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Abstract
We study winner-take-all contests for crowdsourcing pro-
curement in a model of costly effort and stochastic produc-
tion. The principal announces a prize value P , agents si-
multaneously select a level of costly effort to exert towards
production, yielding stochastic quality results, and then the
agent who produces the highest quality good is paid P by
the principal. We derive conditions on the probabilistic map-
ping from effort to quality under which this contest paradigm
yields efficient equilibrium outcomes, and demonstrate that
the conditions are satisfied in a range of canonical settings.

Introduction
Crowdsourcing is an increasingly popular model of procure-
ment in today’s online marketplaces. A principal seeks com-
pletion of a task, posts an open call for submissions, and
allows multiple agents (workers) to simultaneously submit
solutions, awarding a prize to the participant with the best
solution. The number and size of online crowdsourcing
marketplaces has grown markedly in recent years; notable
examples include Taskcn, Topcoder, 99designs and Crowd-
Flower. Crowdsourced tasks resemble contests in that many
agents simultaneously exert effort in an attempt to win a
prize, where the results are determined based on relative
performance. The process of selecting a winner based on
submission quality and awarding her a lump sum prize con-
stitutes a particular class of contest mechanisms, which we
term winner-take-all.

In this paper, we initiate a study of winner-take-all con-
test mechanisms in the model of costly effort and stochas-
tic production introduced in (Cavallo and Jain 2012). In
that previous work, we identified a condition under which
extreme-effort strategy profiles—i.e., ones where all agents
exert either maximum effort or zero effort—are efficient in
the sense of maximizing expected value to the principal mi-
nus production costs to the workers, and we showed that a
number of canonical distributions satisfy this condition. But
to implement efficient policies in general, we had to spec-
ify a mechanism that departs significantly in form from the
contests typical of most crowdsourcing markets.

In the current paper, rather than designing a solution that
universally satisfies certain properties, we instead set out to
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evaluate the winner-take-all schemes that are currently so
prevalent in online crowdsourcing. We are motivated by the
following questions: What level of effort towards produc-
tion is induced by winner-take-all contest schemes? How
does this depend on the magnitude of the prize on offer? If
the principal sets the prize to maximize his value for the pro-
duced good minus the prize he must pay, what prize value
will he choose? And ultimately, are winner-take-all mecha-
nisms typically efficient?

Since we take agents to be self-interested and strategic,
the answer to these questions requires a game-theoretic ap-
proach and so we will analyze what happens in equilibrium.
Our main contribution is to identify a sufficient condition
on the stochastic mapping from production-effort to output-
quality that yields optimal extreme-effort strategy profiles
in equilibrium. We show that a number of canonical distri-
butions satisfy this sufficient condition. This coupled with
a result from our previous paper (Cavallo and Jain 2012)
establishes that optimal extreme-effort strategy profiles are
frequently both efficient and achieved in equilibrium by
winner-take-all contest mechanisms.

Related Work
A new line of research providing a theory of crowdsourc-
ing contests has recently emerged (DiPalantino and Vojnovic
2009; Archak and Sundararajan 2009; Chawla et al. 2012;
Cavallo and Jain 2012). Most of this work focuses on the
case where agents have private skill information and choose
a privately observed level of effort to expend towards pro-
duction. DiPalantino and Vojnovic (2009) make the connec-
tion to all-pay auctions and model a market with multiple
contests, considering the principal’s optimization problem
in the limit-case as the number of agents and contests goes
to infinity. Archak and Sundararajan (2009) and Chawla et
al. (2012) focus on the design of a single contest, seek-
ing to determine how many prizes should be awarded and
of what value. Chawla et al. (2012) make the connection
between crowdsourcing contests and optimal auction de-
sign, finding that the optimal crowdsourcing contest—from
the perspective of the principal seeking a maximum quality
submission—is a virtual valuation maximizer.

Outside of (Cavallo and Jain 2012), a principal-centric
viewpoint has most frequently been adopted. Design-
oriented work has focused on how to maximize submission



quality given a prize budget, whether it be the highest qual-
ity submission (Moldovanu and Sela 2006; Chawla et al.
2012) or the total sum of submission qualities (Moldovanu
and Sela 2001; 2006; Minor 2011). Other work has focused
on maximizing the sum of the top k submissions minus
the prize awarded (Archak and Sundararajan 2009). Ghosh
and Hummel (2012) consider a more general class of utility
functions to optimize for in a setting with virtual “points”
(a type of currency); namely, they show that there is a best
contribution mechanism that can implement the principal-
optimal outcome (in their model, the principal does not
experience disutility for the prize awarded). Another line
of work in the economics literature uses contests to ex-
tract effort under a hidden action (Lazear and Rosen 1981;
Green and Stokey 1983; Nalebuff and Stiglitz 1983). As in
our model, the output is a stochastic function of the unob-
servable effort, but the setting is different in that the prin-
cipal obtains value from the cumulative effort of the agents
rather than just the maximum result.

