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Abstract

We study deterministic extractors for oblivious bit-fixing sources (a.k.a.
resilient functions) and exposure-resilient functions with small min-entropy:
of the function’s n input bits, k � n bits are uniformly random and un-
known to the adversary.

We simplify and improve an explicit construction of extractors for
bit-fixing sources with sublogarithmic k due to Kamp and Zuckerman
(SICOMP 2006), achieving error exponentially small in k rather than
polynomially small in k. Our main result is that when k is sublogarithmic
in n, the short output length of this construction (O(log k) output bits)
is optimal for extractors computable by a large class of space-bounded
streaming algorithms.

Next, we show that a random function is an extractor for oblivious bit-
fixing sources with high probability if and only if k is superlogarithmic in
n, suggesting that our main result may apply more generally. In contrast,
we show that a random function is a static (resp. adaptive) exposure-
resilient function with high probability even if k is as small as a constant
(resp. log logn). No explicit exposure-resilient functions achieving these
parameters are known.

Keywords: pseudorandomness, exposure-resilient function, randomness ex-
tractor, bit-fixing source

1 Introduction

Randomness extractors are functions that extract almost-uniform bits from
weak sources of randomness (which may have biases and/or correlations). Ex-
tractors can be used for simulating randomized algorithms and protocols with
weak sources of randomness, have close connections to many other “pseudoran-
dom objects” (such as expander graphs and error-correcting codes), and have a
variety of other applications in theoretical computer science.

∗Some of these results previously appeared in the first author’s undergraduate thesis [Res].
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‡School of Engineering and Applied Science, Harvard University, 33 Oxford Street, Cam-

bridge, MA 02138. salil@seas.harvard.edu. http://seas.harvard.edu/~salil. Supported
by US-Israel BSF grant 2006060 and NSF grant CNS-0831289.
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The most extensively studied type of extractor is the seeded extractor, intro-
duced by Nisan and Zuckerman [NZ]. These extractors are given as additional
input a small “seed” of truly random bits to use as a catalyst for the random-
ness extraction, and this allows for extracting almost-uniform bits from very
unstructured sources, where all we know is a lower bound on the min-entropy.
In many applications, such as randomized algorithms, the need for truly ran-
dom bits can be eliminated by trying all possible seeds and combining the results
(e.g. by majority vote). However, prior to the Nisan–Zuckerman notion, there
was a substantial interest in deterministic extractors (which have no random
seed) for restricted classes of sources. Over the past decade, there has been a
resurgence in the study of deterministic extractors, motivated by settings where
enumerating all possible seeds does not work (e.g. distributed protocols) and
by other applications in cryptography.

In this paper, we study one of the most basic models: an oblivious bit-fixing
source (OBFS) is an n-bit source where some n − k bits are fixed arbitrarily
and the remaining k bits are uniformly random. Deterministic extractors for
OBFSs, also known as resilient functions (RFs), were first studied in the mid-
80’s, motivated by cryptographic applications [Vaz, BBR, CGH+]. A more
relaxed notion is that of an exposure-resilient function (ERF), introduced in
2000 by Canetti et al. [CDH+]. Here all n bits of the source are chosen uniformly
at random, but n− k of them are seen by an adversary; an ERF should extract
bits that are almost-uniform even conditioned on what the adversary sees. ERFs
come in two types: static ERFs, where the adversary decides which n − k bits
to see in advance, and adaptive ERFs, where the adversary reads the n− k bits
adaptively. In recent years, there has been substantial progress in giving explicit
constructions of both RFs and ERFs [CDH+, DSS, KZ, GRS].

In this paper, we focus on the case when k, the number of random bits
unknown to the adversary, is very small, e.g. k < log n. While this case is not
directly motivated by applications, it is interesting from a theoretical perspective
for a couple of reasons:

• For many other natural classes of sources (several independent sources [CG],
samplable sources [TV], and affine sources [BKS+]), at least logarithmic
min-entropy is necessary for extraction.1

• This is a rare case where a random function is not an optimal extractor.
For example, the parity function extracts one completely unbiased bit from
any bit-fixing source with k = 1 random bits, but we show that a random
function will fail to extract from some such source with high probability.

Our first results concern explicit constructions of extractors for OBFS with
k sublogarithmic in n.

• We simplify and improve an explicit construction of extractors for OBFSs
with small k by Kamp and Zuckerman [KZ]. In particular, the error
parameter of our construction can be exponentially small in k, whereas the

1For the case of 2 independent sources, the need for logarithmic min-entropy is proven in
[CG]. For sources samplable by circuits of size s = n2, it can be shown by noting that the
uniform distribution on any 2k elements of {0, 1}k+1 ◦ 0n−k−1 is samplable by a circuit of
size O(n ·2k) (and we can pick 2k elements on which the first bit of the extractor is constant).
For affine sources, it can be shown by analyzing the k-th Gowers norm of the set of inputs on
which the first bit of the extractor is constant (as pointed out to us by Ben Green).
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Kamp–Zuckerman construction achieves error that is polynomially small
in k. Our extractor (like that of [KZ]) extracts only Θ(log k) almost-
uniform bits, in contrast to extractors for superlogarithmic k, which can
extract nearly k bits.

