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ABSTRACT
We give polynomial-time, deterministic randomness extrac-
tors for sources generated in small space, where we model
space s sources on {0, 1}n as sources generated by width
2s branching programs: For every constant δ > 0, we can
extract .99δn bits that are exponentially close to uniform
(in variation distance) from space s sources of min-entropy
δn, where s = Ω(n). In addition, assuming an efficient de-
terministic algorithm for finding large primes, there is a
constant η > 0 such that for any ζ > n−η, we can ex-
tract m = (δ − ζ)n bits that are exponentially close to
uniform from space s sources with min-entropy δn, where
s = Ω(β3n). Previously, nothing was known for δ ≤ 1/2,
even for space 0.

Our results are obtained by a reduction to a new class of
sources that we call independent-symbol sources, which gen-
eralize both the well-studied models of independent sources
and symbol-fixing sources. These sources consist of a string
of n independent symbols over a d symbol alphabet with
min-entropy k. We give deterministic extractors for such
sources when k is as small as polylog(n), for small enough d.
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1. INTRODUCTION
True randomness is needed for many applications, yet

most physical sources of randomness are not truly random,
and in fact seem quite weak in that they can have substan-
tial biases and correlations. Weak random sources can also
arise in cryptography when an adversary learns some partial
information about a random string. A natural approach to
dealing with weak random sources is to apply an extractor
— a function that transforms a weak random source into
an almost-perfect random source. For example, Intel’s ran-
dom number generator (cf., [16]) uses the extractor of von
Neumann [34] as one of its components.

There was a significant body of work in the 80’s focused
on this problem of randomness extraction, with researchers
considering richer and richer models of weak sources, e.g.
[5, 26, 10, 32, 9, 4, 3, 20]. But attempts to handle sources
that do not have a significant amount of independence ran
into strong impossibility results showing that it is impossi-
ble to devise a single function that extracts even one bit of
randomness from sufficiently general classes of sources [26].

These impossibility results led researchers to focus on the
weaker task of simulating probabilistic algorithms with weak
random sources [33, 10, 31, 11, 36]. This line of work cul-
minated in the introduction, by Nisan and Zuckerman [23],
of the notion of a seeded extractor, which uses a small num-
ber of additional truly random bits, known as the seed, as
a catalyst for the randomness extraction. When simulating
probabilistic algorithms with weak random sources, the need



for truly random bits can be eliminated by enumerating over
all choices of the seed. Seeded extractors have turned out to
have a wide variety of other applications and were found to
be closely related to many other important pseudorandom
objects. Thus, they were the main focus of attention in the
area of randomness extraction in the 90’s, with a variety of
very efficient constructions. (See [22, 27] for surveys.)

In the last few years, however, there has been a resur-
gence of interest in the original concept of a “seedless” (or
deterministic) extractor, cf. [30, 13]. This is motivated in
part by the realization that seeded extractors do not seem
suitable for many settings where we need randomness, such
as cryptography. In addition, seedless extractors for spe-
cific classes of sources were found to be useful in mitigating
partial key exposure in cryptography [8, 13]. Recent at-
tention on seedless extractors has focused on several classes
of sources, the main ones being independent sources, which
consist of several independent parts, each of which has some
randomness [10, 1, 2, 25, 24]; bit-fixing sources, where some
of the bits are perfectly random and the rest are fixed [9,
11, 17, 15]; and samplable sources, where the source is gen-
erated by an efficient algorithm [30]. Our work relates to
all of these models; indeed, we establish connections be-
tween them. But our main motivation is a form of samplable
sources — namely ones generated by algorithms that have
small space.

Before proceeding, we recall a few standard definitions:
the min-entropy k of a source X is defined as
H∞(X) = mins(log(1/ Pr[X = s])). (Here and through-
out, all logarithms are base 2 unless otherwise specified.)
The min-entropy rate δ for a source on [d]n is defined as
δ = H∞(X)/n log d. The variation distance between ran-
dom variables X1 and X2 on Ω is defined as |X1 − X2| =
maxS⊆Ω |Pr[X1 ∈ S] − Pr[X2 ∈ S]| = 1

2

P
s∈Ω |Pr[X1 =

s] − Pr[X2 = s]|. A function Ext : {0, 1}n → {0, 1}m is
an ε-extractor for a class of random sources X , if for every
X ∈ X , Ext(X) is ε-close to uniform in variation distance.

1.1 Small-Space Sources
Trevisan and Vadhan [30] proposed the study of extrac-

tion from weak random sources that are generated by a
process that has a bounded amount of computational re-
sources. This seems to be a plausible model for physical
random sources and generalizes a number of the previously
studied models. They focused on the case that the source
is sampled by either a small circuit or an algorithm with
a limited running time. Their main result is a construc-
tion of polynomial-time extractors for such sources based
on some strong but plausible complexity assumptions. It
would be nice to have unconditional constructions (as well
as ones that are more efficient and have better error). But
they showed that complexity assumptions are needed for the
original model of sources generated by a time-bounded algo-
rithms. Thus, they suggested, as a research direction, that
we might be able to construct unconditional extractors for
sources generated by space-bounded algorithms. This model
is our focus.

Small space sources are very general in that most other
classes of sources that have been considered previously can
be computed with a small amount of space. This includes
von Neumann’s model of a coin with unknown bias [34],
Blum’s finite Markov chain model [5], symbol-fixing sources
[17], and sources that consist of many independent and shorter

Table 1: Small space extractors for sources on {0, 1}n

that extract 99% of the min-entropy. In this table
c and C represent sufficiently small and large con-
stants, respectively.

Reference Min-entropy Rate Space Error

Thm 1.1 δ = n−c cδ3n exp(−nc)

Thm 1.3 Any constant δ cn exp(−Ω̃(n))

Thm 1.4 δ = C/ log n cδ log n exp(−n.99)

sources. Strong results in this last model will not follow di-
rectly from strong results in the small-space model, but our
results do generalize, for example, the results of [1]. In
fact, the only model for which deterministic extractors have
been given that appears unrelated to our model is “affine
sources”. Yet despite the small-space model being so natu-
ral, very little in the way of explicit constructions for such
sources was known.