These works are related to a long literature in eco-
nomics focused on providing equilibrium characterizations
for all-pay auctions in complete information settings (Tul-
lock 1980; Moulin 1986; Baye et al. 1996; Bertoletti
2010) as well as incomplete information settings (Weber
1985; Hilman and Riley 1989; Krishna and Morgan 1997;
Amann and Leininger 1996). There has also been work
on sequential all-pay auctions (Konrad and Leininger 2007;
Segev and Sela 2011; Liu et al. 2011) and multi-stage re-
search tournaments that award a single prize (Taylor 1995;
Fullerton and McAfee 1999).

Like the current paper, most of this previous work as-
sumes strategic agents and thus consists largely of equilib-
rium analysis. However, a critical differentiator of the cur-
rent paper is the production model: we adopt the model
of (Cavallo and Jain 2012), where quality is a stochastic
function of effort and skill. From an efficiency perspective,
this stochasticity (combined with a deadline under which
procurement is required) is the most natural way we could
think of to motivate the crowdsourcing paradigm—the re-
dundant costly-effort of simultaneous production is justi-
fied by the principal’s value for high quality and inability
to ensure receipt before the deadline if production were in-
stead ordered sequentially. In our previous paper we intro-
duced this model and designed efficient mechanisms for the
problem of crowdsourcing; here we instead analyze winner-
take-all mechanisms, currently the prevailing crowdsourc-
ing payment scheme seen in practice. Our goal in doing so
is to determine the effectiveness of winner-take-all contests
from an efficiency perspective. We aim to quantify the effi-
ciency gap, or the tradeoff between implementing the com-
plicated yet perfectly efficient mechanisms of (Cavallo and
Jain 2012) versus the simpler winner-take-all mechanisms.
To the best of our knowledge, no previous work has ad-
dressed the efficiency of winner-take-all contests or studied
them in a model of stochastic production.1

1While we lack the space to go into great detail here, it is worth
noting that in the special case of deterministic production functions
any equilibrium of the winner-take-all contest will: i) be efficient,

Model
There is a set of agents I = {1, . . . , n} (with n ≥ 2) ca-
pable of producing goods for a principal, where each i ∈ I
makes a privately observed choice of effort δi to expend on
production. We identify effort level δi with the dollar value
in costs ascribed to it by agent i. We assume that δi ∈ [0, 1],
∀i ∈ I .2 If an agent attempts production with effort δi, a
good is produced with quality that is a priori uncertain but is
a function of δi.

Quality is identified with value to the principal in dollar-
terms, and can be thought of as the output of a non-
deterministic function mapping effort to �+. The probabil-
ity distribution over relative quality, given any effort level,
is publicly known; the principal has value v ∈ �+, a scale
factor that maps relative quality levels to absolute quality
(dollar-value to the principal).3 The principal obtains value
commensurate with the maximum-quality good produced.
For instance, if there are two agents i and j who expend ef-
fort δi and δj and produce goods with relative qualities qi
and qj , the principal’s utility from obtaining the goods will
equal max{vqi, vqj}.

For any non-zero effort level δi ∈ (0, 1], we denote the
p.d.f. and c.d.f. over resulting relative quality as fδi and Fδi ,
respectively, where the support of fδi is in �+. We assume
homogeneity across agents in the sense that the private effort
choice is the only differentiating factor; i.e., for two agents
making the same choice of effort level, the distribution over
the quality they will produce is the same (though there is no
presumed correlation so the resulting quality may differ).4
We assume the probability density over quality, evaluated at
any particular quality level, is differentiable with respect to
effort δi, for all δi ∈ (0, 1]. We assume that effort δi = 0
deterministically yields quality 0 (no effort yields no produc-
tion), and then for notational convenience we let F0(x) = 1,
∀x ≥ 0. We also assume that, ∀x > 0, Fδi(x) converges to
1 as δi goes to 0.5 Finally, we make the natural assumption
that more effort has first-order stochastic dominance over
less effort with respect to quality, i.e.:

∀0 ≤ δi < δ′i ≤ 1, ∀x ∈ [0, v], Fδi(x) ≥ Fδ′i(x)

and ii) have only a single agent exerting effort towards production.
This provides an intuitive motivation for the stochastic production
model, since in the deterministic case crowdsourcing (i.e., work
done by a crowd rather than a lone individual) neither occurs in
equilibrium nor is efficient.

2The only loss in generality here is in assuming a finite bound
on effort.

3Note that in (Cavallo and Jain 2012) the principal’s value v
was private. Here, because the principal is essentially setting the
mechanism by choosing a prize value, whether v is private or public
is of no consequence to the equilibrium outcomes that result.

4In (Cavallo and Jain 2012), a richer model is also considered
where agents are also differentiated by private skill information
(see also (Chawla et al. 2012)).

