity matching the Iterated Random Shift Protocol up
to a factor of 2 + o(1).

Theorem 4.3 (Theorem 1.3, strengthened). For any ε, μ > 0 and N ∈ N, any
random selection protocol on a universe of size N satisfying the Statistical Criterion
with parameters ε and μ requires at least log∗ N − log∗(max{log∗ N, 1/ε, 1/μ})−O(1)
rounds.

Corollary 4.4. For every constant δ > 0, there exists a constant C such that
if a protocol Π achieves εA, εB ≤ 1 − δ, then Π has at least log∗ N − log∗ log∗ N − C
rounds.

To prove this theorem, we must show that in a protocol with “few” rounds, one of
the two players will be able to find a set of small size that will contain the output with
high probability. We will refer to such a set (into which the cheating player is trying
to make the output fall) as a cheating set. The proof will rely to some degree on the
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probabilistic method: we will show the existence of such a cheating set by choosing it
randomly, at least in part. The distribution on sets we will use is the following.

Definition 4.5. For a universe U and a parameter μ ∈ [0, 1], we define “a
random subset of U of expected density μ” to be a set S ⊆ U obtained by including
each element x ∈ U in S independently with probability μ.

Notice that the expected density of sets S chosen in this way is μ (and with high
probability the density will not deviate significantly from μ).

We now can state the main helper theorem that will allow us to prove Theorem 4.3.
Theorem 4.6. There exists a function h such that for any μ, ε > 0, r ∈ N, and

protocol Π with r rounds, one of the following three cases holds:
1. (a-easy-win) When R is a randomly chosen set of expected density μ, and

Alice plays a strategy maximizing the probability that the output of the protocol
falls in R assuming that Bob plays honestly, she will succeed with probability
1 − ε, on average over all possible R. Formally,

E
R

[
max
A∗

{
Pr
B

[Π(A∗, B) ∈ R]
}]

≥ 1 − ε.

2. (b-easy-win)

E
R

[
max
B∗

{
Pr
A

[Π(A,B∗) ∈ R]
}]

≥ 1 − ε.

3. (difficult-win-win) When R is a randomly chosen set of expected density
μ, both Alice and Bob can force the output into R plus an additional h(r, ε, μ)
elements with high probability. That is, the following two conditions hold:
(a) ∃T , |T | ≤ h(r, ε, μ), such that

E
R

[
max
A∗

{
Pr
B

[Π(A∗, B) ∈ R ∪ T ]
}]

≥ 1 − ε.

(b) ∃S, |S| ≤ h(r, ε, μ), such that

E
R

[
max
B∗

{
Pr
A

[Π(A,B∗) ∈ R ∪ S]
}]

≥ 1 − ε.

Moreover, h does not grow too fast in r. Specifically, there is a constant C such that
h(r, ε, μ) ≤ μN for all r ≤ log∗ N − log∗(max{log∗ N, 1/ε, 1/μ}) − C.

Putting the three conditions together, this theorem says that either one player
can make the output fall into a random set of a certain expected density with high
probability (easy-win), or both players can make the output fall into a set consisting
of a randomly chosen set of a certain expected density and a certain bounded number
of (nonrandom) elements (difficult-win-win).

Proof of Theorem 4.3. Let μ and ε be given and set μ′ = μ/4, ε′ = ε/4. By Theo-
rem 4.6, we know that one of the players can force the output into a set R∪X, where
|X| = h(r, ε′, μ′), with probability 1 − ε′ in expectation over selecting R of expected
density μ′, for any protocol using r rounds. Suppose, without loss of generality, that
the cheating player is Alice, playing with strategy A∗. Then we have

E
R

[
max
A∗

{
Pr
B

[Π(A∗, B) ∈ R ∪X]
}]

≥ 1 − ε′,

where R is a random set of expected density μ′. By a Chernoff bound, we have that

Pr
R

[μ(R) ≥ 2μ′] ≤ e−2(μ′)2N = e−μ2N/8 ≤ ε′,
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where we may assume the last inequality holds because otherwise

log∗ N − log∗(max{log∗ N, 1/ε, 1/μ}) − C ≤ 0

for a constant C and the lower bound to be proven is trivial. But then it follows that

E
R

[
max
A∗

{
Pr
B

[Π(A∗, B) ∈ R ∪X]
}
· I(μ(R) < 2μ′)

]
≥ 1 − 2ε′,

where I(μ(R) < 2μ′) is the indicator random variable for the event μ(R) < 2μ′. By
averaging, we can find a particular set R∗, μ(R∗) < 2μ′, such that

max
A∗

{
Pr
B

[Π(A∗, B) ∈ R∗ ∪X]
}
≥ 1 − 2ε′ > 1 − ε.

Assuming for contradiction that

r ≤ log∗ N − log∗(max{log∗ N, 1/ε′, 1/μ′}) − C

= log∗ N − log∗(max{log∗ N, 1/ε, 1/μ}) −O(1),

we have h(r, ε′, μ′)/N < μ′N , and so |R∗ ∪X| ≤ 3μ′N < μN , violating the Statistical
Criterion.

4.2.1. Proof outline. In this section, we give an overview of the proof of Theo-
rem 4.6. A detailed implementation is contained in section 4.2.2. A pictorial depiction
of the proof for protocols with up to three rounds can be found in [San05].

Proving Theorem 4.6 will require an intricate analysis of the game tree using
backwards induction. Like the proof of Proposition 4.1, we will show how to “label”
the nodes of the game tree, where each label corresponds to a power of a player to
force a particular outcome.