• We prove that, when k is sublogarithmic, the Θ(log k) output length of
our extractor is optimal for extractors for OBFSs computable by space-
bounded streaming algorithms with a certain “forgetlessness” property.
The class of streaming algorithms we analyze includes our construction as
well as many natural random-walk based constructions. This is our main
result.

Next, we investigate properties of random functions as extractors for OBFS’s
and find that k ≈ log n appears to be a critical point for extractors for OBFSs
in this setting as well. Specifically, we show that:

• A random function is an extractor for OBFSs (with high probability) if
and only if k is at least roughly log n.

• In contrast, for the more relaxed concept of exposure-resilient functions,
random functions suffice even for sublogarithmic k. For static ERFs, k
can be as small as a constant, and for adaptive ERFs, k can be as small
as log log n.

All of the results concerning random functions yield resilient/exposure-resilient
functions that output nearly k almost-uniform bits.

2 Preliminaries

Throughout, we will use the convention that a lowercase number (e.g. n) im-
plicitly defines a corresponding capital number (N) as its exponentiation with
base 2 (i.e. N = 2n).

Definition 2.1 (Statistical Distance). Let X and Y be two random variables
taking values in a set S. The statistical distance ∆(X,Y ) between X and Y is

∆ (X,Y ) = max
T⊂S
|Pr [X ∈ T ]− Pr [Y ∈ T ]| = 1

2

∑
w∈S
|Pr [X = w]− Pr [Y = w]|

We will write X ≈ε Y to mean ∆(X,Y ) ≤ ε, and we will use Un to denote
the uniform distribution on {0, 1}n. When Un appears twice in the same set
of parentheses, it will denote the same random variable. For example, a string
chosen from the distribution (Un, Un) will always be of the form w ◦w for some
w ∈ {0, 1}n. Note that (Un, Um) still equals Un+m.

Definition 2.2 (Oblivious Symbol-Fixing Source). An (n, k, d) oblivious symbol-
fixing source (OSFS) X is a source consisting of n symbols, each drawn from [d],
of which all but k are fixed and the rest are chosen independently and uniformly
at random.

Definition 2.3 (Oblivious Bit-Fixing Source). An (n, k) oblivious bit-fixing
source (OBFS) is an (n, k, 2) oblivious symbol-fixing source.
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We will use
{
n
`

}
to denote the set {L ⊂ [n] : |L| = `} and, given some

L ∈
{
n
`

}
and a string a ∈ {0, 1}`, we will write La,n to denote the oblivious

bit-fixing source that has the bits with positions in L fixed to the string a.

Definition 2.4 (Deterministic Randomness Extractor). Let C be a class of
sources on {0, 1}n. A deterministic ε-extractor for C is a function E : {0, 1}n →
{0, 1}m such that for every X ∈ C we have E(X) ≈ε Um.

Here we will focus mainly on deterministic randomness extractors for obliv-
ious bit-fixing sources, also known as resilient functions (RFs).

Definition 2.5 (Resilient Function). A (k, ε)-RF is a function f : {0, 1}n →
{0, 1}m that is a deterministic ε-extractor for (n, k) oblivious bit-fixing sources.

We can also characterize extractors for OBFSs by their ability to fool a
distinguisher: consider a computationally unbounded adversary A that can set
some of f ’s input bits in advance but must allow the rest to be chosen uniformly
at random. Then f satisfies Definition 2.5 if and only if A is unable to distinguish
between f ’s output and the uniform distribution regardless of how A changes
f ’s input.

When viewed through this lens, the notion of deterministic extraction from
OBFSs has a natural relaxation obtained by restricting A to only read (rather
than modify) a portion of f ’s input bits. Functions that are able to fool ad-
versaries of this type are called exposure-resilient functions (ERFs). We define
below the two simplest variants of exposure-resilient functions, which correspond
to whether A reads the bits of f ’s input all at once or one at a time.

Definition 2.6 (Static Exposure-Resilient Function). A static (k, ε)-ERF is a
function f : {0, 1}n → {0, 1}m with the property that for every L ∈

{
n

n−k
}

, f
satisfies (Un|L, f(Un)) ≈ε (Un|L, Um).

This definition can be restated in terms of average-case extraction using the
following lemma, whose proof can be found in [Res].

Lemma 2.7. A function f : {0, 1}n → {0, 1}m is a static (k, ε)-ERF if and only
if for every L ∈

{
n

n−k
}

, f satisfies

E
a←Un−k

[∆ (f (La,n) , Um)] ≤ ε

Allowing the adversary to adaptively request bits of f ’s input one at a time
gives rise to the strictly stronger notion of an adaptive ERF:

Definition 2.8 (Adaptive Exposure-Resilient Function). An adaptive (k, ε)-
ERF is a function f : {0, 1}n → {0, 1}m with the property that for every algo-
rithm A : {0, 1}n → {0, 1}∗ that can (adaptively) read at most n− k bits of its
input,2 f satisfies (A(Un), f(Un)) ≈ε (A(Un), Um).

