Variations on Incremental Interpretation

Stuart Shieber Mark Johnson
Computer Science Department Department of
Division of Applied Sciences Cognitive and Linguistic Sciences
Harvard University Brown University
Cambridge, MA Providence, RI

January 22, 1993

Abstract

The strict competence hypothesis has sparked a small dialogue among
several researchers attempting to understand its ramifications for human
sentence processing and incremental interpretation in particular. In this
paper, we review the dialogue, reconstructing the arguments in an attempt
to make them more uniform and crisper, and provide our own analyses
of certain of the issues that arise. We argue that strict competence, be-
cause 1t requires a synchronous computation mechanism, may actually
lead to more complex, rather than simpler, models of incremental inter-
pretation. Asynchronous computation, which is arguably both psycholog-
ically more plausible and conceptually more basic, allows for incremental
interpretation to fall out naturally, without additional machinery for in-
terpreting partial constituents. We show that this is true regardless of
whether the presumed interpretation mechanism is top-down or bottom-
up, contra previous conclusions in the literature, and propose a particular
implementation of some of these ideas using a novel representation based
on tree-adjoining grammars.

To appear in the Journal of Psycholinguistic Research.

Contents

1 Introduction 2
2 The Competence Hypothesis 2
2.1 Incremental Interpretation and Disambiguation 4
3 Asynchronous versus Synchronous Computation 5
3.1 Models of Computation)
3.2 Asynchronous Computation and Connectionist Networks 12

4 Asynchronous Computation and Incremental Interpretation 13

4.1 Top-Down Incremental Interpretation 13

4.2 Bottom-Up Incremental Interpretation 15
5 Representation of Grammatical Constructs for Asynchronous

Processing 23
6 Conclusion 29

1 Introduction

Mark Steedman (1989; 1992) argues that Occam’s razor motivates a strict ver-
sion of the competence hypothesis, under which the only structures that are
interpreted by the human sentence processor are structures that are grammat-
ically sanctioned. In particular, partial constituents are not interpreted under
this hypothesis. As a consequence, the ability to understand utterances incre-
mentally is evidence that combinatory categorial grammar (CCG) would seem to
form the basis of a preferable theory of grammar, insofar as partial constituents
are not needed to be interpreted under a CCG analysis.

This strict competence hypothesis has sparked a small dialogue among vari-
ous researchers who are attempting to understand the exact relation among the
various hypotheses in Steedman’s argument: Occam’s razor, strict competence,
and incremental processing. In this paper, we review the dialogue, especially the
contributions of Steedman, Stabler, and Abney, reconstructing the arguments
in an attempt to make them more uniform and crisper, and provide our own
analyses of certain of the issues that arise.

We argue that strict competence may actually be methodologically more
complex a hypothesis, not simpler, as it implicitly assumes synchronous com-
putation. Asynchronous computation, which is arguably both psychologically
more plausible and conceptually more basic, allows for incremental interpreta-
tion to fall out naturally, without additional machinery for interpreting partial
constituents. We show that this is true regardless of whether the presumed in-
terpretation mechanism is top-down or bottom-up, contra previous conclusions
in the literature, and propose a particular implementation of some of these ideas
using a novel representation based on tree-adjoining grammars.

2 The Competence Hypothesis

It is important to note that the strong competence hypothesis as
stated by Bresnan and Kaplan imposes no further constraint on
the processor. In particular, it does not limit the structures built
by the processor to fully instantiated constituents. However, the
present paper proposes a “strict” version of the competence
hypothesis, which imposes this further condition. The reasoning
behind this strict version is again evolutionary. If in order to
process sentences we need more than the grammar itself, even a
perfectly general “compiler” that turns grammars into algorithms
dealing in other structures, then the load on evolution is increased.
Similar arguments for the need for the grammar and processor to
evolve in lockstep mean that a theory that keeps such extras to the
minimum wins.

This [strict] version of the competence hypothesis has the effect of

generalising the constituent condition to cover the processor. The
claim is that the constituents that are recognised in the grammar
(and their interpretations) will be the only structures that the
processor will give evidence of. Anything else whatsoever that we
are forced to postulate is an extra assumption, and will require an
independent explanation if it is not to count against the theory.

(Steedman, 1992, page 37)

Steedman outlines several versions of the competence hypothesis, ranging in
the restrictiveness of the hypothesis. The least restrictive variant, which might
be called weak competence, requires that the output structures that the parser
produces are those sanctioned by the competence grammar of the language. If
the competence grammar is stated in terms of tree structures, the parser must
output such tree structures. However, they may be computed as a result of a
process that does not use the competence grammar, perhaps using some other
grammar or set of tables to control the process.

Strong competence extends weak competence to require use of the compe-
tence grammar per se to control the processing of utterances. Nonetheless, the
grammar may still be used to build structures that are not completed grammat-
ical entities, for instance, partial tree structures.

The strongest form of the competence hypothesis, strict competence, disal-
lows even this relatively benign use of partial structures. The structures that the
parser uses (i.e., interprets) must be completed grammatical entities sanctioned
by the competence grammar, not partial structures.

