
A Simple Language for Novel Visualizations of
Information

Wendy Lucas1 and Stuart M. Shieber2

1 Computer Information Systems Department, Bentley College, Waltham, MA, USA
wlucas@bentley.edu

2 Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA,
USA shieber@deas.harvard.edu

Abstract. While information visualization tools support the represen-
tation of abstract data, their ability to enhance one’s understanding of
complex relationships can be hindered by a limited set of predefined
charts. To enable novel visualization over multiple variables, we propose
a declarative language for specifying informational graphics from first
principles. The language maps properties of generic objects to graphical
representations based on scaled interpretations of data values. An itera-
tive approach to constraint solving that involves user advice enables the
optimization of graphic layouts. The flexibility and expressiveness of a
powerful but relatively easy to use grammar supports the expression of
visualizations ranging from the simple to the complex.

1 Introduction

Information visualization tools support creativity by enabling discoveries about
data that would otherwise be difficult to perceive [8]. Oftentimes, however, the
standard set of visualizations offered by commercial charting packages and busi-
ness intelligence tools is not sufficient for exploring and representing complex
relationships between multiple variables. Even specialized visual analysis tools
may not offer displays that are relevant to the user’s particular needs. As noted
in [9], the creation of effective visual representations is a labor-intensive process,
and new methods are needed for simplifying this process and creating applica-
tions that are better targeted to the data and tasks. To that end, we introduce
a language for specifying informational graphics from first principles. One can
view the goal of the present research as doing for information visualization what
spreadsheet software did for business applications. Prior to Bricklin’s VisiCalc,
business applications were built separately from scratch. By identifying the first
principles on which many of these applications were built — namely, arithmetic
calculations over geographically defined values — the spreadsheet program made
it possible for end users to generate their own novel business applications. This
flexibility was obtained at the cost of requiring a more sophisticated user, but the
additional layer of complexity can be hidden from naive users through prepack-
aged spreadsheets.



2 Wendy Lucas and Stuart M. Shieber

Similarly, we propose to allow direct access to the first principles on which
(a subset of) informational graphics are built through an appropriate specifica-
tion language. The advantages are again flexibility and expressiveness, with the
same cost in terms of user sophistication and mitigation of this cost through
prepackaging.

For expository reasons, the functionality we provide with this language is
presented by way of example, from simple scatter plots to versions of two quite
famous visualizations: Minard’s depiction of troop strength during Napoleon’s
march on Moscow and a map of the early ARPAnet from the ancient history of
the Internet.3 We hope that the reader can easily extrapolate from the provided
examples to see the power of the language. We then describe how constraints are
specified and how the constraint satisfaction process is coupled with user advice
to reduce local minima. This is followed by descriptions of the primary constructs
in the language and the output generation process for our implementation, which
was used to generate the graphics shown in this paper.

2 The Structure of Informational Graphics

In order to define a language for specifying informational graphics from first
principles, those principles must be identified. For the subset of informational
graphics that we consider here, the underlying principles are relatively simple:

– Graphics are constructed based on the rendering of generic graphical objects
taken from a small fixed set (points, lines, polygons, text, etc.).

– The graphical properties of these generic graphical objects are instantiated
by being tied to values taken from the underlying data (perhaps by way of
computation).

– The relationship between a data value and a graphical value is mediated by
a function called a scale.

– Scales can be depicted via generic graphical objects referred to as legends.
(A special case is an axis, which is the legend for a location scale.)

– The tying of values is done by simple constraints, typically of equality, but
occasionally of other types.

For example, consider a generic graphical object, the point, which has graph-
ical properties like horizontal and vertical position, color, size, and shape. The
standard scatter plot is a graphic where a single generic object, a point, is instan-
tiated in the following way. Its horizontal and vertical position are directly tied
by an equality constraint to values from particular data fields of the underlying
table. The other graphical properties may be given fixed (default) values or tied
to other data fields. In addition, it is typical to render the scales that govern the
mapping from data values to graphical locations using axes.

Suppose we have a table Table with fields f, g, and h as in Table 1. We can
specify a scatter plot of the first two fields in just the way that was informally
described above:
3 See Figures 4 and 7 for our versions of these visualizations.