The first example of an explicit construction was due to
Blum [5], who showed how to extract from sources generated
by a finite Markov chain with a constant number of states.
His results generalized the earlier results of von Neumann
[34] for extracting from an independent coin with unknown
bias. However, the finite Markov chain model is very re-
stricted; it has a constant-size description and the transi-
tions must be the same at each time step.

The exact model for small-space sources we consider is
similar to the one previously considered by Koenig and Mau-
rer [18, 19]. It is a generalization of the Markov chain
model to time-dependent Markov chains, which yields a
much richer class of sources. Our model of a space s source
is basically a source generated by a width 2s branching pro-
gram. The exact model we consider is that at each step the
process generating the source is in one of 2s states. This
can be modelled by a layered graph with each layer cor-
responding to a single time-step and consisting of vertices
corresponding to each of the states. From each node v in
layer i, the edges leaving v (going to layer i+1) are assigned
a probability distribution as well as an output bit for each
edge. Unlike in Blum’s model [5], the transitions can be
different at each time-step.

It can be shown using the probabilistic method that there
exist extractors even when the space s is almost as large as
the min-entropy k, even when the min-entropy is logarithmi-
cally small. Our goal is to provide efficient and deterministic
constructions with parameters that come as close to these
bounds as possible.

Koenig and Maurer [18, 19] gave the first explicit con-
structions of extractors for space-bounded sources. Their
extractors require the min-entropy rate to be least 1/2. We
do not know of any other constructions for space-bounded
sources, even space 0 sources, which are simply sources of
independent bits each of which has a different, unknown,
bias.

1.1.1 Our Results
For space s sources with min-entropy k = δn, we have

several constructions, all of which are able to extract almost
all of the entropy in the source. These extractors are sum-
marized in Table 1. The first extracts whenever δ > n−η for
some fixed constant η and extracts almost all of the entropy.



Theorem 1.1. Assume we can find primes with length
in [r, 2r] deterministically in time poly(r). Then there is
a constant η > 0 such that for every n ∈ N, and δ >
ζ > n−η, there is an polynomial-time computable ε-extractor
Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy

rate δ, where s = Ω(ζ3n), m = (δ − ζ)n, and ε = 2−nΩ(1)
.

Remark 1.2. The assumption about finding primes fol-
lows from Cramer’s conjecture on the density of primes [12].

We also have constructions that do not depend on the
ability to find large primes. Though the parameters of these
constructions are mostly subsumed by the previous con-
struction, they are considerably simpler and achieve some-
what better error. For constant min-entropy rate sources,
we have a construction that extracts any constant fraction
of the entropy.

Theorem 1.3. For any constants δ > ζ > 0 and every
n ∈ N, there is a polynomial-time computable ε-extractor
Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy

rate δ, where s = Ω(n), m = (δ−ζ)n, and ε = 2−Ω(n/ log3 n).

The last extractor works with min-entropy rate as low as
δ = Ω(1/ log n) and space as large as O(δ log n).

Theorem 1.4. For every n ∈ N and δ > ζ > 28/ log n
and s ≤ (ζ log n)/28, there is a polynomial-time computable
ε-extractor Ext : {0, 1}n → {0, 1}m for space s sources with
min-entropy rate δ, where m = (δ − ζ)n and

ε = exp(−n/(2O(s/ζ) · log5 n)).

In comparison to the previous results (e.g. [18, 19]) we

have reduced the min-entropy required from n/2 to n1−Ω(1)

(in Theorem 1.1). However, we are still far from what can
be achieved nonconstructively, where we can extract when
the min-entropy is logarithmically small. We also have a
gap in terms of the space tolerated. Nonconstructively we
can get s to be almost the min-entropy δn while our results
require s to be smaller than δ3n.

In a partial attempt to close the entropy gap for the
case of space 1 sources, we also have an extractor that
extracts about Ω(k2/n) bits from a more restricted model

when k > n4.01/5. The extra restriction is that the output
bit is required to be the same as the state. Details of this
extractor will appear in the full version.

1.2 Independent-Symbol Sources
Our extractors for small-space sources are all obtained via

a reduction from a new model of sources we introduce called
independent-symbol sources. The reduction we use is based
on that of Koenig and Maurer [18, 19], who used it to gener-
alize extractors for two independent sources. Independent-
symbol sources consist of a string of n independent-symbols
over an alphabet of size d such that the total min-entropy
of the source is at least k. In addition to being a natural
model, these sources are a common generalization of two
of the main models studied for seedless extraction, namely
symbol-fixing sources [9, 17] and independent sources [10,
1], which we proceed to discuss below.

1.2.1 Independent Sources
One of the most well-studied models of sources is that

of extracting from a small number of independent sources,

each of which has a certain amount of min-entropy, a model
essentially proposed by Chor and Goldreich [10]. They con-
structed extractors for two independent sources with en-
tropy rate greater than 1/2. Recently, similar extractors
have been obtained for multiple independent sources with
any constant and even subconstant entropy rate, but each
of these require at least 3 independent sources [1, 2, 25, 24].
This model is appealing because the individual sources can
have arbitrary correlations and biases, and it seems plau-
sible that we can ensure independence between a few such
sources. However, such extractors require knowing that all
of the sources have large entropy. This motivates our gen-
eralization of independent sources to independent-symbol
sources, where we only require that the total min-entropy
over all of the symbols (sources) is high. Another differ-
ence between what we consider is that the usual independent
source model consists of few sources that are long, whereas
independent-symbol sources are interesting even if we have
many short sources.