5This entails that, ∀δ−i ∈ [0, 1]n−1 such that maxj∈I\{i} δj >
0,

∫∞
0

fδi(x)
∏

j∈I\{i} Fδj (x)dx converges to 0 as δi goes to 0.
In words: as long as some agent other than i is exerting non-zero
effort, i’s probability of winning the contest (and, with it, his ex-
pected utility) goes to 0 as his effort goes to 0.



We will analyze a particular family of mechanisms that
we call winner-take-all contests. In such contests, a game
is defined wherein the principal chooses a prize value P
and each agent i ∈ I subsequently chooses an effort level
δi, simultaneously with the other agents’ effort choices. To
simplify things, we will assume that each agent’s strategy
space consists only of pure strategies, i.e., any determinis-
tic choice of effort level in [0, 1]. We adopt a quasilinear
utility model and assume all players are risk-neutral. Given
our identification of the quality of the good (scaled by the
principal’s private value v) with the dollar value ascribed to
it by the principal, a rational principal will choose a prize P
that induces an effort profile which maximizes his expected
value for the highest quality good produced minus P . Like-
wise, given our identification of effort level δi with the dollar
value in costs ascribed to it by agent i, in equilibrium each
agent will choose δi to maximize P times his probability of
producing the highest-quality good—given the other agents’
effort choices—minus δi.

Letting Qj(v, δj) be a random variable representing the
absolute quality level produced by agent j when he expends
effort δj , given the principal’s value v, the expected effi-
ciency of an equilibrium in which each i ∈ I exerts effort
δi is:

E[max
i∈I

Qi(v, δi)]−
∑
i∈I

δi

(The prize value P does not factor into social welfare since
it is subtracted from the principal’s utility and added to the
winning agent’s.) An efficient effort policy is a vector of
effort levels that maximizes the above equation given v.6

In the next section, we present our main results, establish-
ing several facts about equilibrium agent-level responses to
any given prize choice by the principal, providing conditions
under which extreme-effort strategies will be equilibria, and
then showing that in such cases the principal has an equi-
librium choice of prize value P that leads to maximum effi-
ciency. We then show that these results entail the existence
of efficient equilibria in many canonical cases. However, the
results do not preclude the existence of alternative inefficient
equilibria as well, so we also provide a full equilibrium char-
acterization for one case, that where quality is distributed
uniformly over a range that increases linearly with effort.

General Equilibrium Properties
Our first set of results will consider agent-level strategies
that are equilibrium responses to a given choice of prize
value by the principal. We define:
Definition 1 (agent-level Nash equilibrium). Given a choice
of prize value P , a set of effort levels δ for the agents consti-
tutes an agent-level Nash equilibrium if and only if, ∀i ∈ I ,
δi is a best-response to P and the other agents’ chosen effort
levels δ−i.

We start by observing that no equilibrium will ever in-
volve cumulative agent effort exceeding the prize value, and
also no equilibrium will involve only a single agent exerting

6That is, effort vector δ∗ is efficient if and only if δ∗ ∈
argmaxδ∈[0,1]n(E[maxi∈I Qi(v, δi)]−∑

i∈I δi).

non-zero effort. These facts will be useful in deriving the
full equilibrium results to come.

Proposition 1. For arbitrary quality distributions and arbi-
trary prize value P ∈ �+, any agent-level Nash equilibrium
strategy profile has agents collectively exerting at most P
units of effort.

Proof. Consider arbitrary prize P ∈ �+ and effort profile
δ1, . . . , δn. Assume δ is an agent-level Nash equilibrium
given P . Each agent’s expected utility is her expected prize
reward (denoted Ri for the purposes of this proof) minus ef-
fort exerted, i.e., E[Ri(P, δ1, . . . , δn)]−δi. Each agent must
have an expected utility of at least 0 since otherwise an agent
could beneficially deviate by exerting 0 effort and receive a
reward of 0. Therefore,

∑n
i=1(E[Ri(P, δ1, . . . , δn)]− δi) ≥

0. But
∑n

i=1 E[Ri(P, δ1, . . . , δn)] = P , and therefore∑n
i=1 δi ≤ P .

Proposition 2. For arbitrary quality distributions and arbi-
trary prize value P ∈ �+, no agent-level Nash equilibrium
has exactly one agent exerting non-zero effort.

Proof. Consider a candidate equilibrium profile with one
agent exerting x units of effort, where 0 < x ≤ 1, and oth-
ers exerting 0. This agent’s expected utility is P − x. If the
agent reduces his effort to x

2 , his expected payoff increases
to P − x

2 , a profitable deviation.