The following lemma will allow us to restrict our attention to algorithms A
that simply output the values of the bits that they request as they receive them
(rather than outputting some function of those bits).

2In other words, A is a binary decision tree of depth n− k − 1 with leaves labelled by its
output strings and each internal node labelled by the position of the bit that A requests at
that juncture.
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Lemma 2.9. Let A : {0, 1}n → {0, 1}∗ be an adaptive adversary that reads
at most d bits of its input and let Ar : {0, 1}n → {0, 1}∗ be the algorithm
that adaptively reads the same bits as A and outputs them in the order that
they were read. For every function f : {0, 1}n → {0, 1}m, the statistical dis-
tance between (A(Un), f(Un)) and (A(Un), Um) is at most the distance between
(Ar(Un), f(Un)) and (Ar(Un), Um).

Proof. First, modify Ar by padding its output with 0’s so that its output length
is always d. Now define a second algorithm Ap : {0, 1}d → {0, 1}∗ as follows: on
an input x ∈ {0, 1}d, Ap runs A, sequentially feeding it the bits of x in response
to A’s requests, and then outputs A’s output. The fact that A = Ap ◦ Ar then
implies the desired result.

3 A simplification and a lower bound

In this section, we prove that when the entropy parameter k is sublogarithmic
in the input length n, an output length of O(log k) is optimal for a natural class
of space-bounded streaming algorithms, including algorithms that use the input
bits to conduct a random walk on a graph. Before we state this lower bound,
we give a simple improvement on the state of the art in explicit constructions
of extractors for oblivious bit-fixing sources (i.e. resilient functions) for sublog-
arithmic entropy. Our lower bound then shows that the parameters achieved by
this construction are optimal.

3.1 The simplification

We start with a simplification of a previous construction due to [KZ]. The
previous construction is based on very good extractors for oblivious symbol-
fixing sources with d ≥ 3 symbols obtained by using the symbols of the input
string to take a random walk on an expander graph of degree d. Since expander
graphs do not exist with degree d = 2, this approach could not be used for
oblivious bit-fixing sources. However, the construction of [KZ] uses the fact
that while a random walk on an expander is not an option, a random walk on
a cycle still extracts some randomness even when the entropy k of the input is
very small. Our construction is a slight modification of this random walk that
simplifies the argument and improves the error parameter.

Theorem 3.1. For every n ∈ N, k ∈ [n], ε > 0, and m = 1
2 (log k−log log (1/ε)),

the function f : {0, 1}n → {0, 1}m defined by

f(w) =

n∑
i=1

wi (mod 2m)

is a (k, ε)-RF. In particular, setting ε = 2−
√
k gives output length m = 1

4 log k.

Proof. We can treat f as computing the endpoint of a walk on Z/MZ (where
M = 2m) that starts at 0 and either adds 1 or 0 to its state with every bit that
it reads. Since the endpoint of this walk does not depend on the order in which
the input bits are processed, we may assume without loss of generality that all
of the fixed bits in f ’s input come at the beginning. These bits only change the
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starting vertex of the random walk and do not affect the distance from uniform
of the resulting distribution. Therefore, to bound the distance from uniform of
any distribution of the form f(L∗,n) we need only bound the mixing time of a
walk on Z/MZ consisting of k random steps. The following claim, whose proof
we defer to the appendix, accomplishes this.

Claim 3.2. Let Wk be the distribution on the vertices of Z/MZ (where M = 2m)
obtained by beginning at 0 and adding 1 or 0 with equal probability k times. The
distance from uniform of Wk is at most

e−kπ
2/2M2

2
(
1− e−3kπ2/2M2

)
Since k ≥ M2, the bottom of the fraction in Claim 3.2 is bounded from

below by 2(1− e−3π2/2) > 1 and so we have bounded the distance from uniform

by e−kπ
2/2M2

. With our setting of parameters this is at most εlog (e)π2/2 ≤ ε, as
desired.

The difference between this construction and that of [KZ] is that each step
of the random walk carried out by f consists of adding either 1 or 0 rather than
1 or −1 to the current state. This has two advantages. First, the random walk
in the construction of [KZ] cannot be carried out on a graph of size 2m since any
even-sized cycle is bipartite and the walk traverses an edge at each step. This
necessitates an additional lemma about converting the output of the random
walk to one that is almost uniformly distributed over {0, 1}m, which incurs
at error polynomially related to k.3 By eliminating the need for this lemma,
the construction of Theorem 3.1 manages to achieve an exponentially small
error parameter. Second, setting m = 1 in the construction of Theorem 3.1
makes it clear that the idea underlying both it and the [KZ] construction is
simply a generalization of bitwise addition modulo 2—the parity function—
which extracts 1 uniformly random bit whenever k ≥ 1.