1.2.2 Oblivious Bit-Fixing and Symbol-Fixing Sources
Another particular class that has been studied a great deal

is that of bit-fixing sources, where some subset of the bit-
positions in the source are fixed and the rest are chosen uni-
formly at random. The first extractors for bit-fixing sources
extracted perfectly random bits [9, 11] and required the
source to have a large number of random positions. Kamp
and Zuckerman [17] constructed extractors that worked for
sources with a much smaller number of random bits. They
also generalized the notion of bit-fixing sources to symbol-
fixing sources, where instead of bits the values are taken
from a d symbol alphabet. Gabizon, Raz, and Shaltiel [15]
gave a construction that converts any extractor for bit-fixing
sources into one that extracts almost all of the randomness,
which they apply to the extractor from [17].

Independent-symbol sources can be seen as a generaliza-
tion of symbol-fixing sources. The difference is that instead
of each symbol being only fixed or uniformly random, the
symbols in independent-symbol sources are allowed to have
any distribution as long as the symbols are chosen indepen-
dently according to those distributions. Naturally, we place
a lower bound on the total min-entropy rather than just the
number of random positions. Usually, symbol-fixing sources
are thought of as having many symbols that come from a
small alphabet (e.g. {0, 1}). This restriction is not neces-
sary to the definition, however, and here we consider the full
range of parameters, including even the case that we have
a constant number of symbols from an exponentially large
“alphabet” (e.g. {0, 1}n).

1.2.3 Our Results
Our extractors for independent-symbol sources are all based

on generalizing various techniques from extractors for inde-
pendent and symbol-fixing sources.

Koenig and Maurer [18, 19] showed how any extractor for
two independent sources with certain algebraic properties
can be translated into an extractor for many sources where
only two of the sources have sufficient entropy. Their re-
sult generalizes to extractors for more than two sources. We
show that this also yields extractors for independent-symbol
sources. In particular, we apply this to extractors for inde-
pendent sources that follow from the exponential sum esti-
mates of Bourgain, Glibichuk, and Konyagin [7] (see Bour-



Table 2: Independent-symbol extractors for sources
on [d]n that extract 99% of the min-entropy. In this
table c and C represent sufficiently small and large
constants, respectively.

Reference Min-entropy Rate Error

Thm 1.5 δ = (n log d)−c exp(−(n log d)c)

Thm 1.6 Any constant δ exp(−Ω̃(n log d))

Thm 1.7 δ = C d log3/2 n

(n log d)
1
2−γ

exp(−(n log d)2γ)

Thm 1.8 δ = (d log n)C/n (δn log d)−c

gain [6]), and thereby obtain extractors for independent-
symbol sources of any constant min-entropy rate.

We also show how to use ideas from the work of Rao
[24] for extracting from several independent sources to get
extractors for independent-symbol sources that extract from
sources of min-entropy n1−Ω(1).

For small alphabet size d, we use ideas from the work of
Kamp and Zuckerman [17] about bit-fixing sources to con-
struct extractors for independent-symbol sources with min-
entropy k. We can extract many bits when k > d

√
n log d,

and for k = Ω(d2 log d) we can still extract Ω(log k) bits.
The base extractor simply takes the sum of the symbols
modulo p for some p > d, similar to the cycle walk extrac-
tor in [17]. Using this extractor we can extract Ω(log k)
bits. To extract more bits when k is sufficiently large, we
divide the source into blocks, apply the base extractor to
each block, and then use the result to take a random walk
on an expander as in [17].

Unlike the first two extractors, the extractors obtained us-
ing this technique use the full generality of the independent-
symbol sources. In the first two constructions, using a Markov
argument we can essentially first reduce the independent-
symbol sources into sources where some of the input sym-
bols have sufficiently high min-entropy while the rest may
or may not have any min-entropy. These reductions also
cause some entropy to be lost. In this last construction,
however, we benefit even from those symbols that have very
little min-entropy. Thus we are able to take advantage of all
of the entropy, which helps us extract from smaller values
of k.

We also show how to generalize the construction of Gabi-
zon et al. [15] to independent-symbol sources to enable us
to extract more of the entropy. Note that we use it to im-
prove not only the extractors based on [17] (analogous to
what was done in [15] for bit-fixing sources), but also our
extractors based on techniques developed for independent
sources. Independently of our work, Shaltiel [28] has re-
cently generalized the ideas in [15] to give a framework for
constructing deterministic extractors which extract almost
all of the entropy from extractors which extract fewer bits.
Our extractor can be seen to fit inside this framework.

Applying the technique based on [15] to our extractors
based on the independent sources techniques of Rao [24], the
results of [7], and the bit-fixing source extractor from [17],
respectively, we get the following three theorems. These the-
orems are directly used to obtain the small-space extractors
from Theorem 1.1, Theorem 1.3, and Theorem 1.4. Table 2
presents a summary of these extractors.

Theorem 1.5. Assuming we can find primes with length
in [r, 2r] deterministically in time poly(r), there is a con-
stant η such that for every n, ` ∈ N and δ > ζ > (n`)−η,
there is a polynomial-time computable ε-extractor for min-
entropy rate δ > ζ independent-symbol sources
Ext : ({0, 1}`)n → {0, 1}m where m = (δ − ζ)n` and ε =

exp(−(n`)Ω(1)).

We note that in the independent sources model this extrac-
tor gives comparable results to the extractor from [1] as a
corollary.

The following extractor extracts a constant fraction of the
entropy from any constant rate source.

Theorem 1.6. For any constants δ > ζ > 0 and every
n ∈ N, there is a polynomial-time computable ε-extractor for
min-entropy rate δ independent-symbol sources Ext : [d]n →
{0, 1}m where m = (δ−ζ)n log d and ε = 2−Ω((n log d)/ log3(n log d)).

For the following extractor we can take ζ = Õ(1/
√

n) and
can then extract randomness from sources with min-entropy
rate as small as δ = Õ(1/

√
n).