The labels. We will use three labels, corresponding precisely to the three cases of
a protocol in Theorem 4.6. Specifically, the labels for a node on level k of the game
tree will correspond to the following (where the leaves are at level 0):

• a-easy-win: Alice could from that point choose a cheating set of small (say,
constant) density at random and “win”—that is, make the output fall in that
set with high probability.

• b-easy-win: Bob could choose a cheating set at random and win.
• difficult-win-win: Neither player can win easily by choosing a totally ran-

dom set, but both can win by choosing a set partly at random but also in-
cluding a small (e.g., constant or very slowly growing) number of nonrandom
elements (what we call a “helper set”).

A node z labeled as difficult-win-win will have two collections of sets associated
with it: A-Hz and B-Hz. If the node is on level k of the game tree and it is Alice’s
turn to act, then A-Hz consists of sets of size sk−1 and B-Hz consists of sets of size
sk, where s1, . . . , sr will be an ascending sequence of appropriately defined constants
(where r is the number of rounds of the protocol).2 Each set H ∈ A-Hz is a set Alice
can use as a “helper”—after choosing a cheating set at random and then adding the
helper set, Alice can win from the given node with high probability. Similarly every
set in B-Hz can be used by Bob as a “helper.”

2In the actual proof, they will be very slowly growing functions of N , but for this outline one
may think of them as constants.
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Our main challenge is to show that every node can be given a label as above.
Once we do that, Theorem 4.6 and thus Theorem 4.3 would follow readily. As a start,
notice that the leaves of the tree (the base case of our induction) can certainly be
labeled difficult-win-win, simply by setting A-Hz = B-Hz = {{x}}, where x is
the output of the protocol at leaf z.

Piths. Before demonstrating how the internal nodes will be labeled, we define the
following key concept.

Definition 4.7. Given a collection H of nonempty subsets of a universe U , the
s-pith of H is the collection of all sets S ⊆ U , |S| ≤ s, that intersect every H ∈ H
(that is, S ∩H �= ∅). We call each such S in the pith an intersect-set of H.

Three combinatorial facts about piths and collections of disjoint sets will prove
useful.

Fact 4.8. Suppose H consists of nonempty sets of size at most s. Then for any
s′, either H has a disjoint subcollection of size at least s′/s or it has a nonempty
s′-pith.

Proof. Take a maximal disjoint subcollection P of H. If it is not of size at least
s′/s, then the union of all sets in P will be a set of size at most s′ intersecting every
set in H (because P is maximal).

Fact 4.9. Suppose H consists of m disjoint sets of size at most s and m ≥
(1/μ)s · ln(1/ε). Then the probability that a random set R of expected density μ will
encompass a set in H (i.e., there exists Hi ∈ H with Hi ⊆ R) is at least 1 − ε.

Proof. The probability of failure is at most (1 − μs)m ≤ e−μsm. The result
follows.

Putting these two facts together, note that either a set in H is encompassed
by a random set with probability 1 − ε, or H has a nonempty s′-pith, as long as
s′ ≥ (1/μ)s · ln(1/ε) · s. Finally, we have the third fact.

Fact 4.10. Suppose H consists of sets of size at most s, and a set S intersects
every set in the s′-pith of H. Then either S encompasses a set in H or H′ = {H\S :
H ∈ H} has a disjoint subcollection of size at least s′/s.

Proof. Say S does not encompass a set in H. Then every set in H′ is nonempty.
If H′ does not have a disjoint subcollection of size s′/s, then by Fact 4.8 H′ has a
nonempty s′-pith. But if a set T is in the s′-pith of H′, then T\S is in the s′-pith of
H, contradicting the definition of S.

This strange last fact is actually an important key to the whole proof.

Labeling the nodes. We now can describe how we will inductively label a node z
on level k of the game tree, assuming it is Alice’s turn at that node. First, we define
the constants sk to obey sk ≥ (1/μ)sk−1 · ln(1/ε) · sk−1. Next, we assign labels as
follows:

• If all children of z are labeled b-easy-win, then certainly we can give z the
label b-easy-win.

• If there exists a child of z that is labeled a-easy-win, then we can give z the
label a-easy-win (Alice would just choose that child on her turn).

If neither of these cases occur, then we know that all of the children of z are either
labeled difficult-win-win or b-easy-win (with at least one labeled difficult-win-

win). Let X be the union of all the collections A-Hzi , over all children zi labeled
difficult-win-win. X contains the helper sets that we know Alice can use to win
from any such child. There are two cases:

• Suppose X has a large disjoint subcollection (specifically, of size at least
sk/sk−1). Then label z as a-easy-win.
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• Else, label z as difficult-win-win, letting A-Hz equal X and letting B-Hz

equal the sk-pith of X .
The correctness of the first bullet follows quickly from Fact 4.9—with high proba-

bility a random cheating set R chosen by Alice will encompass one of the sets X ∈ X ,
and Alice can then choose the child zi associated with X (i.e., X ∈ A-Hzi) and force
the output into X ∪R = R with high probability.

As for the second bullet, Alice certainly has a difficult win (that is, she can win
with any helper set X ∈ X ) because she can choose the child associated with X.

The crux of the proof is showing that Bob has a difficult win from this point,
using any helper set S from the pith of X . Note first that by Fact 4.8 and the fact
that we did not fall into the first bullet, we know this pith is nonempty.