Proposition 2 tells us that when an efficient effort profile
involves exactly one agent exerting full effort, the winner-
take-all contest cannot achieve it in equilibrium. In (Cavallo
and Jain 2012, Lemma 1), we gave a sufficient condition
for efficiency of extreme-effort strategy profiles, which we
reproduce in a slightly modified form here:

Condition 1 (Efficiency of extreme-effort). ∀i ∈ I , ∀δ−i ∈
[0, 1]n−1, ∀v ∈ �+, ∀a, b ∈ �+ with a < b, ∀β ∈ �+, ∀ε ∈
[a, b),

− ∂

∂δi

(
v

∫
β

Fδi(x) dx
)∣∣∣

δi=ε
> 1 (1)

⇒ − ∂

∂δi

(
v

∫
β

Fδi(x) dx
)∣∣∣

δi=k
> 1, ∀k ∈ [ε, b] (2)

While the condition is somewhat opaque, it allows for
straightforward demonstration that the set of efficient ef-
fort policies for a distribution consists only of extreme-effort
policies (this follows almost immediately from the proof of
Lemma 1 of (Cavallo and Jain 2012)). Moreover, when the
condition holds, there always exists a value v for the princi-
pal such that the only efficient policy has exactly one agent
participate. This in combination with Proposition 2 gives us
the following:

Proposition 3. For any distribution that satisfies Condi-
tion 1, there exists a value v for the principal such that the
winner-take-all contest has no efficient equilibria.

We now derive conditions under which extreme-effort
strategy profiles are an agent-level Nash equilibrium.



Lemma 1. For arbitrary m ∈ {2, . . . , n − 1}, m agents
exerting effort 1 and n − m agents exerting effort 0 is an
agent-level Nash equilibrium if and only if the prize value P
satisfies: m ≤ P ≤ m+ 1 and, ∀δ ∈ (0, 1),

1− δ
1
m − ∫

fδ(x)F1(x)m−1 dx
≤ P ≤ δ∫

fδ(x)F1(x)m dx

(3)

All n agents exerting effort 1 is an agent-level Nash equi-
librium if and only if, ∀δ ∈ [0, 1),

P ≥ 1− δ
1
n − ∫

fδ(x)F1(x)n−1 dx
(4)

Proof. Consider arbitrary P ∈ �+ and m ∈ {1, . . . , n}. m
agents exerting effort 1 and n−m agents exerting effort 0 is
an agent-level Nash equilibrium if and only if, ∀δ ∈ [0, 1],

P

[ ∫
f1(x)F1(x)

m−1 dx−
∫

fδ(x)F1(x)
m−1 dx

]
≥ 1− δ,

(5)

and P

∫
fδ(x)F1(x)

m dx ≤ δ (6)

(with Eq. (6) voided in the case of m = n).
The left-hand-side of Eq. (5) is the expected utility loss

(excluding costs of effort) to an agent from moving from
effort level 1 to δ, when m − 1 other agents are exerting
effort 1 (and all others are exerting 0). In a Nash equilibrium
this will (weakly) exceed the cost “savings” (i.e., the right-
hand-side). Similarly, the left-hand-side of Eq. (6) is the
expected utility gain (excluding costs of effort) to an agent
from moving from effort level 0 to δ when m other agents
are exerting effort 1 (and all others are exerting 0). In a Nash
equilibrium this will not exceed the added cost (i.e., δ).

Noting that
∫
f1(x)F1(x)

m−1 dx = 1/m, ∀m ∈
{2, . . . , n− 1}: for δ = 0 Eq. (5) entails P ≥ m, for δ = 1
Eq. (6) entails P ≤ m+ 1, and ∀δ ∈ (0, 1), Eqs. (5) and (6)
can be combined and rewritten as Eq. (3). Similarly, in the
case of m = n Eq. (5) holds trivially for δ = 1 and for all
other values of δ can be rewritten as Eq. (4).

Proposition 4. If prize P ∈ (0, 2), there is never an
extreme-effort agent-level Nash equilibrium. For arbitrary
prize P ∈ [2, n], ∀m ∈ {2, . . . , n}, if m agents exerting ef-
fort 1 andn−m exerting effort 0 is an agent-level Nash equi-
librium, then m = �P � or P ∈ {3, . . . , n} and m = P − 1.

Proof. Consider arbitrary prize P ∈ (0, 2). By Proposition
1, if there is an extreme-effort agent-level Nash equilibrium
it must have m < 2 agents participating. But m = 1 cannot
be an equilibrium by Proposition 2, and m = 0 cannot be an
equilibrium when there is a positive prize on offer. The rest
of the proposition follows directly from Lemma 1.