As discussed previously, this construction achieves output length only loga-
rithmic in k. This is considerably worse than the output length of k−2 log (1/ε)−
O(1) which we show to be possible both for extractors for OBFSs with k > log n
(Section 4.1) and for ERFs (Section 4.2). The lower bound we prove in the fol-
lowing section shows why this is the case.

3.2 The lower bound

The extractor of Theorem 3.1 is a symmetric function; that is, its output is not
sensitive to the order in which the input bits are arranged. We begin building
our more general negative result by first showing that extractors for OBFSs
with this property cannot have superlogarithmic output length.

Lemma 3.3. Suppose that X = La,n is an (n, k)-OBFS and that f : {0, 1}n →
{0, 1}m is a symmetric function of the input bits in [n]−L. (That is, for every
permutation π : [n] → [n] that fixes L, f(xπ(1), . . . , xπ(n)) = f(x1, . . . , xn).)
Then f(X) ≈ε Um implies that m ≤ log (k/(1− ε)).

3This additional error was overlooked in [KZ], and their Theorem 1.2 erroneously claims
an error exponentially small in k.
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Proof. By the symmetry of f on the bits in [n] − L, the size of the support
of f(X) is at most k. (The output depends only on the number of input bits
in [n] − L that equal 1.) Thus, the distance between f(X) and Um is at least
(M − k)/M . Together with f(X) ≈ε Um, this implies that ε ≥ (M − k)/M ,
which is equivalent to m ≤ log (k/(1− ε)).

We can use Lemma 3.3 to show that no symmetric function with large output
length can be even a static ERF.

Proposition 3.4. If a symmetric function f : {0, 1}n → {0, 1}m is a static
(k, ε)-ERF then m ≤ log (k/(1− ε)).

Proof. From Lemma 2.7, we have that for f to be a static ERF, it must satisfy,
for all sets L ∈

{
n

n−k
}

,

E
a←Un−k

[∆ (f (La,n) , Um)] ≤ ε

It follows by averaging that there exists a set L and a string a such that
f(La,n) ≈ε Um. Application of Lemma 3.3 to the source La,n then yields the
result.

Since every deterministic ε-extractor for (n, k)-OBFSs is a static (k, ε)-ERF
and every adaptive (k, ε)-ERF is also a static (k, ε)-ERF, Proposition 3.4 applies
to extractors for OBFSs and adaptive ERFs as well. Thus, Proposition 3.4 shows
that constructions like that of Theorem 3.1 and that of [KZ] are optimal.

However, there are many natural candidates for extraction from OBFSs that
are similar to that of Theorem 3.1 but are not symmetric, such as the analogous
random walk on a directed version of a 3-regular or 4-regular expander graph.
For instance, we could try the graph with vertex set Fp where the edge labelled
0 from vertex x goes to x+ 1 and the edge labelled 1 goes to x−1 (or 0 in case
x = 0). The undirected version of this graph is known to be an expander [Lub],
so we might hope that with k random steps we can reach an almost uniform
vertex even for p = 2Ω(k) and thus output Ω(k) almost-uniform bits.

Fp with inverse cords rather than an undirected cycle. It turns out that such
constructions do no better, as we now show by extending the above lower bound
for extractors for OBFSs to a large class of small-source streaming algorithms.
We start by defining the model of computation that we will assume.

Definition 3.5 (Streaming Algorithm). A streaming algorithm A : {0, 1}n →
{0, 1}m is given by a 5-tuple (V, v0,Σ

0,Σ1, ϕ), where V is the state space, v0 ∈ V
is the initial state, Σ0 = (σ0

1 , . . . , σ
0
n) and Σ1 = (σ1

1 , . . . , σ
1
n) are two sequences

of functions from V to itself, and ϕ is a function from V to {0, 1}m. On an
input sequence (b1, . . . , bn) ∈ {0, 1}n, A computes by updating its state using
the rule vi+1 = σbii (vi). A’s output is A(b1, . . . , bn) = ϕ(vn). The function ϕ is
called the output function of A, and the space of A is log |V |.

We say that A is forgetless if and only if for every i at least one of either σi
0

or σi
1 is a permutation. (Thus, if the i-th bit is fixed to a certain value, A does

not “forget” anything about its state when reading that bit.)

Forgetless streaming algorithms include random walks on 2-regular digraphs
that are consistently labelled (meaning that the edges labelled b form a permu-
tation, for each b ∈ {0, 1}), like the graph on Fp mentioned above. However,
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forgetless streaming algorithms are more general in the sense that they can com-
pute random walks in which each step of the walk is conducted on a different
graph.

We now show that forgetless streaming algorithms with small space cannot
compute extractors for OBFSs with large output length (for small k). This is
our main result.

Theorem 3.6. Suppose that f : {0, 1}n → {0, 1}m is a deterministic ε-extractor
for (n, k)-OBFSs that can be computed by a forgetless streaming algorithm with
space s ≤ log (n/k)/k. Then m ≤ log (k/(1− ε)).