It suffices to show that no matter what child Alice chooses, Bob can win using
S—that is, force the output into R ∪ S with high probability, where R is a random
set. Certainly, if she chooses a b-easy-win node, Bob can win, even without S.
So suppose she chooses a child node zi labeled difficult-win-win. Inductively, we
know Bob could win from this node zi using any of the helper sets in B-Hzi and that
the pith of B-Hzi is A-Hzi ⊆ X . Since S is in the pith of X , we know in particular
that it intersects every set in A-Hzi .

Applying Fact 4.10, we then have two cases, both of which ensure Bob has some
T ∈ B-Hzi encompassed by his cheating set R ∪ S, allowing him to win:

• S encompasses a set T in B-Hzi .
• T ′ = {T\S : T ∈ B-Hzi} has a large disjoint subcollection (i.e., of size
sk−1/sk−2), in which case the random set will encompass one of these sets
T\S with high probability (by Fact 4.9), and thus T ⊆ R ∪ S.

This completes the induction and the proof sketch. The bulk of the ideas in the
main proof were demonstrated above. What remains to flesh out is proper book-
keeping of parameters, namely the randomly chosen set and the sizes of the helper
sets A-Hz and B-Hz, to derive the precise round complexity bound. Jumping ahead,
notice that the induction will stop at log∗ N rounds because the sizes of these helper
sets grow as tower in the number of rounds—each sk+1 is exponential in sk. Thus, if
there are more than log∗ N rounds, the helper sets could contain all of the elements
of the universe, rendering them useless for violating the Statistical Criterion.

4.2.2. Proof of Theorem 4.6. We proceed by backwards induction on the
game tree of the protocol.

Definition 4.11. Given a protocol Π with r rounds and constants ε and μ, let
h(r, ε, μ) = g(r, r, ε, μ), where

g(0, r, ε, μ) = 1,

g(k, r, ε, μ) = ln(r/ε) · (r/μ)g(k−1,r,ε,μ) · g(k − 1, r, ε, μ).

For readability, we write sk for g(k, r, ε, μ), as r, ε, and μ will remain fixed through-
out the proof. So

s0 = 1,

sk = ln(r/ε) · (r/μ)sk−1 · sk−1.

Now, fix a protocol Π with r rounds, and consider the game tree T it induces (see
Definition 2.2).

We inductively label the nodes of the tree as either a-easy-win, b-easy-win, or
difficult-win-win. For each of the difficult-win-win nodes, we will also associate
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two collections of sets (which are subsets of U), A-Hz and B-Hz, as defined below. The
sets in these collections will correspond to the sets S and T of case 3 of Theorem 4.6.
As we will see, the labels have been chosen to indicate the power of one or both of
the players to manipulate the output effectively from that point in the tree.

Definition 4.12. Fix a protocol Π. Let z be a node on its game tree at level k
(where leaves are at level 0). Assume it is Alice’s turn at this node. (If it is Bob’s
turn, swap “A”/“a” with “B”/“b” everywhere in the description below.)

If k = 0 (i.e., z is a leaf of the tree), then label z as difficult-win-win. More-
over, let B-Hz = A-Hz = {{x}}, where x is the output of the protocol ending at
node z.

If k > 0, consider the children z1, . . . , z� of z. Use the following rules to label the
nodes:

1. If there exists 1 ≤ i ≤ � such that zi is in case a-easy-win, then label z as
a-easy-win.

2. If, for all 1 ≤ i ≤ �, zi is in case b-easy-win, then label z as b-easy-win.
3. Otherwise, denote

⋃
zi
A-Hzi = {S : zi is difficult-win-win and S ∈

A-Hzi}. That is,
⋃

zi
A-Hzi is the union of the collections of sets associated

with all children of z that are labeled difficult-win-win. Now, let P denote
the largest disjoint subcollection of

⋃
zi
A-Hzi (break ties arbitrarily), and let

sk, sk−1 be defined as in Definition 4.11.
There are two cases:
(a) |P| ≥ sk/sk−1 ⇒ label z as a-easy-win.
(b) |P| < sk/sk−1 ⇒ label z as difficult-win-win, and define A-Hz to be⋃

zi
A-Hzi , and B-Hz to be the sk-pith of A-Hz (i.e., all sets of size at

most sk intersecting all sets in A-Hz).

Intuitively, this structure defines the power of the players at various stages of
the protocol. The a-easy-win, b-easy-win, and difficult-win-win nodes refer to
cases 1, 2, and 3 of Theorem 4.6, respectively. Moreover, the sets in the collections
B-Hz and A-Hz will correspond to S and T in case 3 of Theorem 4.6.

We will codify this power in Lemma 4.14. Before stating it, it will help to define
the following.

Definition 4.13. Let Π = (A,B, f) be a protocol, and let T be its equivalent
game tree (see Definition 2.2). For any node z = (m1, . . . ,mr−k) on level k of the
tree T , let Πz = (Az, Bz, fz) be a protocol of k rounds, where fz((m

′
1, . . . ,m

′
k)) =

f((m1, . . . ,mr−k,m
′
1, . . . ,m

′
k)), and where Az and Bz denote the strategies of A and

B conditioned on history z (i.e., we choose their coin tosses rA and rB uniformly
from those consistent with the history).

Intuitively, Πz is the protocol induced by starting the protocol at node z (i.e.,
assuming all messages leading to z are fixed in advance).

Lemma 4.14. Fix ε and μ, and suppose the protocol has r turns. Let z be some
node on the tree at level k, at which it is Alice’s turn to play. Throughout, let R be a
random subset of U of expected density kμ/r.