A Simple Language for Novel Visualizations of Information 3

{make p:point with
p.center = Canvas(record.f, record.g)

| record in SQL("select f, g from Table1")};
make a:axis with

a.aorigin = (50,50),
a.ll = (10,10),
a.ur = (160,160),
a.tick = (40,40);

f g h
80 80 0
60 120 10
90 140 3
120 60 5
140 135 7

10 50 90 130

10

50

90

130

0 30 60 90 120 150
0

30

60

90

120

150

10 50 90 130
10

50

90

130

170

0 30 60 90 120 150
0

30

60

90

120

150

Table 1 (a) (b) (c)

Fig. 1. Data table and simple scatter plots defined from first principles.

The make keyword instantiates a generic graphical object (point) and sets
its attributes. The set comprehension construct ({·|·}) constructs a set with
elements specified in its first part generated with values specified in its second
part. Finally, we avail ourselves of a built-in scale, Canvas, which maps numeric
values onto the final rendering canvas. One can think of this as the assignment
of numbers to actual pixel values on the canvas. A depiction of the resulting
graphic is given in Figure 1(a). (For reference, we show in light gray an extra
axis depicting the canvas itself.)

Other graphical properties of chart objects can be tied to other fields. In
Figure 1(b), we use a colorscale, a primitive for building linearly interpolated
color scales. A legend for the color scale is positioned on the canvas as well.
Some scaling of the data can also be useful. We define a 2-D Cartesian frame to
provide this scaling, using it instead of the canvas for placing the points.

let frame:twodcart with
frame.map(a,b) = Canvas(a, (3*b)/4+ 10)

in
let color:colorscale with

color.min = ColorMap("red"),
color.max = ColorMap("black"),
color.minval = 0,
color.maxval = 10

in
{make p:point with

p.center = frame.map(rec.f, rec.g),
p.color = color.scale(rec.h)

|rec in SQL("select f, g, h from Table1")},
make a:axis with



4 Wendy Lucas and Stuart M. Shieber

a.scale = frame.map,
a.aorigin = (50,50),
a.ll = (0,0),
a.ur = (140,170),
a.tick = (50,50),

make c:legend with
c.scale = color,
c.location = frame.map(150, 180);

A line chart can be generated using a line object instead of a point object.
Suppose we take the records in Table 1 to be ordered, so that the lines should
connect the points from the table in that order. Then a simple self-join provides
the start points (x1, y1) and end points (x2, y2) for the lines. By specifying the
appropriate query in SQL, we can build a line plot (see Figure 1(c)).

let frame:twodcart with
frame.map(a,b) = Canvas(a,(3*b)/4+ 10)

in
{make l:line with

l.start = frame.map(record.x1, record.y1),
l.end = frame.map(record.x2, record.y2)

| record in SQL("select tab1.f as x1, tab1.g as y1,
tab2.f as x2, tab2.g as y2
from Table1 as tab1, Table1 as tab2
where tab2.recno = tab1.recno+1")},

make a:axis with
a.scale = frame.map,
a.aorigin = (50,50),
a.ll = (10, 10),
a.ur = (140,170),
a.tick = (40,40);

The specification language also allows definitions of more abstract notions
such as complex objects or groupings. We can use this facility to define a chart
as an object that can be instantiated with specified data. This allows generated
visualizations themselves, such as scatter plots, to be manipulated as graphical
objects. For instance, it is possible to form a scatter plot of scatter plots. Figure 2
depicts a visualization of the data sets for Anscombe’s quartet [1], generated by
the following specification:

define s:splot with
let frame:twodcart with

frame.map = s.map
in

{ make o:oval with
o.center ~ frame.map(rec.x, rec.y),
o.width = 8,
o.height = 8,
o.fill = true
| rec in s.recs },

make a:axis with
a.scale = frame.map,
a.aorigin = (0,0),



A Simple Language for Novel Visualizations of Information 5

a.ll = (0,0),
a.ur = (20,15),
a.tick = (10,5)

in
let outer:twodcart with

outer.map(x,y) = Canvas(10*x, 10*y)
in

let FrameRecs = SQL("select distinct a, b from anscombe")
in

{make sp:splot with
sp.map(x,y) = outer.map(x + 25*frec.a, y + 20*frec.b),
sp.recs = SQL("select x, y from anscombe where a=frec.a

and b=frec.b")
| frec in FrameRecs};

a=0 b=1 a=1 b=1 a=0 b=0 a=1 b=0
x y x y x y x y
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.1 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.1 4 5.39 19 12.5

12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

Fig. 2. Graphic depicting Anscombe’s quartet.