Proof. Fix an ε-extractor for (n, k)-OBFSs f : {0, 1}n → {0, 1}m and let A be
a forgetless streaming algorithm with space s ≤ log (n/k)/k that computes f .
To show that m ≤ log (k/(1− ε)), we will first reduce to a special case in which
we can make some simplifying assumptions about A. We will then construct an
oblivious bit-fixing source X such that f is symmetric on the set of bit positions
not fixed by X. This will allow us to apply Lemma 3.3 to obtain our result since
f must map X close to uniform.
Reduction to the special case: Let Σ0 and Σ1 be the sequences of functions used
by A, and let ϕ be its output function. We reduce to the special case that every
element of Σ0 is the identity.

Since A is forgetless, we can switch some of the functions σ0
i and σ1

i to make
every function in Σ0 a permutation while preserving the fact that A computes
a (k, ε)-RF. (This corresponds to just negating some input bits.) This allows
us to define a new sequence of functions F = {f1, . . . , fn} and a new output
function ψ by the following relations.

σ0
i ◦ · · · ◦ σ0

1 ◦ fi = σ1
i ◦ σ0

i−1 ◦ · · · ◦ σ0
1

ψ = ϕ ◦ σ0
n ◦ · · · ◦ σ0

1

Then (V, v0, (id, id, . . . , id), (f1, . . . , fn), ψ) can be verified to be a streaming al-
gorithm that computes the same function as (V, v0,Σ

0,Σ1, ϕ).

Constructing the source X: Letting S = 2s, we can choose a set F1 ⊂ F of
size at least n/S such that all the functions in F1 map the initial state v0 to
some common state (call it v1). We can then choose a set F2 ⊂ F1 of size at
least n/S2 such that all functions in F2 map v1 to some common state, which
we call v2. Continuing in this way, we obtain a set Fk ⊂ F of size at least
n/Sk and a sequence (v0, . . . , vk) with the property that every f ∈ Fk satisfies
f(vi) = vi+1 for 0 ≤ i < k. We now define X to be the oblivious bit-fixing
source that has the bits at positions that correspond to functions in Fk un-fixed
and the rest of the bits fixed to 0. By our assumption that s ≤ log (n/k)/k, we
have |Fk| ≥ n/Sk ≥ k, meaning that X has at least k unfixed bits.

Obtaining the desired bound: For any string w in the support of X, f ’s out-
put will be ψ(vH(w)) where H(w) is the Hamming weight of w. Therefore f is a
symmetric function of the bits in positions not fixed by X. Since X contains at
least k independent, uniformly random bits and f is a (k, ε)-resilient function,
Lemma 3.3 yields m ≤ log (k/(1− ε)) as desired.

What does this theorem tell us about extraction in low-entropy settings?
If we set s = m ≤ k (as in the walk on the cycle of Theorem 3.1) then The-
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orem 3.6 implies that when k <
√

log n− log log n we are confined to output
length m ≤ log (k/(1− ε)). In other words, the output length of Ω(log k) offered
by Theorem 3.1 is close to optimal for extractors in this model when k <

√
log n.

We note here a separate, trivial space lower bound that applies even to the
forgetful case: since streaming algorithms under our model cannot produce any
output bits until they have read all the input bits, we have s > m − 1 when
ε < 1/2. This bound can in fact be generalized to streaming algorithms that are
allowed to output bits at any point in their computation by a simple adaptation
of a space lower bound for strong extractors proven in [BRST]. The resulting
lower bound says that s ≥ m− 4 when ε ≤ 1/8 and k ≤ n/2 for extractors for
OBFSs computable by any streaming algorithm.

4 Non-constructive results

We now turn to determining for what values of the entropy parameter k it is
possible to achieve output lengthm = Ω(k) using the probabilistic method. Here
we find that the results are roughly in agreement with our explicit lower bounds
from the previous section. That is, a randomly chosen function f : {0, 1}n →
{0, 1}m will almost always be an extractor for OBFSs with output length m =
Ω(k) when k is larger than log n, and this output length cannot be achieved
using the probabilistic method when k < log n.

We then show that random functions can do better in the more relaxed realm
of exposure-resilient functions: a randomly chosen function is almost always a
static ERF with optimal output length for any k, and an adaptive ERF with
optimal output length when k is larger than log log n.

Before we proceed, we state a Chernoff bound and a partial converse to it
that we will use in proving these results. A sketch of the proof of Lemma 4.2 is
given in the appendix.

Lemma 4.1 (A Chernoff bound). Let X1, . . . , Xt be independent random vari-
ables taking values in [0, 1], and let X = (

∑
iXi)/t and µ = E[X]. Then for

every 0 < ε < 1, we have

Pr [|X − µ| > ε] < 2e−tε
2/2 ≤ 2−bΩ(tε2)c

Lemma 4.2 (Partial converse of Chernoff bound). Let X1, . . . , Xt represent the
results of independent, unbiased coin flips, and let X = (

∑
iXi)/t. Then for

every 0 ≤ ε ≤ 1/2, we have

Pr

[∣∣∣∣X − 1

2

∣∣∣∣ ≥ ε] ≥ 2−dO(tε2)e

4.1 Deterministic extractors for OBFSs

Theorem 4.3 below, which follows from a straightforward application of the
Chernoff bound stated in Lemma 4.1, shows that the probabilistic methods gives
extractors for OBFSs with k > log n. Theorem 4.4 then shows that k > log n is
the best we can do using the probabilistic method.