1. If z is in case a-easy-win, then

E
R

[
max
A∗

{
Pr
B

[Πz(A
∗, B) ∈ R]

}]
≥ 1 − kε/r,

where Πz is the protocol induced by beginning at node z, as defined in Defi-
nition 4.13. (We say Alice can “win” from node z.)
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2. If z is in case b-easy-win, then, similarly,

E
R

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R]
}]

≥ 1 − kε/r.

(We say Bob can “win” from node z.)
3. If z is in case difficult-win-win, then

(a) B-Hz and A-Hz are nonempty;
(b) for any T ∈ A-Hz,

E
R

[
max
A∗

{
Pr
B

[Πz(A
∗, B) ∈ R ∪ T ]

}]
≥ 1 − kε/r;

(c) for any S ∈ B-Hz,

E
R

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R ∪ S]
}]

≥ 1 − kε/r.

(We say both Alice and Bob “win” from node z, with “helper sets” T and S,
respectively.)

Moreover, the same (with “Alice”/“A”/“a” exchanged for “Bob”/“B”/“b,” re-
spectively) holds for all nodes for which it is Bob’s turn.

Lemma 4.14 more precisely asserts Theorem 4.6 at each level of the game tree.
To use this lemma to prove Theorem 4.6, we simply need to apply it with k = r and
z being the root of the game tree. Certainly, if zr is in case 1 or 2 of Lemma 4.14, it
is in case 1 or 2 of Theorem 4.6, respectively. If zr is in case 3 of Lemma 4.14, then
subcases 3(b) and 3(c) directly prove subcases 3(a) and 3(b), respectively, where the
sets in A-Hz and B-Hz of 3(a) and 3(b) correspond precisely to the sets T and S we
need in those subcases of the theorem. The existence of such sets is guaranteed by
subcase 3(a) of the lemma.

Thus, after proving Lemma 4.14, all that will remain will be to bound the function
h(r, ε, μ) to prove Theorem 4.6, which we will do in Lemma 4.20.

We prove Lemma 4.14 by induction on the levels of the tree.

Base case: k = 0. So z is a leaf node, and the output of Πz is just determin-
istically fixed at, say, x. According to Definition 4.12, A-Hz = B-Hz = {{x}}, and
we are in case difficult-win-win. Since the density of R is chosen to be zero (it is
kμ/r), R = ∅, and so we need to show that

max
B∗

{
Pr
A

[Πz(A,B∗) ∈ {x}]
}

= 1,

and similarly with A and B swapped. This, of course, holds because the output is
fixed at x.

Inductive step. Suppose Lemma 4.14 holds for nodes on all levels up to level
k − 1. We will show that it holds for an arbitrary node z on level k. Assume it is
Alice’s turn at z. There are several possibilities.

Claim 4.15. If z is in case b-easy-win, then

E
R

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R]
}]

≥ 1 − kε/r,

where R is a random subset of expected density kμ/r.
Proof. We will use Definition 4.12 and the inductive hypothesis to show that

every child node zi is “good” for Bob—that is, on average over R, B∗ can make the
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outcome land in R with probability at least 1 − (k − 1)ε/r. Then certainly the same
holds for node z, since Alice cannot help but move to such a node.

Formally, we first notice that it suffices to show

E
R′

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R′]
}]

≥ 1 − (k − 1)ε/r,

where R′ is a random subset of expected density μ′ = (k − 1)μ/r, since a random
set R of expected density kμ/r “contains” such an R′. (Formally, R can be ob-
tained by first picking R′ and then adding each element x /∈ R′ to R with probability
(μ/r)/(1 − (k − 1)μ/r).)

Now, for z to be labeled b-easy-win, we must have used rule 2 of Definition 4.12.
Thus, all of the children of z are in case b-easy-win. By the inductive hypothesis,

(4.1) E
R′

[
max
B∗

{
Pr
A

[Πzi(A,B∗) ∈ R′]
}]

≥ 1 − (k − 1)ε/r

for each child zi of z. Since at node z it is Alice’s turn, we have

E
R′

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R′]
}]

= E
R′, zi←Z

[
max
B∗

{
Pr
A

[Πzi(A,B∗) ∈ R′]
}]

≥ 1 − (k − 1)ε/r,

where Z is the distribution according to which Alice chooses child zi of z when playing
honestly, and the last inequality is by (4.1).

Claim 4.16. If z is in case a-easy-win, then

E
R

[
max
A∗

{
Pr
B

[Πz (A∗, B) ∈ R]
}]

≥ 1 − kε/r,

where R is a random subset of expected density kμ/r.
Proof. By Definition 4.12, z could have been labeled a-easy-win by either rule 1

or rule 3(a).
In rule 1, z has a child zj that is in case a-easy-win. Since it is Alice’s turn at

node z, if she can choose a node zj “good” for her, then node z will be “good” for
her too. Formally, by the inductive hypothesis applied to zj , and again noting that
a random set of expected density kμ/r “contains” a random set of expected density
(k − 1)μ/r, we have that

E
R

[
max
A∗

{
Pr
B

[
Πzj (A

∗, B) ∈ R
]}]

≥ 1 − (k − 1)ε/r.

But maxA∗{PrB [Πz(A
∗, B) ∈ R]} is at least maxA∗{PrB [Πzj (A

∗, B) ∈ R]}, since
node z is Alice’s turn and she can always choose zj . Taking expectations of both
sides, the claim is proven for this case.