Theorem 1.7. For every n ∈ N, 2 ≤ d ≤
√

n and ζ >p
d2 log3 n/n log d there is a polynomial-time computable ε-

extractor for min-entropy rate δ > ζ independent-symbol
sources Ext : [d]n → {0, 1}m where m = (δ − ζ)n log d and
ε = exp(−Ω((ζ2n log d)/(d2 log3 n))) and .

Gabizon et al. also give a technique which improves ex-
tractors that only extract Ω(log k) bits. We show that this
technique also generalizes to independent-symbol sources, so
we use it together with our extractor based on ideas from
[17] that extracts Ω(log k) bits to get the following theo-
rem. This theorem shows that even for polylogarithmic k,
for small enough d we can extract almost all of the min-
entropy.

Theorem 1.8. There exists a constant C > 0 such that
for every n ∈ N, d ≥ 2, k ≥ (d log n)C , there exists a
polynomial-time computable ε-extractor Ext : [d]n → {0, 1}m

for independent symbol sources with min-entropy k, where
m = k − k1−Ω(1) and ε = k−Ω(1).

Using the probabilistic method, it can be shown that there
exist (nonconstructive) extractors that extract even when
the min-entropy k is as small as O(log d + log n). Note that
we always need k > log d, since otherwise all of the entropy
could be in a single symbol, and thus extraction would be
impossible. This last extractor comes closest to meeting this
bound on k, but only works for small d and has suboptimal
error, so there is still much room for improvement.

1.3 Organization
In Section 3 we describe our reduction from small-space

sources to independent-symbol sources. The rest of the pa-
per is then focused on extracting from independent-symbol
sources. Only the basic extractors for these sources are de-
scribed here. To get the extractors described in the intro-
duction that extract almost all of the entropy, we also require
the generalization of the techniques of Gabizon et al. [15],
which are deferred to the full version. In Section 4 we de-
scribe the extractor that provides the basis for the extractor
from Theorem 1.6. In Section 5 we describe the extractor
that provides the basis for the extractor from Theorem 1.5.
In Section 6 we describe the extractors that provide the basis
for the extractors from Theorem 1.7 and Theorem 1.8.



2. PRELIMINARIES
Notation: We use [d] to denote the set {1, . . . , d}. Given

a string x ∈ [d]n and a set S ⊆ [n] we use xS to denote the
string obtained by restricting x to the indices in S. We use
◦ to denote concatenation.

2.1 Classes of Sources
We formally define the various classes of sources we will

study.

Definition 2.1. A space s source X on {0, 1}n is a source
generated by a width 2s branching program. That is, the
branching program is viewed as a layered graph with n + 1
layers with a single start vertex in the first layer and 2s

vertices in each subsequent layer. Each edge is labeled with
a probability and a bit value. From a single vertex we can
have multiple edges corresponding to the same output bit.
The source is generated by taking a random walk starting
from the start vertex and outputting the bit values on every
edge.

This definition is very similar to the general Markov sources
studied by Koenig and Maurer [18, 19].

.15, 0.25, 1 .4, 0 .2, 1

.5, 0

.3, 0 .4, 1 .2, 0

.3, 1.2, 1

.1, 1

Figure 1: Part of a space 2 source

The other important class of sources we study are
independent-symbol sources.

Definition 2.2. A source X on [d]n is an independent-
symbol source if the n symbols are independent. We call
such a source flat if every symbol is also uniformly dis-
tributed over a non-empty subset of [d].

Note that when d = 2, flat independent-symbol sources
are the same as oblivious bit-fixing sources.

Definition 2.3. Let X be a random variable taking val-
ues in {0, 1}t×r, viewed as t × r matrices with entries in
{0, 1}. We say that X on ({0, 1}r)t is (t × r) somewhere-
random 1 (SR-source for short) if it is a random variable

1This definition is slightly different from the original one
used by Ta-Shma [29]. The original definition considered
the closure under convex combinations of the class defined
here (i.e. convex combinations of sources that have one ran-
dom row). We use this definition because we can do so
without loss of generality and it considerably simplifies the
presentation.

on t rows of r bits each such that X is distributed uniformly
randomly over one of the rows. Every other row may de-
pend on the random row in arbitrary ways. We will say that
a collection X1, . . . , Xm of (t × r) SR-sources is aligned if
there is some i for which the i’th row of each Xk is uniformly
distributed.

We will also need a relaxed notion of the previous defini-
tion to where the “random” row is not completely random,
but only has some min-entropy.

Definition 2.4. We say that a (t×r) source X on ({0, 1}r)t

has somewhere-min-entropy k, if X has min-entropy k in
one of its t rows.

3. SMALL-SPACE SOURCES AS CONVEX
COMBINATIONS OF INDEPENDENT-
SYMBOL SOURCES

Here we show how small-space sources can be converted
into convex combinations of independent-symbol sources.
Thus we will be able to use our extractor constructions from
subsequent sections to extract from small-space sources. The
idea is simple: to extract from a space s source X, we di-
vide the n bits in X into n/t blocks of size t and view each
block as a binary number. Viewed this way, X is a symbol
source with alphabet size 2t. If we condition on the states
of the source at the start of each block, all of the blocks
become independent, so we end up with an independent-
symbol source. We show, using techniques similar to Koenig
and Maurer [18, 19], that with high probability these sources
will have sufficient min-entropy. To show this we use the fol-
lowing standard lemma (for a direct proof see Lemma 5 in
Maurer and Wolf [21], although it has been used implicitly
earlier in, e.g., [35]).

Lemma 3.1. Let X and Y be random variables and let Y
denote the range of Y . Then for all ε > 0

Pr
Y

»
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

„
1

ε

«–
≥ 1− ε

This basically gives us the result we want. All of our
extractors for small-space sources are obtained by combining
the following lemma with the corresponding extractor for
independent-symbol sources. We note that the reduction in
this lemma is only interesting when the min-entropy rate
δ > 1/

√
n, since otherwise the entropy of the independent-

symbol source would be less than the length of an individual
symbol. In this case all of the entropy could be in a single
symbol and thus extraction would be impossible.