3 Specifying Constraints

All of the examples in the prior section made use of constraints of type equality
only. The ability to add other types of constraints dramatically increases the flex-
ibility of the language. For instance, stating that two values are approximately
equal (~), instead of strictly equal (=), allows for approximate satisfaction of
equality constraints. Further, constraints of non-overlapping (NO) force values
apart. Together, these constraints allow dither to be added to graphs.

Suppose we have another table Table with fields id, f, and g, as in Table 2.
We again specify a scatter plot of fields f and g but with two differences from
our earlier examples: the center of each point is approximately equal to a data
value from the table, and none of the point objects can overlap. The resulting
graphic is shown in Figure 3(a).



6 Wendy Lucas and Stuart M. Shieber

NO({make p:point with
p.center ~ Canvas(record.f, record.g)

| record in SQL("select f, g from Table1")});
make a:axis with

a.aorigin = (50,50),
a.ll = (10,10),
a.ur = (160,170),
a.tick = (40,40),
a.color = RGB(0, 0, 0);

id f g
1 80 80
2 60 120
3 90 140
4 90 140
5 120 60
6 140 135

10 50 90 130

10

50

90

130

170

1

2

34

5

6

10 50 90 130

10

50

90

130

170

1

2

3 4

5

6

10 50 90 130

10

50

90

130

170

Table 2 (a) (b) (c)

Fig. 3. Data table and scatter plots with positional constraints.

We would like to add labels at each data point and specify three conditions:
(1) no point can overlap with another point, (2) no label can overlap with
another label, and (3) no point can overlap with a label. We need the ability
to associate a variable name with an object or a set of objects for later reference.
This is accomplished with the let statement, which provides access to that vari-
able within the body of the statement. The following code contains the required
specifications, with its output shown in Figure 3(b).

let points = NO({make p:point with
p.center ~ Canvas(rec.f, rec.g)

| rec in SQL("select f, g from Table2")})
in

let labels = NO({make l:label with
l.center ~ Canvas(rec.f, rec.g),
l.label = rec.id

| rec in SQL("select f, g, id from Table2")})
in

NO(points, labels);
make a:axis with

a.aorigin = (50,50),
a.ll = (10,10),
a.ur = (160,170),
a.tick = (40,40),
a.color = RGB(0, 0, 0);

The non-overlap constraints between point objects, between label objects,
and between point and label objects have moved the label on point 3 farther
away from the actual data point than may be desirable. This is a result of the



A Simple Language for Novel Visualizations of Information 7

force of a non-overlap constraint being stronger than that of an approximate
equality constraint. The user can make adjustments to the layout by dragging
any object whose location has been specified as approximately equal to a value,
but these adjustment are subject to any constraints placed upon that object.
Thus, the user may drag the label 3 to a different location, but the ‘~’ constraint
will keep it near (90, 140), while the ‘NO’ constraint will prohibit it from
overlapping with any other point or label. The results of user manipulation to
move label 3 to a more desirable location are shown in Figure 3(c).

4 A Detailed Example: The Minard Graphic

As evidence of the flexibility of this language, we describe its use for specifying
Minard’s well known depiction of troop strength during Napoleon’s march on
Moscow. This graphic uses approximate geography to show the route of troop
movements, with line segments for the legs of the journey. Width of the lines is
used for troop strength and color depicts direction. The locations of the labels
on cities are of approximate equality, as they are not allowed to overlap, and in
some cases have been adjusted by the user for better clarity. A parallel graphic
shows temperature during the inbound portion of the route, again as a line chart.
Our version of the graph is provided in Figure 4.

To generate this graphic, we require appropriate data tables: marchNap in-
cludes latitude and longitude at each way point, along with location name, di-
rection, and troop strength; marchTemp includes latitude, longitude, and tem-
perature for a subset of the inbound journey points, and marchCity provides
latitude, longitude, and name for the traversed cities.