The alternative possibility is that z is in a-easy-win because of rule 3(a). So
among the sets

⋃
zi
A-Hzi (for all children zi in difficult-win-win), we can find a

disjoint subcollection P, where |P| ≥ sk/sk−1.
Intuitively, since no a-easy-win nodes are available among the children of z,

Alice cannot simply choose such a branch as above. However, we know that from
the difficult-win-win nodes, Alice can ensure the output lands in S ∪ R for any
S ∈ A-Hzi , with high probability over the choice of a random set R. But this is true
for many possible sets S—not only at a given child but also across all the potential
children that are in case difficult-win-win (i.e., any S ∈

⋃
zi
A-Hzi). Thus, we can
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expect that with sufficiently many disjoint sets in
⋃

zi
A-Hzi , the random set R will

encompass some S ∈
⋃

zi
A-Hzi with high probability. The inductive hypothesis will

then give the desired result.
Formally, since P ⊆

⋃
zi
A-Hzi consists of at least sk/sk−1 = ln(r/ε)(r/μ)sk−1

(disjoint) sets of size at most sk−1, Fact 4.9 tells us that

(4.2) E
R1

[
∃S ∈

⋃
zi

A-Hzi , S ⊆ R1

]
≥ 1 − ε/r,

where R1 is a random subset of expected density μ/r.
For any S ∈

⋃
zi
A-Hzi , we can then assert

(4.3) E
R2

[
max
A∗

{
Pr
B

[Πz(A
∗, B) ∈ R2 ∪ S]

}]
≥ 1 − (k − 1)ε/r,

where R2 is a random subset of expected density (k − 1)μ/r. This comes from ap-
plying the inductive hypothesis to the child zj such that S ∈ A-Hzj and noting that
maxA∗{PrB [Πz(A

∗, B) ∈ R2 ∪ S]} is at least maxA∗{PrB [Πzj (A
∗, B) ∈ R2 ∪ S]}

(because at node z it is Alice’s turn).
Now, since a random subset R of expected density kμ/r “contains” R1∪R2, where

R1 and R2 are independent random subsets of expected densities μ/r and (k−1)μ/r,
respectively,3 we can combine (4.2) and (4.3) to derive

E
R

[
max
A∗

{
Pr
B

[Πz(A
∗, B) ∈ R]

}]
≥ (1 − ε/r) · (1 − (k − 1)ε/r)

≥ 1 − kε/r.

The claim follows.
The final possibility is that z is in case difficult-win-win. Since z is not a leaf,

this can come about only by rule 3(b) from Definition 4.12. That is, no children of
z are in case a-easy-win, and at least some are in difficult-win-win. Moreover,
among

⋃
zi
A-Hzi = A-Hz the largest (maximal) disjoint subcollection P has fewer

than sk/sk−1 elements.
We must prove the following: B-Hz is nonempty, A-Hz is nonempty, Alice can

win from this node with a helper set from A-Hz, and Bob can win from this node
with a helper set from B-Hz (see Lemma 4.14).

Claim 4.17. B-Hz �= ∅ and A-Hz �= ∅.
Proof. We have already established that z has children in case difficult-win-

win (this follows from Definition 4.12 and from our assumption that z ∈ difficult-

win-win). By the inductive hypothesis on such a child zi, A-Hzi , and thus A-Hz

is nonempty. Since the largest disjoint subcollection P of A-Hz has size less than
sk/sk−1 and since all S ∈ P have size at most sk−1, Fact 4.8 tells us that the sk-pith
of A-Hz—namely, B-Hz—is nonempty.

Claim 4.18. For any S ∈ A-Hz, ER[maxA∗{PrB [Πz(A
∗, B) ∈ S∪R]}] ≥ 1−kε/r,

where R is a random subset of expected density kμ/r.
The proof of this claim is identical to the proof of (4.3) in the proof of Claim 4.16,

noting also that a random set R of expected density kμ/r contains a random set R2

of expected density (k − 1)μ/r.

3Formally, R can be obtained by first picking R1 and R2 and adding each element x /∈ R1 ∪ R2

to R1 ∪R2 with probability (μ/r) · ((k − 1)μ/r)/[(1 − μ/r) · (1 − (k − 1)μ)/r].
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The final claim required to prove Lemma 4.14 is the following.
Claim 4.19. For any S ∈ B-Hz, ER[maxB∗{PrA[Πz(A,B∗) ∈ S ∪ R]}] ≥ 1 −

kε/r, where R is a random subset of expected density kμ/r.
This claim is the heart of the entire proof. All we know now is that there is at

least one difficult-win-win node that is a child of the current node z and that
among the corresponding sets in A-Hz, the largest disjoint subcollection P ⊆ A-Hz

contains fewer than sk/sk−1 sets. That P is so small is a limitation on the power of
Alice, who would like there to be enough such disjoint sets in P that she could choose
randomly and encompass a set in P with high probability. The key to this proof is
converting this limitation on Alice into an ability for Bob to cheat.

Proof. Fix a set S ∈ B-Hz, which recall is the sk-pith of A-Hz. Since an honest
Alice will choose a child zi at random, it suffices to prove the following for each
child zi:

(4.4) E
R

[
max
B∗

{
Pr
A

[Πzi(A,B∗) ∈ S ∪R]
}]

≥ 1 − kε/r,

where R is a random subset of expected density kμ/r. So fix an arbitrary child
zi. Looking to Definition 4.12, the only way we could have defined z to be in
case difficult-win-win is if all children zi are in either case b-easy-win or case
difficult-win-win. So zi is in one of these two cases.