Lemma 3.2. Let X be a space s source on {0, 1}n with

min-entropy rate δ. Then for any 0 < α < 1, X is 2−αδn/2-
close to a convex combination of independent-symbol sources

on [d′]n
′
with min-entropy rate δ′, where d′ = 22s/(αδ), n′ =

αδn/2s and δ′ = (1− α)δ.

Proof. Divide X into αδn/2s blocks of size 2s/αδ. Let
Y represent the values of the initial states for each block.
Then each (X|Y = y) is an independent-symbol source with

each block viewed as a number less than 22s/(αδ) in binary.
By Lemma 3.1, since |Y| = (2s)(αδn)/(2s) = 2αδn/2, with

probability 1 − 2−αδn/2 the sources (X|Y = y) have min-
entropy (1− α)δn and thus min-entropy rate (1− α)δ.



4. EXTRACTING FROM INDEPENDENT-
SYMBOL SOURCES BY REDUCING TO
INDEPENDENT SOURCES

In this section, we will show how to construct extractors
for independent-symbol sources using techniques from inde-
pendent sources.

The following Markov-like lemma will be used to show
that if we divide a source into blocks, many of the blocks
will have a large entropy rate.

Lemma 4.1. For any partition of an independent-symbol
source X on [d]n with min-entropy δ into t blocks of size
n/t, the number r of blocks with min-entropy rate greater
than δ/2 satisfies r > δt/2.

Therefore we can view this source as an independent-
symbol source on [dn/t]t where at least δt/2 of the symbols
have min-entropy rate greater than δ/2.

Proof. We know that r blocks have min-entropy rate
greater than δ/2 and at most 1. In each of the remaining
blocks the min-entropy rate is at most δ/2. Since the total
entropy rate is δ and min-entropies add for independent-
symbol sources, δ ≤ (r+(t−r)(δ/2))/t, which after a simple
calculation gives the desired result.

Once we are in this model, we can generalize the result
from Koenig and Maurer [18, 19] that states that any two
source extractor of the form f(x1 · x2), where the xi are
elements of some group, can be extended to any number of
sources where only two of the sources have sufficient min-
entropy.

Lemma 4.2. Let (G, ∗) be a group and let
Ext(x1, x2, . . . , xr) := f(x1∗x2 ·· · ·∗xr) be an extractor for r
independent sources over G, each of which has min-entropy
rate at least δ. Then F (x1, . . . , xn) := f(x1 ∗ · · · ∗ xn) is an
extractor for n independent sources over G, r of which have
min-entropy rate at least δ.

The proof is essentially the same as in [18, 19]. The key
idea is that the n sources can be divided into r blocks, each
of which contains exactly one of the high entropy sources.

Bourgain, Glibichuk, and Konyagin [7] gave bounds on the
exponential sums of the function f(x1, . . . , xr) =

Qr
i=1 xi

over large subsets of fields without large subfields, in par-
ticular GF (p) and GF (2p). As observed by Bourgain in
[6], this estimate gives an extractor for independent sources.
Bourgain only explicitly gives an extractor that outputs a
single bit, but his result can be easily generalized using his
techniques together with Vazirani’s XOR lemma [31] to get
the following.

Theorem 4.3. [7] Let the finite field K be either GF (p)
or GF (2p) for some prime p. Let f(x1, . . . , xr) =

Qr
i=1 xi

and view the output of the function as an integer from 0 to
|K|−1. Then there exist functions C1(δ) and C2(δ) such that
the function BGK(x1, . . . , xr) = b(2mf(x1, . . . , xr))/|K|c (i.e.
taking the m most significant bits of f(x1, . . . , xr)/|K|) is an
ε-extractor for r independent min-entropy rate δ sources over
K for r ≥ C1(δ), m = Θ(C2(δ) log |K|), and ε = 2−Ω(m).

Note that for constant δ, we can extract Θ(log |K|) bits
with only a constant number of sources. For GF (p), [7]

make explicit the relationship between δ and the number of
sources and entropy. It turns out in this case that we can
handle slightly subconstant δ, down to
δ = Ω(1/(log log |K|)(1/C)) for some constant C. For GF (2p),
it’s not clear whether or not a similar result can be achieved.

Combining this theorem with Lemma 4.2, restricting the
sources to be over the multiplicative group K∗, we get the
following corollary.

Corollary 4.4. Let the finite field K be either GF (p)
or GF (2p) for some prime p. Let f(x1, . . . , xn) =

Qn
i=1 xi

and view the output of the function as a number from 0 to
|K|−1. Then there exist functions C1(δ) and C2(δ) such that
the function BGK(x1, . . . , xn) = b(2mf(x1, . . . , xn))/|K|c is
an ε-extractor for n independent sources over K∗, at least
C1(δ) of which have min-entropy rate at least δ, and with

m = Θ(C2(δ) log |K|) and ε = 2−Ω(m).

It will also be useful to formulate the following corollary.

Corollary 4.5. For every constant δ > 0, there exists
a constant v(δ) and a polynomial time computable function
BGK : ({0, 1}`)n → {0, 1}m that is an ε-extractor for n in-
dependent sources on {0, 1}`, such that at least v(δ) of them

have min-entropy rate δ where m = Ω(`) and ε = 2−Ω(`).

Now we can combine this extractor with Lemma 4.1 to get
an extractor for independent-symbol sources with constant
min-entropy rate.

Theorem 4.6. For any constant δ, we can construct a
polynomial-time computable ε-extractor Ext : [d]n → {0, 1}m

for rate δ independent-symbol sources with m = Θ(n log d)

and ε = 2−Ω(m). This extractor can be computed in time
poly(n, log d).