Theorem 1. For arbitrary prize value P ∈ [2, n], letting
m = �P �, the following is a sufficient condition for m

agents exerting effort 1 and n − m exerting 0 as an agent-
level Nash equilibrium: ∀δ ∈ (0, 1),

δ ≥ max
{
m

∫
fδ(x)F1(x)

m−1 dx, (7)

(m+ 1)

∫
fδ(x)F1(x)

m dx
}

Proof. Consider arbitrary prize P ∈ [2, n] and let m = �P �.
Then from Lemma 1 (rearranging Eq. (3)), necessary and
sufficient conditions for m being an extreme-effort agent-
level Nash equilibrium are: ∀δ ∈ (0, 1),

δ ≥ 1− P

[
1

m
−
∫

fδ(x)F1(x)
m−1 dx

]
, and (8)

δ ≥ P

∫
fδ(x)F1(x)

m dx, (9)

where Eq. (9) is not required if P = n. Since P ≥
m, a stronger version of Eq. (8) is δ ≥ 1 − m[ 1m −∫
fδ(x)F1(x)

m−1 dx] = m
∫
fδ(x)F1(x)

m−1 dx. Simi-
larly, since P < m + 1, a stronger version of Eq. (9) is
δ ≥ (m + 1)

∫
fδ(x)F1(x)

m dx. Thus the two inequalities
will be satisfied if Eq. (7) holds.

Theorem 2. For arbitrary prize value P ∈ [2, n), letting
m = �P �, the following is a necessary condition for m
agents exerting effort 1 and n − m exerting 0 as an agent-
level Nash equilibrium: ∀δ ∈ (0, 1),

δ ≥ max
{
(m+ 1)

∫
fδ(x)F1(x)

m−1dx− 1

m
, (10)

m

∫
fδ(x)F1(x)

mdx
}

Proof. Consider arbitrary prize P ∈ [2, n) and let
m = �P �. Assume for contradiction that m is an
extreme-effort agent-level Nash equilibrium and, for some
δ ∈ (0, 1), δ < max{(m + 1)

∫
fδ(x)F1(x)

m−1dx −
1/m, m

∫
fδ(x)F1(x)

mdx}. As shorthand, let λ denote
1/m − ∫

fδ(x)F1(x)
m−1dx. Since P ≤ m + 1, if δ <

(m+ 1)
∫
fδ(x)F1(x)

m−1dx− 1/m, then:

δ < (m+ 1)
( 1

m
− λ

)
− 1

m

=
1

m
(m+ 1− 1)− (m+ 1)λ

= 1− (m+ 1)λ

≤ 1− Pλ

= 1− P

[
1

m
−
∫

fδ(x)F1(x)
m−1dx

]

This contradicts Eq. (8), which is entailed by the Nash equi-
librium conditions of Eq. (3). Now alternatively assume
that for some δ ∈ (0, 1), δ < m

∫
fδ(x)F1(x)

mdx. Since
P ≥ m, this implies that:

δ < P

∫
fδ(x)F1(x)

mdx

This contradicts Eq. (9), which is also entailed by the Nash
equilibrium conditions of Eq. (3).



The above gives us a handle on agent equilibrium re-
sponses to any given prize choice. In order to have a com-
plete equilibrium description, we will now incorporate the
principal’s strategic choice of prize value. The setting can
be viewed as a two-stage game: in stage 1 the principal sets
the prize value, and in stage 2 the agents exert effort towards
production. Thus we will be concerned with strategy pro-
files that constitute subgame perfect equilibria, defined as
follows: (P, δ) is a subgame perfect equilibrium if and only
if δ is an agent-level Nash equilibrium given P , and there
exists no alternate prize choice that yields (only) agent-level
Nash equilibria such that the principal’s expected utility is
improved over the (P, δ′) case, for every δ′ that is an agent-
level Nash equilibrium given P .

Lemma 2. For arbitrary quality distribution and arbitrary
principal value v ∈ �+, if prize value P ∈ �+ yields an
efficient effort profile δ∗ as an agent-level Nash equilibrium,
with

∑
i∈I δ

∗
i = P , then (P, δ∗) is a subgame perfect Nash

equilibrium.

Proof. Consider arbitrary quality distribution, arbitrary
principal value v ∈ �+, and arbitrary prize P ∈ �+ that
yields an efficient effort profile δ∗ as an agent-level Nash
equilibrium, with

∑
i∈I δ

∗
i = P . To prove the lemma it

is sufficient to show that there exists no P ′ that induces an
agent-level Nash equilibrium δ′ with E[Q(v, δ′)] − P ′ >
E[Q(v, δ∗)] − P . Assume for contradiction that there does
exist such a P ′ inducing such a δ′. Then:

E[Q(v, δ′)]− P ′ ≤ E[Q(v, δ′)]−
∑
i∈I

δ′i

≤ E[Q(v, δ∗)]−
∑
i∈I

δ∗i

= E[Q(v, δ∗)]− P

The first inequality holds since
∑

i∈I δ
′
i ≤ P ′, by Proposi-

tion 1; the second holds by efficiency of δ∗. We’ve reached
a contradiction, and the lemma follows.

We can now establish the following somewhat surprising
result: when extreme-effort is efficient and the conditions
for extreme-effort as an agent-level Nash equilibrium obtain
(Theorem 1), the winner-take-all contest will yield an effi-
cient strategy profile in subgame perfect equilibrium.