If zi is in case b-easy-win, then we are done by the inductive hypothesis. So
suppose zi is in case difficult-win-win. Applying the inductive hypothesis to zi,
we know that B-Hzi is nonempty. Moreover, for any T ∈ B-Hzi ,

(4.5) E
R1

[
max
B∗

{
Pr
A

[Πzi(A,B∗) ∈ T ∪R1]
}]

≥ 1 − (k − 1)ε/r,

where R1 is a random subset of expected density (k − 1)μ/r.
We have that S is in the sk-pith of A-Hz, which means in particular that it

intersects every set in A-Hzi , which in turn is the sk−1-pith of B-Hzi (whose sets are
of size sk−2, when k > 1). By Fact 4.10, either there exists a set T in B-Hzi such
that T ⊆ S (in which case (4.4) follows immediately from (4.5)), or else T = {T\S :
T ∈ B-Hzi} has a disjoint subcollection of size sk−1/sk−2. (When k = 1, B-Hzi

contains only the set T = {x}, where x is the output of the protocol at leaf zi, and we
also have x ∈ S because S intersects every set in A-Hzi = {{x}}. So we have T ⊆ S,
and (4.4) follows immediately from (4.5).)

Informally, there are not many disjoint sets in B-Hzi—if there were, we would
have labeled zi as a case b-easy-win node for Bob. That said, by intersecting every
(small) set that intersected every set in B-Hzi , S captures the lack of disjointness of
B-Hzi in the first place. Once the elements of S are removed from consideration, the
result has a large number of disjoint sets.

Returning to the proof of Claim 4.19, by Fact 4.9 we may conclude the following:

Pr
R2

[∃T ′ ∈ T , T ′ ⊆ R2] ≥ 1 − ε/r,

where R2 is a random subset of expected density μ/r. By the definition of T , this in
turn implies

Pr
R2

[∃T ∈ B-Hzi , T ⊆ S ∪R2] ≥ 1 − ε/r.

Using (4.5) and choosing R through independent choices of R1 and R2 as in the proof
of Claim 4.16, we are done.
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Taking together Claims 4.15, 4.16, 4.17, 4.18, and 4.19, the proof of Lemma 4.14
is complete.

To conclude Theorem 4.6, it remains to prove that the function h defining the
set sizes sk does not grow too fast in the number of rounds. Intuitively, the reason
the lower bound holds only for protocols with fewer than log∗ N − log∗ log∗ N −O(1)
rounds is that these “helper sets” must have much fewer than N elements to be useful,
but this function h grows as a tower—where the height (and base) of the tower grow
with the number of rounds. Our challenge is to lower bound the number of rounds
that keep this tower of size o(N).

Lemma 4.20. Recall the definition h(r, ε, μ) = g(r, r, ε, μ), where we define

g(0, r, ε, μ) = 1,

g(k, r, ε, μ) = ln(r/ε) · (r/μ)g(k−1,r,ε,μ) · g(k − 1, r, ε, μ).

There exists a constant C such that when r < log∗ N−log∗(max{log∗ N, 1/ε, 1/μ})−C,
we have h(r, ε, μ) ≤ μN .

Proof. First, bound r by log∗ N . Again, for shorthand we will write sk for
g(k, r, ε, μ). Thus, we have that

sk = ln(r/ε) · (r/μ)sk−1 · sk−1.

Notice that this is no more than (r ln(r/ε)/μ)sk−1 . (xy ≤ xy if x ≥ 2 and y ≥ 1.)
Letting d = (r ln(r/ε)/μ), we can then bound sk by tk, where tk is defined by t0 = 1
and tk = dtk−1 .

This means that we can set k = log∗d N−1 (recall that by our definition, log∗b N is
always an integer, for any b or N) and still have sk ≤ tk ≤ logN ≤ μN , where we may
assume that the last inequality holds, because otherwise log∗ N − log∗(1/μ) − C < 0
and the lemma is vacuously true. It remains only to relate this to a base 2 logarithm.

Claim 4.21. If d ≥ 4, then log∗d N ≥ log∗ N − log∗(2 log d).

Proof. Recall that log(k) N is k iterated logarithms of N . We claim the following.

Claim 4.22. For k ≤ log∗d N , d ≥ 4, log(k) N ≤ (2 log d) log
(k)
d N .

Proof. The base case k = 0 is clear. Assume, then, that

log(k−1) N ≤ (2 log d) log
(k−1)
d N.

Applying log to both sides, we have that

log(k) N ≤ log(2 log d) + log(log
(k−1)
d N)

≤ log(2 log d) + (log
(k)
d N)(log d)

≤ (2 log d)(log
(k)
d N),

where the last line follows because for d ≥ 4, d ≥ 2 log d and for k ≤ log∗d N ,

log
(k)
d N ≥ 1.

Plugging in k = log∗d N , then we have that log(log∗
d N) N ≤ 2 log d. Applying

log∗(2 log d) logarithms to both sides, we have log(log∗
d N+log∗(2 log d)) N ≤ 1. Since

log∗ N is defined to be the least k such that log(k) N ≤ 1, it follows that log∗ N ≤
log∗d N + log∗(2 log d).
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Thus we have that we can set k to be at least log∗d N − 1 and sk will be no more
than logN . Moreover,

log∗d N − 1 ≥ log∗ N − log∗(2 log d) − 1

= log∗ N − log∗(2 log((r ln(r/ε))/μ)) − 1

≥ log∗ N − log∗(max{log∗ N, 1/ε, 1/μ}) −O(1).

By applying Lemma 4.14 to the root of the tree and using Lemma 4.20, we prove
Theorem 4.6 and thus Theorem 4.3.