Proof. Given a source X, divide it into t = 2C1(δ/2)/δ
blocks of size n/t, where C1(δ) is the constant from
Corollary 4.4. Then by Lemma 4.1, we can view X as
an independent-symbol source over [dn/t]t, where at least
δt/2 = C1(δ/2) of the symbols have min-entropy rate at
least δ/2. Find the smallest prime p > (n log d)/t. By
Bertrand’s postulate, p ≤ 2(n log d)/t, so we can find such a
prime in time poly(n, log d) by brute force search. Then we

can embed each of our symbols over dn/t < 2p into GF (2p)∗

and apply the extractor from Corollary 4.4 to get the stated
result.

5. EXTRACTING FROM POLYNOMIAL
ENTROPY RATE

In this section we will show how to extract from independent-
symbol sources when the min-entropy of the sources is poly-
nomially small, using techniques based on those of Rao [24].
As in the previous section, we will reduce the problem to an-
other model: we will try to extract from a few independent
sources when just some of them have a polynomial amount
of entropy, but we don’t know exactly which ones. The prob-
abilistic method shows that extractors exist for this model
even when just two sources contain logarithmic min-entropy
and the total number of sources is polynomially large. In
this section we consider sources over symbols with large al-
phabet sizes, so we let d = 2` and view the symbols as being
over {0, 1}`. Our main theorem is as follows.



Theorem 5.1. Assuming we can find primes with length
in [r, 2r] in time poly(r), there is a constant β such that
there exists a polynomial-time computable ε-extractor Ext :
({0, 1}`)n → {0, 1}m for independent-symbol sources with

min-entropy rate δ ≥ `−β, where n = Θ(1/δ2), m = `Ω(1)

and ε = 2−`Ω(1)
.

We can also get the following corollary for when we have
a larger number of smaller sources.

Corollary 5.2. Assuming we can find primes with length
in [r, 2r] in time poly(r), there exists a constant η such that
for any δ ≥ (n`)−η, there exists a polynomial-time com-
putable ε-extractor Ext : ({0, 1}`)n → {0, 1}m for independent-

symbol sources with min-entropy rate δ, where m = (δ2n`)Ω(1)

and ε = 2−(δ2n`)Ω(1)
.

Proof. Divide the source into Θ(1/δ2) blocks of Θ(δ2n)
symbols each and apply Theorem 5.1.

In this section we will describe a generic technique to turn
any extractor for the model where a few sources have min-
entropy rate less than half into an extractor that can extract
when the min-entropy is as small as `1−α0 for some universal
constant α0. There are two major ingredients that will go
into our construction:

• The first ingredient is recent constructions of random-
ness efficient condensers [2, 25]. As observed by Avi
Wigderson (the theorem appears in [24]), these con-
densers imply that there are small constants α, γ and
a polynomial time computable function that can con-
vert any source on ` bits with min-entropy `1−α into a
source that outputs `γ different rows of bits, such that
most of them come from sources with extremely high
min-entropy rate. An important property that we will
need is that the length of each of the rows is `2γ , which
is much higher than the number of rows. Formally:

Theorem 5.3. (By Wigderson [24]) Assuming we
can find primes with length in [r, 2r] in time poly(r),
for every sufficiently small constant γ > 0 there ex-
ists constants α = α(γ) > 0 and µ(γ) > 2γ and a
polynomial time computable function Cond : {0, 1}` →
({0, 1}`µ

)`γ

such that for any min-entropy `1−α source
X, Cond(X) is ε-close to a source with somewhere min-
entropy rate 0.9.

If we use the condenser from Raz’s work [25] with the
improved analysis of Dvir and Raz (Lemma 3.2 in [14]),
to get the theorem above, we can even ensure that
most of the output rows are statistically close to having
high min-entropy. It will be more convenient to think
of this as a seeded condenser. The analysis of Dvir and
Raz ensures that we obtain a seeded condenser which
for all but an arbitrarily small constant fraction of the
seeds, succeeds in condensing the input source to give a
distribution that is exponentially close to having high
min-entropy.

Theorem 5.4. Assuming we can find primes with
length in [r, 2r] in time poly(r), for all small enough
constants γ, ε > 0 there exist constants α = α(γ), µ(γ) >

2γ, β(γ, ε) > 0, and a polynomial time computable func-

tion Cond : {0, 1}` × {0, 1}a → ({0, 1}`µ

) with a =
γ log ` such that for any min-entropy `1−α source X,

Pr
s←RUw

[Cond(X, s) is 2−`β

-close to a source

with min-entropy rate 0.9] > 1− ε.

• The second ingredient is the technique of condensing
independent somewhere random sources from the work
of Rao [24]. We will prove a generalization of a theorem
from that work. We will show how to extract from
independent sources with only a few of them being
aligned somewhere random sources that have rows that
are much longer than the number of rows. Formally,
we get the following, a proof of which is deferred to
the full version:

Theorem 5.5. For every constant γ < 1 there ex-

ists a polynomial time 2−`Ω(1)
-extractor

SRExt : ({0, 1}`γ+1
)u → {0, 1}m for u independent

sources, of which v are independent aligned (`γ × `)

SR-sources, where m = `− `Ω(1).

We will first describe how to use these two ingredients to
extract from an intermediate model. Then we will see that
independent-symbol sources can be easily reduced to this
intermediate model to prove Theorem 5.1.

5.1 Extracting From The Intermediate Model
The intermediate model we work with is defined as follows.

Definition 5.6. A (u, v, α) intermediate source X con-

sists of u2 sources X1, . . . , Xu2
, each on {0, 1}`. These

sources are partitioned into u sets S1, . . . , Su such that v
of the sets have the property that v of their sources have
min-entropy at least `1−α.

Now we show that for certain constant v and α > 0 we
can extract from this model.

Theorem 5.7. Assuming we can find primes with length
in [r, 2r] in time poly(r), for some constants v and α > 0

there exists a polynomial time computable 2−`Ω(1)
-extractor

IExt for (u, v, α) intermediate sources, where m = `Ω(1).

Using this theorem together with Lemma 4.1, we can
prove Theorem 5.1.