Theorem 3. For arbitrary quality distribution fδ and prin-
cipal value v ∈ �+, if an extreme-effort policy with m ∈
{2, . . . , n} participants is efficient and Eq. (7) is satisfied
for m and fδ, then this efficient policy is yielded in a sub-
game perfect Nash equilibrium.

Proof. Consider arbitrary principal value v ∈ �+ and arbi-
trary quality distribution fδ such that an extreme-effort pol-
icy with m ∈ {2, . . . , n} participants is efficient and Eq. (7)
is satisfied for m and fδ . By Lemma 2 it is sufficient to show
that if the principal chooses prize value P = m, an extreme-
effort strategy profile with m participants is an agent-level
Nash equilibrium. But this follows immediately from Theo-
rem 1, given that Eq. (7) is satisfied.

This is good news for proponents of winner-take-all con-
tests. However, we should take care to note that there is a
significant distance between an efficient strategy profile be-
ing part of a subgame perfect Nash equilibrium and it being
the outcome that results. We have not ruled out the possibil-
ity of inefficient agent-level Nash equilibria, for any chosen
prize P . When a particular prize value leads to a multiplic-
ity of agent-level Nash equilibria, there is ambiguity about
which (if any) should be more “expected”—by a social plan-
ner analyzing the game, but also by the principal seeking to
optimize his prize choice.

However, because extreme-effort is simple (one either ex-
erts all effort or stays home), one could argue that it is also
focal, more likely than others to occur in practice; still, the
results admit at least the possibility of a second extreme-
effort equilibrium with one less agent producing than would
be optimal (this possibility is borne out in the case of uni-
formly distributed quality, as we will see). Given these con-
siderations, we cannot conclude from Theorem 3 that effi-
ciency is the only plausible outcome given rational agents
and a rational principal, but one might say the efficient out-
come is at least supported as a focal equilibrium.

Some canonical distributions
The results of the previous section, culminating in Theo-
rem 3, point a way towards establishing that a winner-take-
all contest will have an efficient equilibrium for a given set-
ting. The “setting” is defined by the quality distribution, the
number of agents, and the principal’s value. By Theorem 3,
it is sufficient to demonstrate that a given quality distribution
satisfies Condition 1 and Eq. (7) for the efficient number of
participants m. Of greatest interest is whether these condi-
tions hold for quality distributions that we think are repre-
sentative of the real world. But since at this time we have no
data on “real world” quality distributions, we will instead ex-
amine a diverse set of canonical distributions and show that
the conditions hold. In some cases we are able to do this
analytically (e.g., for the uniform distribution, which we ad-
dress in the next section); in others, to establish existence of
efficient equilibria we rely on numerical computations.

To start, let us consider the case of the truncated normal
distribution over [0, 1] with location parameter µ = δ and
scale parameter σ = 0.15. For m = 3, the necessary con-
ditions for an extreme-effort equilibrium (Theorem 2) are
satisfied, but the sufficient conditions (Theorem 1) are not,
leaving existence ambiguous. However, for all larger values
of m the sufficient conditions are also satisfied, establish-
ing that there is an efficient equilibrium when the principal’s
value exceeds 4. The sufficient conditions of Theorem 1 can
be restated as saying, ∀δ ∈ [0, 1],

m

∫
fδ(x)F1(x)

m−1 dx− δ ≤ 0, and (11)

(m+ 1)

∫
fδ(x)F1(x)

m dx− δ ≤ 0 (12)

Figure 1 illustrates the conditions for m = 4, demonstrating
that they are in fact satisfied. We plot the left-hand-sides of
Eq. (11) and Eq. (12) as a function of δ, and note that neither
is greater than 0 at any point.
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Figure 1: Sufficient conditions for existence of an extreme-
effort equilibrium are satisfied for the truncated normal dis-
tribution with µ = δ, σ = 0.15, and m = 4.

In general, we empirically find that across an array of
distributions there is a threshold value for m, below which
the sufficient conditions for an extreme-effort equilibrium
are not satisfied, and above which they are. As described
above, for the truncated normal distribution with µ = δ and
σ = 0.15, that threshold is m = 4. In the case of the expo-
nential distribution with mean c

δ for c > 0, we find that the
sufficient conditions are satisfied for all m > 4 (we empiri-
cally checked only m between 2 and 100), for all examined
values of c (we checked c in the range 0.1 to 10, at increasing
increments of 0.1).

In the case of the truncated normal distribution with µ =
δ, the threshold level is sensitive to the scale parameter σ.
Now varying the scale parameter, again we checked val-
ues of m between 2 and 100, and found that all m above
a threshold satisfy the sufficiency conditions, but only if σ
is low enough. For σ < 1

3 such a threshold exists, which
we plot as a function of σ in Figure 2. For σ > 1

3 , for val-
ues of m even in the thousands there exist no extreme-effort
equilibria.
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Figure 2: m threshold for truncated normal distribution with
mean quality µ = 0.5 as a function of scale parameter σ. For
m above this threshold, m as an extreme-effort agent-level
Nash equilibrium is verified given P ∈ [m,m+ 1].