Theorem 4.3. For every n ∈ N, k ∈ [n], and ε > 0, a randomly cho-
sen function f : {0, 1}n → {0, 1}m with m ≤ k − 2 log (1/ε) − O(1) and k ≥
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max{log (n− k), log log
(
n
k

)
} + 2 log (1/ε) + O(1) is a deterministic ε-extractor

for (n, k)-OBFSs with probability at least 1− 2−Ω(Kε2), where K = 2k.

Proof. Fix an (n, k)-OBFS X. Choosing the function f consists of indepen-
dently assigning a string in {0, 1}m to each string in the support of X. In order
for f to map X close to uniform, we need to have chosen it such that, for every
fixed statistical test T ⊂ {0, 1}m, the fraction of strings in X mapped by f into
T is very close to the density of T in {0, 1}m. This is expressed formally by the
condition below. ∣∣∣∣ |f−1(T )|

2k
− |T |

2m

∣∣∣∣ ≤ ε
Now fix one specific test T ⊂ {0, 1}m. For each string w in the support of X,
define the indicator variable Iw to be 1 if f(w) ∈ T and 0 otherwise. Then
Lemma 4.1 (our Chernoff bound) applied to (

∑
w Iw) /2k = |f−1(T )|/2k shows

that f fails the condition above with probability at most 2−bΩ(Kε2)c.
There are 2M possible tests T ⊂ {0, 1}m (where M = 2m). A union bound

over all these tests therefore gives that the probability that f fails to map X
to within ε of uniform is at most 2M−bΩ(Kε2)c. We can perform a similar union
bound over the possible choices of the source X: there are

(
n
k

)
N/K such sources,

yielding that the probability that f is not a (k, ε)-RF is at most(
n

k

)
N

K
2M−bΩ(Kε2)c = 2−Ω(Kε2)

provided K ≥ max{log (NK ), log
(
n
k

)
}c/ε2 for a sufficiently large constant c and

M ≤ c′Kε2 for a sufficiently small constant c′. Taking logarithms gives the
result.

The max{log (n− k), log log
(
n
k

)
} term in the statement of Theorem 4.3 is

always at most log n, so the theorem always holds when k ≥ log n+2 log (1/ε)+
O(1), as discussed earlier. In the following theorem, we prove a limitation on
the extraction properties of random functions which shows that this bound on
k is in fact nearly tight.

Theorem 4.4. There is a constant c such that for every n ∈ N, k ∈ [n],
and ε ∈ [0, 1/2] satisfying k ≤ log (n− k) + 2 log (1/ε) − c, a random function
f : {0, 1}n → {0, 1} will fail to be a deterministic ε-extractor for (n, k)-OBFSs

with probability at least 1− 2−
√
N/K , where N = 2n and K = 2k.

Proof. Fix an input size n and a set L of n− k fixed bits (say, L = [n− k]). To
say that f an ε-extractor for (n, k)-OBFSs is to say that all 2n−k sets S of the
form L∗,n satisfy the following condition.∣∣∣∣ Pr

w←S
[f(w) = 1]− 1

2

∣∣∣∣ ≤ ε
Since f(w) is chosen independently for each string w ∈ S, we can use the
converse of our Chernoff bound (Lemma 4.2) to say that the probability that

f satisfies this condition for a fixed set S is at most 1 − 2−dO(Kε2)e, where
K = 2k = |S|.

10



Since there are N/K subsets of the form L∗,n and they are disjoint, the prob-
ability that f will fail the above condition on none of them (i.e. the probability
that f is a resilient function) is at most(

1− 2−dO(Kε2)e
)N/K

If the O
(
Kε2

)
term is less than or equal to 1, this probability is at most 2−N/K .

Otherwise, it is at most 2−
√
N/K provided that N/K ≥ 2CKε

2

for a sufficiently
large constant C = 2c. Taking logarithms twice completes the proof.

Theorem 4.4 does not establish that extractors for OBFSs with the stated
parameters do not exist; indeed, as mentioned earlier, the parity function (i.e.
f(x1, . . . , xn) = ⊕xi) is a perfect resilient function for even k = 1. What the
theorem does show, however, is that k ≈ log n represents a critical point below
which these extractors become very rare. This seems consistent with the lower
bound on k proven in Theorem 3.6.

4.2 Exposure-resilient functions

We now show that probabilistically constructing exposure-resilient functions
is easier than constructing extractors for OBFSs. This is because, while the
adversary can choose input sources in the extractor setting, here it can only
expose them. The probabilistic constructions of static and adaptive ERFs both
proceed by counting the number of adversaries that must be fooled and then
applying Lemma 4.5 (below), which is an upper bound on the probability that a
randomly chosen function will fail to fool a fixed adversary. This lemma applies
equally both to static and adaptive adversaries; the difference in achievable
parameters between static and adaptive ERFs therefore stems solely from the
fact that there are many more adversaries in the adaptive setting.