Proof. (Of Theorem 5.1.) Let X be an independent-
symbol source on ({0, 1}`)n with min-entropy rate δ ≥ 4`−α,
where α is the constant from Theorem 5.7 and n = u2 where
u will be chosen later. Divide the source into u blocks with u
symbols each. By Lemma 4.1, δu/2 of the blocks have min-
entropy rate at least δ/2. Now further divide each of the
blocks into u subblocks of one symbol each. By Lemma 4.1,
for the blocks with min-entropy rate at least δ/2, at least
δu/4 of the subblocks have min-entropy rate δ/4 ≥ `−α.
Let u = 4v/δ, where v is the constant from Theorem 5.7.
Then X is a (u, v, α) intermediate source satisfying the con-
ditions of Theorem 5.7, which immediately gives us the the-
orem.



Here is the algorithm promised by Theorem 5.7:

Construction: IExt(x1, . . . , xu2
)

Input: x1, . . . , xu2
partitioned into sets S1, . . . , Su

Output: z.
Let v be a constant that we will pick later.
Let BGK be as in Corollary 4.5 - an extractor for indepen-

dent sources when v − 1 of them have min-entropy.
Let Cond be as in Theorem 5.4 - a condenser that con-

verts sources with sublinear min-entropy into sources with
somewhere min-entropy rate 0.9.

Let SRExt be as in Theorem 5.5 - an extractor for inde-
pendent sources that works when just v of the inputs come
from aligned somewhere random sources.

Set ε = 1/v3. Let γ be a small enough constant to apply
Theorem 5.4 with γ, ε in the hypothesis. Let α, a be as in
the conclusion of the theorem.

Let {0, 1}a = {s1, s2, . . . , s2a}.
1. For every seed si:

(a) Run Cond(., si) on every source in the input to get

supposedly condensed strings a1, . . . , au2
. Each

aj is of length `µ ≥ `2γ .
(b) For every l ∈ [u], let bl

i be the string obtained by
applying BGK to the aj ’s from Sl.

We think of bl as a sample from a somewhere random
source with `γ rows, one for each seed si.

2. Output SRExt(b1, . . . , bu).

Proof of Theorem 5.7. If we used a completely ran-
dom seed si in the first step, we know that the condens-
ing succeeds for a single source with probability (1 − ε).
By the union bound, the condensing succeeds for all the v2

high min-entropy sources with probability (1 − v2ε). This
quantity is greater than 0, so there must be some seed si

for which the condensing succeeds for all the v2 high min-
entropy sources. When this si is used with any of the sources

that contain sufficient entropy Xj , Cond(Xj , si) is 2−`β

-
close to a source with min-entropy rate 0.9, where β is as
in Theorem 5.4. Then BGK succeeds in extracting from the
row corresponding to this si.

Thus the result of the first step in the algorithm is a dis-

tribution that is 2−`Ω(1)
-close to a collection of u indepen-

dent sources, v of which are independent aligned somewhere-
random sources.

This is exactly the kind of distribution that our extractor
SRExt can handle, so our algorithm succeeds in extracting
from the input.

6. EXTRACTING FROM SMALL ALPHA-
BET INDEPENDENT-SYMBOL SOURCES

Now we show how for smaller alphabet sizes d we can
do better than the constructions in the previous sections by
generalizing previous constructions for symbol-fixing sources.
The base extractor simply takes the sum of the symbols
modulo p for some p > d. Then we divide the source into
blocks, apply the base extractor to each block, and then use
the result to take a random walk on an expander as in [17].

6.1 Reducing to Flat Independent-Symbol
Sources

It will be simpler to analyze our extractor for flat independent-
symbol sources. We show that any extractor that works
for flat independent-symbol sources also works for general
independent-symbol sources because any independent-symbol
source is close to a convex combination of flat sources, a
proof of which is deferred to the full version. In particular,
since for d = 2 flat independent-symbol sources are the same
as bit-fixing sources, this lemma shows that any extractor
for bit-fixing sources is also an extractor for independent-
symbol sources with d = 2.

Lemma 6.1. Any ε-extractor for the set of flat independent-
symbol sources on [d]n with min-entropy k/(2 log 3) is also

an (ε + e−k/9)-extractor for the set of independent-symbol
sources on [d]n with min-entropy k.

6.2 Extracting From Flat Independent-Symbol
Sources

Now we show how to extract from flat independent-symbol
sources for small d. Our initial extractor simply takes the
sum modulo p of the symbols.

Theorem 6.2. Let d ≥ 2 and p ≥ d a prime. Then
Sump : [d]n → [p], where Sump(x) =

P
i xi mod p, is an

ε-extractor for the set of flat independent-symbol sources on

[d]n with min-entropy k, where ε = 1
2
2−2k/p2√

p.

Combining Theorem 6.2 with Lemma 6.1 we get an ex-
tractor for independent-symbol sources.

Theorem 6.3. Let d ≥ 2 and p ≥ d a prime. Then Sump

is an ε-extractor for the set of independent-symbol sources on

[d]n with min-entropy k ≥ Ω(p2 log p), where ε = 2−Ω(k/p2).

We will prove Theorem 6.2 via the following lemma.

Lemma 6.4. Let d ≥ 2 and p ≥ d a prime. Then for all
flat independent symbol sources X on [d]n with min-entropy

k, Sump(X) has `2 distance from uniform at most 2−2k/p2
.

It is well known that if X1 and X2 are both distributed
over a universe of size p, then |X1−X2| ≤ 1

2

√
p||X1−X2||2.

Theorem 6.2 then follows by combining Lemma 6.4 with this
relation between `2 and variation distance.

To analyze the distance from uniform of the sum modulo
p, we use the following lemma that relates this distance to
the characters of Zp. For Zp, where p is a prime, the ith

character is defined as χj(a) = e
2πija

p .