The main portion of the graphic is essentially a set of line plots, one for
each branch of the march, where a branch is defined as a route taken in a single
direction by a single division. Additional graphical properties (width and color)
are tied to appropriate data fields. Textual labels for the cities are added using
a text graphic object. A longitudinally aligned graph presents temperature on
the main return branch.

The specification for this graphic (sans the temperature portion) is provided
in Figure 5. After specifying some constants (lines 1–2), we define the depiction
of a single branch of the march (6–16): a mapping (m.map) specifies a Cartesian
frame (7–8) in which a line plot composed of a set of line segments (10–16) is
placed, with one segment for each set of records (16). These records provide start
and end points, along with widths at start and end (to be interpolated between),
and color (11–15).

Thus, to depict a march leg, all that must be provided is the mapping and the
set of records. These are constructed in lines 19–35. For each distinct direction
and division (19–20), a separate march leg depiction is constructed (23–35). The
mapping is a scaling of the Canvas frame (24), with records for the appropriate
division and direction extracted from the marchNap database (25–35). Finally,
the cities are labeled using the information in the marchCity database by setting
the coordinates of the text labels to be approximately equal to latitude and



8 Wendy Lucas and Stuart M. Shieber

Oct 18Oct 24
Nov 9

Nov 14Nov 28
Dec 1Dec 6Dec 7

Kowno
Wilna Smorgoni

Molodexno

Gloubokoe

Minsk

Studienska

Polotzk

Bobr

Witebsk

Orscha
Mohilow

Smolensk
Dorogobouge

Wixma
Chjat Mojaisk Moscou

Tarantino

Malo-jarosewli

Advance
Retreat

Longitude

Temperature

25 30 35
-30
-20
-10

0

Fig. 4. The graphic generated by a specification extended from that of Figure 5, de-
picting the troop strength during Napoleon’s march on Moscow.

longitude, setting a fixed color, and specifying that labels cannot overlap (38–
42).

5 The Language

The examples from this paper were all generated from an implementation of
our language. The implementation techniques are outlined in Section 6. The
underlying ideas could, however, be implemented in other ways, for instance as
a library of functions in a suitable functional language such as Haskell or ML.

The language is built around the specification of objects. The main construct
is objspec, with a program defined as one or more objspecs. Objspecs are used
for instantiating a graphical object of a predefined type, specifying relationships
between the set of actual data values and their graphical representations, and
defining new graphic types.

The make statement is used for instantiating a new instance of an existing
object type (either built-in, such as point or line, or user-defined, such as
march) with one or more conditions. There are two types of predefined objects:
generic and scale. Generic objects provide visual representations of data values
and include the primitive types of point, line, oval, rectangle, polygon, polar
segment, and labels. Scales are used for mapping data values to their visual
representations and are graphically represented by axes and legends. A scale is
associated with a coordinate system object and defines a transformation from
the default layout canvas to a frame of type twodcart or twodpolar (at this
time).

In addition to a unique identifier, each object type has predefined attributes,
with conditions expressed as constraints on these attributes. Constraints can be
of type equality (‘=’) or approximate equality (‘~’). Constraints enforcing visual
organization features [3] such as non-overlap, alignment, or symmetry, can be
applied to a set of graphical objects. These types of constraints are particularly
useful in specifying network diagrams [7]. While such constraints can be specified



A Simple Language for Novel Visualizations of Information 9

1 let scalefactor = 45 in
let weight = .000002 in

% Define the depiction of one (multi-leg) branch of the march
5 % identified by a distinct direction and division

define m:march with
let frame:twodcart with

frame.map = m.map
in

10 {make l:line with
l.start = frame.map(rec.cx1, rec.cy1),
l.end = frame.map(rec.cx2, rec.cy2),
l.startWidth = scalefactor * weight * rec.r1,
l.endWidth = scalefactor * weight * rec.r2,

15 l.color = ColorMap(rec.color)
| rec in m.recs}

in
% Extract the set of branches that make up the full march
let FrameRecs = SQL("select distinct direct,