5. Multiplicative lower bounds. In this section, we concentrate on lower
bounds regarding multiplicative guarantees—and indeed show that no protocol ex-
ists that provides constant multiplicative guarantees to both players. This is a very
strong limitation on the ability of protocols to limit a cheating player’s power in this
regard.

An initial lower bound. Proposition 4.1 can be adapted to provide a quick lower
bound for multiplicative guarantees.

Proposition 5.1. In any random selection protocol, (ρA−1)/ρA+(ρB−1)/ρB ≥
1−1/N . Moreover, εA+(ρB−1)/ρB ≥ 1−1/N (or equivalently, εA ≥ 1/ρB−1/N).

Proof. The results follow immediately from Proposition 4.1 and from the second
part of Lemma 2.11.

This lower bound for multiplicative guarantees is not very strong—ρ is a number
from 1 to N , but this lower bound is satisfied (for instance) as long as both ρA and ρB
are at least 2. In Theorem 5.3, we will prove that ρAρB ≥ N , which is a substantially
stronger result.

On the other hand, when looking at one player getting a statistical guarantee
and the other player getting a multiplicative guarantee, Proposition 5.1 does provide
some useful information. Specifically, it tells us that (minus a small 1/N term) we can
always expect the statistical guarantee for one player to be worse than the reciprocal
of the multiplicative guarantee to the other player. This explains inverse relationships
in existing protocols of [DGW94] (where ε = 1/poly(n) and ρ = poly(n)) and [GSV98]
(where ε = poly(n) ·2−k and ρ = 2k for any k).4 Notice that these earlier works focus
on the case of nonconstant guarantees (ε → 0 and ρ → ∞). Earlier, we showed
that the Iterated Random Shift Protocol achieves simultaneous constant statistical
and multiplicative guarantees. From Theorem 4.3 and Lemma 2.11, it follows that
our protocol has optimal round complexity up to a factor of 2 + o(1) among those
achieving simultaneous constant statistical and multiplicative guarantees.

Corollary 5.2. For every two constants εA < 1 and ρB, there exists a constant
C such that any protocol Π selecting from a universe of size N and achieving statistical
guarantee εA and multiplicative guarantee ρB will have at least log∗ N−log∗ log∗ N−C
rounds.

A tight lower bound. Despite the inability of the above to give a strong lower
bound for simultaneous multiplicative guarantees, in this section we present a tight
lower bound in this setting, which follows from the work of Goldreich, Goldwasser,
and Linial [GGL98].

Theorem 5.3 (Theorem 2.10, restated; see [GGL98]). For any protocol Π,
ρA · ρB ≥ N .

4Actually, the protocol of [GSV98] does not provide a multiplicative guarantee of 2k but rather
ensures that the probability that the output lands in any set T of density μ is at most 2k · μ + o(1).
Our lower bound also applies to this more general type of guarantee.
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Corollary 5.4. In any protocol Π, max{ρA, ρB} ≥
√
N .

Recalling that the multiplicative guarantee ρA is the greatest factor by which Bob
can improve the probability that a single element is chosen over uniform, we conclude
the following.

In any random selection protocol, at least one of the players can improve the
probability that a single element is chosen by a factor exponential in the length of the
output (which equals logN).

Goldreich, Goldwasser, and Linial [GGL98] showed a more general result than
Theorem 5.3 (for multiparty protocols) using different language and a moderately
involved proof. We include below the simplification of their proof for the two-party
case.

Proof of Theorem 5.3. Fix some element v of the universe. Now, consider the
game tree T of the protocol (see Definition 2.2). At each node z of the tree, denote
the protocol induced by beginning at node z to be Πz. Then define

φz
A = max

A∗
Pr
B

[Πz((A
∗, B)) = v],

φz
B = max

B∗
Pr
A

[Πz((A,B∗)) = v],

pz = Pr
A,B

[Πz((A,B)) = v].

That is, φz
A (resp., φz

B) is the highest probability Alice (resp., Bob) can make the
output to be v, given that the protocol is now at node z and that Bob (resp., Alice) is
playing honestly. pz is the probability that v is chosen starting from z and assuming
both players play honestly.

To prove the theorem, we will show that for every node z on T , φz
A · φz

B ≥ pz.
Applying this fact to the root r of the tree r and noting that we can choose v so that
pr ≥ 1/N , the theorem follows easily.

We will prove φz
A · φz

B ≥ pz by backwards induction on the levels of the tree.
When z is a leaf, the protocol is complete. If v is the output of the protocol at

leaf z, then φz
A = φz

B = pz = 1. Otherwise, φz
A = φz

B = pz = 0.
Now, suppose that the lemma holds for all children of z—denote them z1, . . . , zm.

Thus, we know φzi
Aφzi

B ≥ pzi for all children zi. Suppose also, without loss of generality,
that at node z it is Alice’s turn.

Suppose an honest Alice chooses child node zi with probability λi. Then pz =∑
λipzi , and φz

B =
∑

λiφ
zi
B . When considering φz

A, however, Alice will cheat and
choose the best child available. Thus, φz

A = maxzi φ
zi
A , and so in particular for all i,

φz
A ≥ φzi

A .
Now, just compute

φz
Aφ

z
B = φz

A

∑
λiφ

zi
B ≥

∑
λiφ

zi
Aφzi

B ≥
∑

λipzi = pz.