Lemma 6.5. For any function f : {0, 1}n → Zp and ran-
dom variable X over {0, 1}n,

||f(X)− Up||22 =
1

p

p−1X
j=1

|E[χj(f(X))]|2

< max
j 6=0

|E[χj(f(X))]|2,

where Up denotes the uniform distribution over Zp.



Proof. Let Y = f(X)−Up. The jth Fourier coefficient of

Y is given by Ŷj =
Pp−1

y=0 Y (y)χj(y). By Parseval’s Identity

and using the fact that
Pp−1

y=0 χj(y) = 0 when j 6= 0 we get

||Y ||22 =
1

p

p−1X
j=0

|Ŷj |2

=
1

p

p−1X
j=0

˛̨̨̨
˛
p−1X
y=0

Y (y)χj(y)

˛̨̨̨
˛
2

=
1

p

p−1X
j=0

˛̨̨̨
˛
p−1X
y=0

Pr[f(X) = y]χj(y)− 1

p

p−1X
y=0

χj(y)

˛̨̨̨
˛
2

=
1

p

p−1X
j=1

|E[χj(f(X))]|2

< max
j 6=0

|E[χj(f(X))]|2.

Using the previous lemma we can now prove Theorem 6.2.

Proof. Let f(X) =
Pn

i=1 Xi and fix j 6= 0. Then
|E[χj(f(X))]|2 =

Qn
i=1 |E[χj(Xi)]|2. Suppose Xi has min-

entropy ki, so k =
P

i ki. Then since each Xi is a flat source,

Xi is uniformly distributed over Ki = 2ki values. Our goal
is to upper bound |E[χj(Xi)]|2 over all possible choices of
Xi. Doing so, we get

|E[χj(Xi)]|2 ≤ max
Xi:Zp→{0,1/Ki}P

x Xi(x)=1

|E[χj(Xi)]|2

= max
Xi:Zp→{0,1/Ki}P

x Xi(x)=1

˛̨̨̨
˛̨X
x∈Zp

Xi(x)χj(x)

˛̨̨̨
˛̨
2

= max
y,|y|=1

0B@ max
Xi:Zp→{0,1/Ki}P

x Xi(x)=1

0@0@X
x∈Zp

Xi(x)χj(x)

1A� y

1A2
1CA

= max
Xi:Zp→{0,1/Ki}P

x Xi(x)=1

0@ max
y,|y|=1

0@X
x∈Zp

Xi(x)(χj(x)� y)

1A21A ,

where � denotes the complex dot product, where the com-
plex numbers are viewed as two dimensional vectors, and
the third line follows from the observation that the dot
product is maximized when y is in the same direction as
(
P

x∈Zp
Xi(x)χj(x)), in which case we get exactly the square

of the length. Now we further note that χj(x)� y is great-
est for values of x for which χj(x) is closest to y. Thus we
achieve the maximum when Xi is distributed over the Ki

values closest to y. Without loss of generality we can as-
sume these values correspond to x = 0 to Ki − 1 (since we

only care about the magnitude). Thus

|E[χj(Xi)]|2 ≤

˛̨̨̨
˛ 1

Ki

Ki−1X
`=0

e
2πi`

p

˛̨̨̨
˛
2

=

˛̨̨̨
˛̨ 1

Ki

1− e
2πijKi

p

1− e
2πi

p

˛̨̨̨
˛̨
2

=

˛̨̨̨
˛̨̨̨ 1

Ki

e
πiKi

p

„
e
−πiKi

p + e
πiKi

p

«
e

πi
p

“
e
−πi

p + e
πi
p

”
˛̨̨̨
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2

=

0@ 1

Ki

sin
“

πKi
p

”
sin
“

π
p

”
1A2

=

0@ 1

Ki

πKi
p

Q∞
m=1

“
1− K2

i
p2m2

”
π
p

Q∞
m=1

“
1− 1

p2m2

”
1A2

=

 
∞Y

m=1

„
1− K2

i − 1

p2m2 − 1

«!2

<

„
1− K2

i − 1

p2 − 1

«2

< e−2(K2
i−1)/(p2−1),

where in the fourth line we use the infinite product repre-
sentation of sine. So

|E[χj(f(X))]|2 =

nY
i=1

|E[χj(Xi)]|2

<

nY
i=1

e−2(K2
i−1)/(p2−1) < e2n/p2

e−2(
P

i K2
i )/p2

.

By the power mean inequality,
Pn

i=1 K2
i ≥ n·(

Qn
i=1 Ki)

2/n =

n22k/n. Thus |E[χj(f(X))]|2 < e−2n(22k/n−1)/p2
. Let k =

δn. Then this quantity is e−(2k/p2)((22δ−1)/δ). Since (22δ −
1)/δ is an increasing function of δ and goes to 2 ln 2 as δ
goes to 0, we have

|E[χj(f(X))]|2 < e−(2k/p2)((22δ−1)/δ) < e−4(ln 2)k/p2
= 2
−4 k

p2

Then by Lemma 6.5 ||f(X)−Up||22 < maxj 6=0 |E[χj(f(X))]|2,
so ||f(X)− Up||2 < 2−2k/p2

.

Now we show that if we divide the source into blocks and
take the sum modulo p for each block, we get a convex com-
bination of “almost” symbol-fixing sources, which we can
then use an expander walk to extract from, as in [17]. The
proof of the following theorem is essentially the same as that
in [17] and is deferred to the full version.

Theorem 6.6. There exists an ε-extractor for the set of
flat independent symbol sources on [d]n with min-entropy k
that outputs m = Ω(k2/(nd2 log d)) bits and has error ε =
2−m. This extractor is computable in time poly(n, d).

Combining this theorem with our reduction from general
to flat sources, we get that this same extractor works for
general independent-symbol sources.

Theorem 6.7. There exists an ε-extractor for the set of
independent-symbol sources on [d]n with min-entropy k that
outputs m = Ω(k2/nd2 log d) bits and has error ε = 2−m.
This extractor is computable in time poly(n, d).

Proof. Combine Theorem 6.6 and Lemma 6.1.
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