Lemma 4.5. Let A : {0, 1}n → {0, 1}∗ be an algorithm that reads at most d bits
of its input, let ε > 0, and choose a function f : {0, 1}n → {0, 1}m uniformly at
random with m = n− d− 2 log (1/ε)−O(1). Then f will fail to satisfy

(A (Un) , f (Un)) ≈ε (A (Un) , Um)

with probability at most 2−Ω(Nε2), where N = 2n.

Proof. Lemma 2.9 allows us to assume without loss of generality that A adap-
tively reads d bits and outputs them in the order that they were read. Under
this assumption, we have (A(Un), Um) = Ud+m. We therefore need only to
bound the probability that (A(Un), f(Un)) is far from Ud+m.

Fix a statistical test T ⊂ {0, 1}d × {0, 1}m. In order for (A(Un), f(Un)) to
pass this specific test of uniformity, we need f to satisfy∣∣∣∣Pr [(A (Un) , f (Un)) ∈ T ]− |T |

2d+m

∣∣∣∣ ≤ ε (4.1)

For every w ∈ {0, 1}n, define Iw to be 1 if (A(w), f(w)) ∈ T and 0 otherwise,
and notice that Pr[(A(Un), f(Un)) ∈ T ] = 1

2n

∑
w Iw. For x ∈ {0, 1}d, let Tx

denote T ∩ ({x} × {0, 1}m). Then, for a fixed w, the expectation of Iw over the

11



choice of f is exactly |TA(w)|/2m, and so by the regularity of A the expectation

of 1
2n

∑
w Iw over the choice of f is |T |/2d+m. A Chernoff bound (Lemma 4.1)

then gives that the probability over the choice of f that Equation (4.1) is not

satisfied is at most 2−bΩ(Nε2)c.
Since there are 2DM possible choices of T in the above analysis (where D =

2d, M = 2m), a union bound shows that the probability that (A(Un), f(Un))

will fail one or more of them is at most 2DM2−bΩ(Nε2)c = 2−Ω(Nε2) if m =
n− d− 2 log (1/ε)− c for a sufficiently large constant c.

Having established that a random function will tend to fool a fixed adver-
sary, we now establish the existence of static and adaptive exposure-resilient
functions. In both cases, we do so by taking a union bound over all potential
adversaries and applying Lemma 4.5. Thus, the parameters achieved are those
that bring the number of adversaries to below 2Nε

2

.

Theorem 4.6. For every n ∈ N, k ∈ [n], and ε ≥ c
√
n/2n where c is a

universal constant, a randomly chosen function f : {0, 1}n → {0, 1}m with m ≤
k−2 log (1/ε)−O(1) is a static (k, ε)-ERF with probability at least 1−2−Ω(Nε2),
where N = 2n.

Proof. Every static adversary that tries to distinguish the output of f from
uniform is an algorithm A : {0, 1}n → {0, 1}n−k that reads exactly n− k bits of
its input. We can therefore apply Lemma 4.5 with d = n − k to get that the
probability that f will fail to fool any one adversary is at most 2−Ω(Nε2). Taking
a union bound over the

(
n
k

)
possible adversaries, we get that the probability that

f will not fool all adversaries is at most(
n

k

)
2−Ω(Nε2) ≤ N2−Ω(Nε2) = 2−Ω(Nε2)

where the final equality is given by the constraint on ε.

Counting the number of adversaries in the adaptive setting is a bit more
work, but Lemma 2.9 from our preliminaries simplifies this task.

Theorem 4.7. For every n ∈ N, k ∈ [n], and ε > 0, a randomly chosen
function f : {0, 1}n → {0, 1}m with m ≤ k−2 log (1/ε)−O(1) and k ≥ log log n+

2 log (1/ε)+O(1) is an adaptive (k, ε)-ERF with probability at least 1−2−Ω(Nε2),
where N = 2n.

Proof. The proof is identical to that of Theorem 4.6 except that we have to
count the number of adaptive adversaries. We do so below.

First we note that Lemma 2.9 implies that if f fools all adaptive adversaries
that output the bits they read as they read them, then f fools all adaptive
adversaries. We therefore only need to count this smaller set of adversaries.
The process by which such an adversary chooses which bits to request can be
modelled by a decision tree of depth n−k−1 whose internal nodes are labelled by
elements of [n]. Since the number of nodes in such a tree is 2n−k−1−1 < N/2K,
where N = 2n and K = 2k, we can bound the total number of trees—and
therefore adversaries—by nN/2K .

Proceeding with the same kind of union bound as in the proof of Theo-
rem 4.6, we see that the probability that f will not fool all adaptive adversaries
is at most nN/2K2−Ω(Nε2) = 2−Ω(Nε2), provided that K ≥ (c log n)/ε2 for a
sufficiently large constant c. Taking logarithms yields the theorem.
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5 Future work

The general question of whether there exist resilient functions with large output
length in the low-entropy range studied here is still unresolved.