To understand this result intuitively, suppose that there were only one path down
the tree that led to v being chosen as the output. At each node along that path,
starting from the root, there is a certain probability that an honest player will choose
the (unique) next node in the path. So the probability that v is chosen is the product
of these probabilities when both players play honestly. If Alice (resp., Bob) is cheating,
then the probability that v will be chosen is the product of the probabilities at nodes
where it is Bob’s (resp., Alice’s) turn. In this case, φz

A ·φz
B = pz. More paths yielding

v merely provide more options to the cheating player, and so φz
A · φz

B ≥ pz.
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Note that, unlike Proposition 4.1, this result relies centrally on the assumption
that, when one player is cheating, the other player is playing honestly.

Theorem 5.3 is, in fact, tight. In Proposition 3.10, we noted that the Random
Set Protocol—in which Alice chooses a uniformly random subset of fixed size K and
Bob chooses a random element of this set—achieves multiplicative guarantees of K
and N/K for the two players.

Note that one negative aspect of the Random Set Protocol is that it is not
efficient—sending a description of the random subset requires communication linear
in N (rather than polylog(N)). This is certainly not necessary to achieve ρAρB = N ,
however: other very simple and efficient protocols achieve this tradeoff. Specifically,
instead of using all sets of size K, we can use any subcollection such that every el-
ement of [N ] is contained in the same number of sets. For example, if N = K · L
for an integer L, then we can view the universe as [K] × [L] and use only the sets
of the form Sa = [K] × {a} for each a ∈ [L], and so the communication becomes
logL + logK = logN . The optimality of such a trivial protocol suggests that, ulti-
mately, multiplicative guarantees are not by themselves likely to be sufficient metrics
of study for two-party random selection protocols.
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[CCM98] C. Cachin, C. Crépeau, and J. Marcil, Oblivious transfer with a memory-bounded
receiver, in Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science, 1998, pp. 493–502.

[Cle86] R. Cleve, Limits on the security of coin flips when half the processors are faulty, in
Proceedings of the 18th Annual ACM Symposium on Theory of Computing, 1986,
pp. 364–369.

[CI93] R. Cleve and R. Impagliazzo, Martingales, Collective Coin Flipping, and Discrete
Control Processes, manuscript, 1993.

[Dam94] I. Damg̊ard, Interactive hashing can simplify zero-knowledge protocol design without
computational assumptions, in Advances in Cryptology—CRYPTO ’93, Lecture
Notes in Comput. Sci. 403, Springer, Berlin, 1994, pp. 100–109.

[DGW94] I. Damg̊ard, O. Goldreich, and A. Wigderson, Hashing Functions Can Simplify
Zero-Knowledge Protocol Design (Too), Technical report RS-94-39, BRICS, Uni-
versity of Aarhus, Aarhus, Denmark, 1994.

[DHRS04] Y. Ding, D. Harnik, A. Rosen, and R. Shaltiel, Constant-round oblivious transfer
in the bounded storage model, in Proceedings of the 1st Theory of Cryptography
Conference, Lecture Notes in Comput. Sci. 2951, Springer, Berlin, 2004, pp. 446–
472.

[Fei99] U. Feige, Noncryptographic selection protocols, in Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science, 1999, pp. 142–153.

[GGL98] O. Goldreich, S. Goldwasser, and N. Linial, Fault-tolerant computation in the full
information model, SIAM J. Comput., 27 (1998), pp. 506–544.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

550 SAURABH SANGHVI AND SALIL VADHAN

[GSV98] O. Goldreich, A. Sahai, and S. Vadhan, Honest-verifier statistical zero-knowledge
equals general statistical zero-knowledge, in Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, 1998, pp. 399–408.

[KO04] J. Katz and R. Ostrovsky, Round-optimal secure two-party computation, in Ad-
vances in Cryptology—CRYPTO ’04, Lecture Notes in Comput. Sci. 3152,
Springer, Berlin, 2004, pp. 335–354.

[Lau83] C. Lautemann, BPP and the polynomial hierarchy, Inform. Process. Lett., 17 (1983),
pp. 215–217.

[Lin01] Y. Lindell, Parallel coin-tossing and constant-round secure two-party computation, J.
Cryptology, 16 (2003), pp. 143–184.

[NOVY98] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung, Perfect zero-knowledge
arguments for NP using any one-way permutation, J. Cryptology, 11 (1998), pp.
87–108.

[ORV94] R. Ostrovsky, S. Rajagopalan, and U. Vazirani, Simple and efficient leader elec-
tion in the full information model, in Proceedings of the 26th Annual ACM Sym-
posium on Theory of Computing, 1994, pp. 234–242.

[RSZ02] A. Russell, M. Saks, and D. Zuckerman, Lower bounds for leader election and
collective coin-flipping in the perfect information model, SIAM J. Comput., 31
(2002), pp. 1645–1662.

[RZ01] A. Russell and D. Zuckerman, Perfect information leader election in log∗ n + O(1)
rounds, J. Comput. System Sci., 63 (2001), pp. 612–626.

[Sak89] M. Saks, A robust noncryptographic protocol for collective coin flipping, SIAM J.
Discrete Math., 2 (1989), pp. 240–244.

[San04] S. Sanghvi, A Study of Two-Party Random Selection Protocols, undergraduate thesis,
Harvard University, Cambridge, MA, 2004.

[San05] S. Sanghvi, The round complexity of two-party random selection, slides of presentation
given at STOC 2005. Available online from http://eecs.harvard.edu/∼salil/papers/
randsel-abs.html.

[SV05] S. Sanghvi and S. Vadhan, The round complexity of two-party random selection, in
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, 2005,
pp. 338–347.

[Yao86] A. Yao, How to generate and exchange secrets, in Proceedings of the 27th Annual
IEEE Symposium on Foundations of Computer Science, 1986, pp. 162–167.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