20 division from marchNap")
in
% For each branch, depict it
{make mp:march with

mp.map(x,y) = Canvas(scalefactor*x - 1075, scalefactor*y - 2200),
25 mp.recs = SQL("select marchNap1.lonp as cx1, marchNap1.latp as cy1,

marchNap2.lonp as cx2, marchNap2.latp as cy2,
marchNap1.surviv as r1, marchNap2.surviv as r2,
marchNap1.color as color

from marchNap as marchNap1, marchNap as marchNap2
30 where marchNap1.direct = framerec.direct

and marchNap2.direct = marchNap1.direct
and marchNap1.division = framerec.division
and marchNap1.division = marchNap2.division
and marchNap2.recno = marchNap1.recno+1")

35 | framerec in FrameRecs};

% Label the cities along the march and do not allow overlap
NO({make e d2:label with

d2.center ~ frameTemp.map(recc.lonc, recc.latc),
40 d2.label = recc.city,

d2.color = ColorMap("blue")
| recc in SQL("select lonc, latc, city from marchCity")});

Fig. 5. Partial specification of the Minard graphic depicted in Figure 4. This specifi-
cation does not include the temperature plot.



10 Wendy Lucas and Stuart M. Shieber

in the language, our current implementation supports constraints in the forms
of equality, approximate equality, and non-overlap for a subset of object types.

All of the generic objects have a color attribute and at least one location
attribute, represented by a coordinate. For 2-D objects, a Boolean fill attribute
defaults to true, indicating that the interior of that object be filled in with the
specified color. This attribute also applies to line objects, which have start and
end widths. When widths are specified, lines are rendered as four-sided polygons
with rounded ends.

Each type of scale object has its own set of attributes. A coordinate system
object’s parent attribute can reference another coordinate system object or the
canvas itself. The mapping from data values to graphical values can be specified
by conditions on its origin and unit attributes. Alternatively, a condition can
be applied to its map attribute in the form of a user-defined mapping function
that denotes both the parent object and the scale. Thus, a twodcart object
whose parent is Canvas, origin is (5, 10), and unit is (30, 40) can be defined
by the mapping function: Canvas.map(30x + 5, 40y + 10).

Axes are defined in terms of their origin, ll (lower left) and ur (upper right)
coordinates, and tick marks. Legends can be used to graphically associate a
color gradient with a range of data values by assigning a color scale object to
the scale attribute and a coordinate to the location attribute. Discrete colors
can also be associated with data values, as in the Minard Graph example, where
tan represents “Advance” and black represents “Retreat.”

Attributes can also be defined by the user within a make statement. For ex-
ample, it is often helpful to declare temporary variables for storing data retrieved
from a database. These user-defined attributes are ignored when the specified
visualization is rendered.

Another construct for an objspec is the type statement. This is used for
defining a new object type that satisfies a set of conditions. These conditions are
either constraints on attribute properties or other objspecs. An example of the
former would be a condition requiring that the color attribute for a new chart
type be “blue.” An example of the latter is to require that a chart include a
2-D Cartesian coordinate frame for use in rendering its display and that this
frame contain a set of lines and points corresponding to data retrieved from a
database.

A third type of objspec is a set of objects, a setspec. This takes the form
of either a query string or a set of objspecs to be instantiated for each record
retrieved by a query string. These two constructs are often used in conjunction
with one another to associate data with generic graph objects. For example, a
setspec may define a query that retrieves two values, x and y, from a database
table. A second setspec can then specify a make command for rendering a set of
points located at the x and y values retrieved by the query. Alternatively, the
query can be contained within the make statement itself, as shown in the code
for the scatter plots in Section 2.

Lastly, the let statement associates a variable name with an objspec so
that it can be referenced later within the body of the statement. Because this



A Simple Language for Novel Visualizations of Information 11

construct is commonly used in conjunction with a make or type statement,
two shorthand expressions have been provided. The first of these is an abbre-
viated form of the let statement in which the make clause is not explicitly
stated, with: let var :type with conditions in body corresponding to let
var =make var :type with conditions in body . Similarly, the define state-
ment associates a new object definition with a variable name, where: define
var :type with conditions in body expands to let var =type var :type
with conditions in body .