Open Question 1. Does there exist, for all n ∈ N and some growing function
0 < k(n) < log n, a deterministic ε-extractor for (n, k(n)-OBFSs with output
length m = Ω(k(n)) and ε constant?

Theorem 3.6 shows that to resolve this question in the positive direction
requires a function that is either not computable by a forgetless streaming al-
gorithm or uses a considerable amount of space. In the other direction, an
interesting step towards a negative result would be to at least remove the for-
getlessness condition from the space lower bound proven in that theorem.

We can ask an analogous question for the case of adaptive ERFs with k <
log log n.

Open Question 2. Does there exist, for all n ∈ N and some growing func-
tion 0 < k(n) < log log n, an adaptive (k(n), ε)-ERF with output length m =
Ω(k(n)) and ε constant?

In this case, we cannot even rule out the possibility that a more clever use
of the probabilistic method will resolve this question positively. Thus, a first
step toward a negative result might be to prove an analogue to Theorem 4.4
that shows that adaptive ERFs with near-optimal output length become very
rare when k < log log n.

A third open problem arising from this work is that of finding an explicit con-
struction of a static ERF with the parameters achieved using the probabilistic
method in Theorem 4.6. Currently, an output length of Ω(k) is achieved in [DSS]
using strong extractors, but the construction works only when k > log n. For k
smaller than log n, there is no known construction of a static ERF that is not
also an RF, making the construction of Theorem 3.6 the current state of the
art. This leaves us with the following open question:

Open Question 3. Does there exist, for all n ∈ N and some growing function
0 < k(n) < log n, an explicit static (k(n), ε)-ERF with output length m =
Ω(k(n)) and ε constant?
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A Proof sketch of Lemma 4.2

Lemma. Let X1, . . . , Xt represent the results of independent, unbiased coin
flips, and let X = (

∑
iXi)/t. Then for every 0 ≤ ε ≤ 1/2, we have

Pr

[∣∣∣∣X − 1

2

∣∣∣∣ ≥ ε] ≥ 2−dO(tε2)e

Proof Sketch. We address three separate cases: 0 ≤ ε < 1
4
√
t
, 1

4
√
t
≤ ε < 1

5 , and
1
5 ≤ ε ≤ 1

2 . In the first case, we upper-bound the probability that
∣∣X − 1

2

∣∣ <
ε using the fact that no term of the binomial distribution exceeds

√
2/πt in

probability mass. In the second case, we set β = 1
2 + 2ε and use Stirling’s

approximation to lower-bound the probability by

bεtc ·
(

t

bβtc

)
/2t ≥ bεtc · 1√

t

1

2tββt(1− β)(1−β)t

≥ 2−O(tε2)

where the first inequality is from Stirling’s approximation. In the third case, we
just lower-bound the probability by 2−t.

B Proof of Claim 3.2

Claim. Let Wk be the distribution on the vertices of Z/MZ (where M = 2m)
obtained by beginning at 0 and adding 1 or 0 with equal probability k times. The
distance from uniform of Wk is at most

e−kπ
2/2M2

2
(
1− e−3kπ2/2M2

)
Proof. Consider Z/MZ as an additive group, and let P be the probability dis-
tribution on Z/MZ that equals 0 with probability 1/2 and 1 otherwise. Then
the distribution on Z/MZ after k steps of our random walk is P ∗n, the n-th
convolution of P with itself.

Lemma 1 in Chapter 3 of [Dia] bounds the distance between P ∗n and the
uniform distribution in terms of the traces of the Fourier transforms by P ∗n

of the non-trivial irreducible representations of Z/MZ. This simplifies nicely

since the Fourier transform P̂ ∗n(ρ) of a representation ρ by P ∗n equals (P̂ (ρ))n,
the n-th power of the Fourier transform of ρ by P . Since there is one non-
trivial irreducible representation for each j ∈ [M −1], we therefore arrive at the
following upper bound for the distance from uniform after k random steps.

1

4

M−1∑
j=1

(
1

2
+

1

2
cos

(
2πj

M

))k

To bound this sum, we first note that 1
2 + 1

2 cos(x) ≤ e−x
2/8 for x ∈ [0, π].

15



This, together with the fact that M = 2m is even, allows us to write

1

4

M−1∑
j=1

(
1

2
+

1

2
cos

(
2πj

M

))k
=

1

2

(M−2)/2∑
j=1

(
1

2
+

1

2
cos

(
2πj

M

))k

≤ 1

2

(M−2)/2∑
j=1

e−kπ
2j2/2M2

≤ 1

2
e−kπ

2/2M2
∞∑
j=1

e−kπ
2(j2−1)/2M2

≤ 1

2
e−kπ

2/2M2
∞∑
j=0

e−3kπ2j/2M2

=
e−kπ

2/2M2

2
(
1− e−3kπ2/2M2

)
which is the desired result.
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