We also examined quality produced according to a log-
normal distribution with various log-scale and shape param-
eters. Figure 3 depicts quality distributions for the case of
log-scale parameter µ = −2 + 4δ and shape parameter
σ = 0.5. The threshold for satisfaction of the extreme-
effort sufficiency conditions here is m = 2, meaning that if
there are at least two agents and the principal’s value is high
enough to warrant at least two participants, then extreme-
effort occurs in equilibrium. Since, again, Condition 1 is
satisfied for this distribution, Theorem 3 entails that winner-
take-all contests have efficient equilibria.
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the figure only illustrates densities for quality up to 2.5.

Uniformly distributed quality
In this section we characterize the set of equilibria in the
case of uniformly distributed quality, a case that is amenable
to a complete analytical treatment. Specifically, we assume
quality is uniformly distributed between 0 and effort level
δi; i.e., ∀δi ∈ (0, 1], fδi(x) = 1

δi
when 0 ≤ x ≤ δi and 0

when x > δi, and Fδi(x) = x
δi

when 0 ≤ x ≤ δi and 1
when x > δi. The expected quality yielded by an agent that
exerts effort δi will equal δi

2 . The methodology developed
earlier in the paper can be very easily deployed to show that
efficient equilibria exist here whenever the principal’s value
exceeds a certain minimum value.
Lemma 3. The uniform quality distribution satisfies the
condition given in Eq. (7) for all m ∈ {2, . . . , n}.

Proof. For the uniform distribution, for arbitrary δ ∈
(0, 1] and m ∈ {2, . . . , n}, m

∫
fδ(x)F1(x)

m−1 dx =
m

∫
1
δx

m−1 dx = δm−1 and (m+ 1)
∫
fδ(x)F1(x)

m dx =

δm. Thus Eq. (7) reduces to: ∀δ ∈ (0, 1), δ ≥ δm−1, which
holds for all m ≥ 2.

It is easy to verify that for any value v ≥ 6 for the prin-
cipal, an efficient effort policy will be extreme-effort with
more than 1 agent participating. This combined with Lemma
3 and Theorem 3 immediately yields the following theorem.
Theorem 4. In the uniformly distributed quality case, if
v ≥ 6 then the efficient effort policy is yielded in a subgame
perfect Nash equilibrium.



Equilibrium characterization
Theorem 4 tells us that extreme-effort strategy profiles are
efficient and achieved in equilibrium. However, we will now
show something stronger than this, namely, that extreme-
effort strategy profiles are the only agent-level equilibria (re-
call our restriction to pure strategies). We will accomplish
this with an enumeration of the equilibria over a series of
cases covering all possible scenarios.
Lemma 4. In the uniformly distributed quality case, for ar-
bitrary prize P ∈ �+, any agent-level Nash equilibrium
strategy profile has all agents who exert non-zero effort ex-
erting the same amount of effort.

Proof. Consider arbitrary prize value P and an arbitrary
agent-level Nash equilibrium δ = (δ1, . . . , δn) that con-
sists of i different effort levels γ1 > γ2 > . . . > γi,
with a1, . . . , ai number of agents exerting these efforts, re-
spectively. The expected utility to an agent who exerts
effort γi can be expressed as: γn

i

Πi
j=1γ

aj
j

· P
n − γi, i.e.,

γi ·
( γn−1

i

Πi
j=1γ

aj
j

· P
n − 1

)
. This utility must be at least 0

for each i. If i > 1 and an agent exerting γi in strat-
egy profile δ instead exerts effort γi−1, her expected util-
ity will be at least: γn

i−1

(Πi−2
j=1γ

aj
j )γ

ai−1+ai
i−1

· P
n − γi−1, i.e.,

γi−1 · ( γn−1
i−1

(Πi−2
j=1γ

aj
j )γ

ai−1+ai
i−1

· P
n − 1

)
. Since γi−1 > γi and

γn
i−1

(Πi−2
j=1γ

aj
j )γ

ai−1+ai
i−1

>
γn
i

Πi
j=1γ

aj
j

, an agent exerting γi units of

effort has a profitable deviation. This proves that i = 1.

The above lemma radically prunes the space of strategy
profiles that are potential agent-level Nash equilibria and
is instrumental in establishing the following trio of lemmas
that lead to Theorem 5. The proofs are fairly involved and
are omitted due to space constraints.
Lemma 5. In the uniformly distributed quality case, if prize
P > n, the only agent-level Nash equilibrium has each
agent exert full effort.
Lemma 6. In the uniformly distributed quality case, if prize
P ∈ [0, 2], all agent-level Nash equilibria have two players
exert effort P

2 and the remaining agents exert 0.
Lemma 7. For any prize P ∈ [2, n], any effort profile in
which �P � agents exert full effort and n − �P � agents ex-
ert 0 is an agent-level Nash equilibrium; ∀P ∈ {3, . . . , n},
any effort profile in which P − 1 agents exert full effort and
n − P + 1 agents exert 0 is also an agent-level Nash equi-
librium. This is an exhaustive characterization of the agent-
level Nash equilibria for P ∈ [2, n].