Figure 6 demonstrates the usage of the above objspec constructs for defining
a new type of object called a netplot. The code specifies the creation of a set
of ovals, referred to as nodes, with width and height of 10, color of “black,”
and center locations corresponding to x and y values queried from a data-
base and mapped to a frame. (Data values were estimated from a depiction of
the ARPAnet circa 1971 available at http://www.cybergeography.org/atlas/
historical.html.) A set of blue lines are specified, with the endpoint locations
of the lines equal to the centers of the circles. Labels are also specified and are
subject to constraints, with the center of each label approximately equal to the
center of a corresponding node and no overlap allowed between labels or between
labels and nodes.

The output generated from this specification is shown in Figure 7, with the
user having made similar adjustments as the one shown in Figure 3(c) to the
placement of some labels. This chart and the Minard graphic from the prior
section demonstrate the flexibility and control for specifying visualizations that
result from working with the right set of first principles. Further, the intricacies
of the code required to generate these charts are hidden behind a relatively
simple to use but powerful grammar.

6 Implementation

The output generation process that renders visualizations from code written in
our language, such as those shown in the prior sections, involves four stages.

1. The code is parsed into an abstract syntax tree representation.
2. The tree is traversed to set variable bindings and to evaluate objspecs to the

objects and sets of objects that they specify. These objects are collected, and
the constraints that are imposed on them are accumulated as well.

3. The constraints are solved as in related work on the Glide system [7] by re-
duction to mass-spring systems and iterative relaxation. Equality constraints
between objects are strictly enforced, in that neither the user nor the system
can change the position of those objects. Non-overlap constraints between
objects are enforced by the placement of a spring between the centers of the
objects (at the current time, the system does not solve for non-overlap con-
straints involving lines). The spring’s rest length is the required minimum
distance between those objects. Approximate equality, or near constraints,
are enforced by the placement of springs with rest lengths of zero between
specified points on two objects. The latter set of springs have a smaller spring



12 Wendy Lucas and Stuart M. Shieber

define n:netplot with
let frame:twodcart with

frame.map = n.map
in

let nodes = {make o:oval with
o.center = frame.map(rec.x, rec.y),
o.width = n.radius * 2,
o.height = n.radius * 2,
o.color = n.ccolor,
o.fill = true

| rec in n.netRecs}
in

let lines = {make l:line with
l.start = nodes[rec.v1].center,
l.end = nodes[rec.v2].center,
l.color = n.lcolor

| rec in n.edgeRecs }
in

let labels = NO({ make d:label with
d.center ~ frame.map(rec.x, rec.y),
d.label = rec.node,
d.color = n.ccolor

| rec in n.netRecs })
in NO(labels, nodes)

in
make net:netplot with

net.map(x,y) = Canvas(7*x, 7*y),
net.netRecs = SQL("select node, x, y from ArpaNodes"),
net.radius = 5,
net.edgeRecs = SQL("select v1, v2 from ArpaLinks"),
net.lcolor = ColorMap("blue"),
net.ccolor = ColorMap("black");

Fig. 6. Specification of the ARPAnet graphic depicted in Figure 7.

Lincoln

MIT

BBN

Harvard

Burroughs
MITRE

Carnegie

Case

IllinoisUtah

Ames

Stanford
UCLA

SDC

RAND

UCSB

SRI

Fig. 7. A network diagram depicting the ARPAnet circa 1971.



A Simple Language for Novel Visualizations of Information 13

constant than those used for non-overlap, thereby exerting less force. Solv-
ing one constraint may invalidate another, so an iterative process is followed
until the total kinetic energy on all nodes falls below an arbitrarily set value.

4. The objects are rendered. Any primitive graphic object contained in the
collection is drawn to the canvas using the graphical values determined as
a result of the constraint satisfaction process. The user can make positional
adjustments to any objects not subject to equality constraints. At the same
time, the system continues to reevaluate its solution and update the position
of the objects based on the solving of the constraints.

7 Related Work

Standard charting software packages, such as Microsoft Chart or DeltaGraph,
enable the generation of predefined graphic layouts selected from a “gallery” of
options. As argued above, by providing pre-specified graph types, they provide
simplicity at the cost of the expressivity that motivates our work. More flexibility
can be achieved by embedding such gallery-based systems inside of programming
languages to enable program-specified data manipulations and complex graphi-
cal composites. Many systems have this capability: Mathematica, Matlab, Igor,
and so forth. Another method for expanding expressiveness is to embed the
graph generation inside of a full object-drawing package. Then, arbitrary addi-
tions and modifications can be made to the generated graphics by manual direct
manipulation. Neither of these methods extend expressivity by deconstructing
the graphics into their abstract information-bearing parts, that is, by allowing
specification from first principles.

Towards this latter goal, discovery of the first principles of informational
graphics was pioneered by Bertin, whose work on the semiology of graphics [2]
provides a deep analysis of the principles. It is not, however, formalized in such
a way that computer implementation is possible.

Computer systems for automated generation of graphics necessarily require
those graphics to be built from a set of components whose function can be for-
mally reasoned about. The seminal work in this area was by Mackinlay [4], whose
system could generate a variety of standard informational graphics. The range
of generable graphics was extended by Roth and Mattis [6] in his SAGE system.
These systems were designed for automated generation of appropriate informa-
tional graphics from raw data, rather than for user-specified visualization of the
data. The emphasis is thus on the functional appropriateness of the generated
graphic rather than the expressiveness of the range of generable graphics.

The SAGE system serves as the basis for a user-manipulable set of tools for
generating informational graphics, SageTools [5]. This system shares with the
present one the tying of graphical properties of objects to data values. Unlike
SageTools, the present system relies solely on this idea, which is made possible
by the embedding of this primitive principle in a specification language and the
broadening of the set of object types to which the principle can be applied.



14 Wendy Lucas and Stuart M. Shieber

The effort most similar to the one described here is Wilkinson’s work on a
specification language for informational graphics from first principles, a “gram-
mar” of graphics [10]. Wilkinson’s system differs from the one proposed here in
three ways. First, the level of the language primitives are considerably higher;
notions such as Voronoi tesselation or vane glyphs serve as primitives in the sys-
tem. Second, the goal of his language is to explicate the semantics of graphics,
not to serve as a command language for generating the graphics. Thus, many
of the details of rendering can be glossed over in the system. Lastly, and most
importantly, the ability to embed constraints beyond those of equality provides
us the capacity to generate a range of informational graphics that use positional
information in a much looser and more nuanced way.

8 Conclusions

We have presented a specification language for describing informational graphics
from first principles, founded on the simple idea of instantiating the graphical
properties of generic graphical objects from constraints over the scaled inter-
pretation of data values. This idea serves as a foundation for a wide variety of
graphics, well beyond the typical sorts found in systems based on fixed galleries
of charts or graphs. By making graphical first principles available to users, our
approach provides flexibility and expressiveness for specifying innovative visual-
izations.

References

1. Anscombe, F. J.: Graphs in statistical analysis. American Statistician, 27(February
1973):17–21 (1973)

2. Bertin, J.: Semiology of Graphics. University of Wisconsin Press (1983)
3. Kosak, C., Marks, J., and Shieber, S.: Automating the layout of network diagrams

with specified visual organization. Transactions on Systems, Man and Cybernetics,
24(3):440–454 (1994)

4. Mackinlay, J.: Automating the design of graphical presentations of relational infor-
mation. ACM Transactions on Graphics, 5(2):110–141 (1986)

5. Roth, S. F., Kolojejchick, J., Mattis, J., and Chuah, M. C.: Sagetools: An intelligent
environment for sketching, browsing, and customizing data-graphics. In CHI ’95:
Conference companion on Human factors in computing systems, pages 409–410, New
York, NY, USA. ACM Press (1995)

6. Roth, S. F. and Mattis, J.: Data characterization for graphic presentation. In
Proceedings of the Computer-Human Interaction Conference (CHI ’90)(1990)

7. Ryall, K., Marks, J., and Shieber, S. M.: An interactive constraint-based system
for drawing graphs. In Proceedings of the 10th Annual Symposium on User Interface
Software and Technology (UIST)(1997)

8. Shneiderman, B.: Creativity support tools: accelerating discovery and innovation.
Communications of the ACM, 50(12):20–32(2007)

9. Thomas, J. J. and Cook, K. A.: A visual analytics agenda. IEEE Computer Graphics
and Applications, 26(1):10–13 (2006)

10. Wilkinson, L.: The Grammar of Graphics. Springer-Verlag, New York, NY (1999)