Lemmas 5, 6 and 7 together give us a complete agent-
level Nash equilibrium characterization for winner-take-all
contests, for general n:
Theorem 5. In the case of uniformly distributed quality with
n ≥ 2 agents:
• If prize P ≤ 2, the only agent-level Nash equilibria are

those in which exactly two agents exert effort P
2 and all

others exert 0.

• If P is a non-integer in (2, n), then the only agent-level
Nash equilibria are those in which exactly �P � agents ex-
ert full effort and all others exert 0.

• If P ∈ {3, . . . , n}, there are two classes of agent-level
Nash equilibria: one in which P − 1 agents exert full
effort and all others exert 0 effort, and the other in which
P agents exert full effort and all others exert 0.

• If P > n, in the unique agent-level Nash equilibrium all
n agents exert full effort.

Extreme-effort profiles are the only agent-level Nash equi-
libria for P ≥ 2. Combined with Theorem 3, from this
we can conclude that in a subgame perfect equilibrium the
principal sets P identical to the optimal number of extreme-
effort workers m∗, as long as m∗ ≥ 2, and m∗ agents will
produce (if m∗ > 2 then there is also an inefficient subgame
perfect equilibrium with P = m∗ and m∗ − 1 agents pro-
ducing). We now complete the picture by examining the case
where v is not large enough to warrant at least 2 agents par-
ticipating in the efficient policy (specifically, when v < 6),
in which case P < 2 may be part of an equilibrium.

Lemma 8. In the uniformly distributed quality case:

• When the principal’s value v < 3, in the only subgame
perfect equilibrium, P = 0 and no agents produce.

• When v = 3, the subgame perfect equilibria are charac-
terized by P ∈ [0, 2] and two agents exerting effort P/2
(with all others exerting 0).

• When v ∈ (3, 6), the subgame perfect equilibria are char-
acterized by P = 2 and two agents exerting full effort
(with all others exerting 0).

Proof. From Theorem 4, we know at v = 6 the principal
sets a prize of P = 2 to have two agents exert full effort.
Thus for v < 6, the principal will set P to be at most 2.
From Lemma 6, for P ∈ [0, 2], two agents will exert effort
P
2 , the others will exert effort 0, and the expected value to the
principal of the highest quality good will be vP

3 . Therefore,
the principal’s utility is: vP

3 − P = P (v3 − 1) for all P ∈
[0, 2]. If v > 3, the principal’s utility is always positive and
maximized when P = 2. When v = 3, the principal’s utility
is 0 for all P ∈ [0, 2]. When v < 3, the principal’s utility is
negative for all P > 0.

The efficient policy has no production when v ∈ [0, 2],
one extreme-effort producer when v ∈ (2, 6), two extreme-
effort producers when v ∈ [6, 12), and more than two
extreme-effort producers whenever v ≥ 12. This combined
with the preceding analysis establishes the following char-
acterization of circumstances under which winner-take-all
contests are efficient given uniformly distributed quality.

Theorem 6. In the uniformly distributed quality case, for
all v ∈ [2, 6) the winner-take-all contest has no efficient
subgame perfect equilibria; for all v ∈ [6, 12) the only sub-
game perfect equilibria are efficient; for all v ≥ 12, there
are two classes of subgame perfect equilibria, one of which
is efficient.



Conclusion
In this paper, we provided a thorough analysis of winner-
take-all contest mechanisms in a model of stochastic pro-
duction, giving conditions under which efficient effort pro-
files are yielded in equilibrium. From our results, we are
able to conclude that for a large range of values held by the
principal and for many canonical distributions, winner-take-
all crowdsourcing contests have efficient equilibria (though
they may not be unique). We also established that for any
quality distribution for which extreme-effort strategy pro-
files are uniquely efficient, there exists a principal’s value
v for which the winner-take-all crowdsourcing contest has
no efficient equilibria.

We should be mindful of the fact that even in the cases
where the winner-take-all paradigm yields efficiency in
equilibrium, without a centralization procedure it is highly
questionable whether the efficient equilibrium will result, as
it would require significant agent coordination. For instance,
when the set of equilibria has 2 out of the n agents participat-
ing with full effort, and the other n−2 not participating, how
would each agent determine whether or not to participate?
Thus a cautious summary of our main results is this: when
the principal’s value is large enough and agents are rational,
a centrally coordinated implementation of a winner-take-all
contest will frequently be efficient.
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