Strict competence ostensibly simplifies the syntax-semantics interface: the
semantic interpreter in a system that does not respect strict competence must
be able to interpret a larger set of constructions than in a system that obeys
strict competence.

Steedman argues that in the face of other quite reasonable assumptions,
strict competence provides evidence for a theory of grammar along the lines
of combinatory categorial grammar. The argument is based on the following
assumptions:

Modularity: The human sentence processor is divided into separate modules
for syntactic processing and semantic processing. The structures gener-
ated by the syntactic processor are exactly those available to the semantic
processor.

Semantic sensitivity: The syntactic processor is sensitive to aspects of the
utterance that depend on the semantics of the syntactic structures being
built. This sensitivity could take a wide variety of forms: The tight-
est kind of sensitivity would be detailed feedback based on semantic and
pragmatic aspects of the utterance, as argued, for instance, by Altmann,
Crain, Steedman, Tyler, Marslen-Wilson, and others (Altmann and Steed-
man, 1988; Crain and Steedman, 1985; Tyler and Marslen-Wilson, 1977).

At the other extreme would be a single reset or error signal to the syn-
tactic processor to stop processing because of a semantic anomaly. This
kind of loose interaction model is, for instance, the model of Frazier and
others (Frazier, 1987).

Left-to-Right Incremental Interpretation: The syntactic processor oper-
ates from left-to-right, and to whatever extent it is sensitive to semantic
effects, it is sensitive incrementally. Under a tight interaction model, for
instance, semantic and pragmatic aspects of the utterance can disam-
biguate syntactic processing in an on-line manner. Under a loose interac-
tion model, the reset signal can occur before the end of the sentence.

2.1 Incremental Interpretation and Disambiguation

These assumptions, taken together with the strict competence hypothesis, give
rise to the following argument for a theory based on combinatory categorial
grammar, as opposed to one based on more traditional structural analyses such
as government-binding theory.

Consider the sentence

(1) The flowers sent for the patients arrived.

This sentence is locally syntactically ambiguous giving rise to the semantic dis-
tinction as to whether the flowers in question are the agent or the patient of the
sending. Of course, the sentence is globally unambiguous; only the latter read-
ing is possible. Crain and Steedman (1985) argue that disambiguation occurs
at the word sent, at which time pragmatic information is available based on the
semantic analysis of the locally ambiguous fragment the flowers sent. Under a
loose interaction model, the hypothesis would be that disambiguation does not
occur at that point, but rather, a reset signal is sent to the syntactic processor
so that processing of the sentence can continue by virtue of some other type of
sentence processing mechanism than the “automatic” system.

In order to determine that the NP the flowers is not a possible subject of
the V sent, strict competence requires that there is a single constituent dom-
inating the string the flowers sent, whose interpretation can be identified as
anomalous. Moreover, by strong competence this constituent must be admitted
by the grammar, but in traditional grammars the smallest such constituent is
the node dominating the whole sentence. This constituent is not completed
until the end of the sentence, and hence strict competence would predict that
disambiguation cannot take place until the entire sentence has been processed,
contra the assumption of incremental interpretation. Consequently traditional
grammars do not provide structures that allow incremental interpretation under
the strict competence hypothesis. Combinatory categorial grammars do provide
such constituents; hence Steedman argues that CCGs are more plausible on psy-
cholinguistic grounds than grammars admitting traditional structural analyses
are.

3 Asynchronous versus Synchronous Compu-
tation

No one seriously proposes pedestrian approaches to language
understanding according to which sentences are fully parsed and
then interpreted. So what could make the three assumptions with
which we began seem paradoxical? It is just the idea that,
although we do not need to have complete sentence structures
before interpretation begins, we do at least need complete syntactic
constituents, such as phrases. But why keep this assumption? The
structures of phrases are complex (i.e., composed of a number of
elements), as are the structures of sentences, so we can perfectly
well assume that the constituent parts of phrase structures become
available for interpretation as soon as syntactic analysis formulates
them. Furthermore, since the interpretation of a syntactic
constituent is definitionally and procedurally complex, typically
involving the interpretation of subconstituents, these subtasks can
be intermingled with the parsing subtasks, without making any
modification at all in our definition of what each task involves.

(Stabler, 1991, page 203)

Stabler (1991) denies Steedman’s conclusion on the grounds that the strict
competence hypothesis is not needed. To make good this claim, he constructs
example parser /interpreters (one operating top-down, the other bottom-up) us-
ing standard logic programming techniques to demonstrate that an incremental
interpreter can be built that operates only over structures that are sanctioned
by the competence grammar.

Nonetheless, Stabler does not explicitly address the logical rejoinder to his
rhetorical question eschewing strict competence, “Why keep this assumption?”
The reply would be that this assumption is simpler, and thus methodologically
preferred. An interpreter of the Stabler type, it might be argued, must know how
to interpret not only the structures that the competence grammar specifies as
complete, but other partial structures as well. It is therefore a more complicated
(and evolutionarily less likely) component of the human sentence processor. It
is this rejoinder that we will directly address in this section centering on the
distinction between synchronous and asynchronous computation, and we will
review Stabler’s top-down parser/interpreter construction in this light.

3.1 Models of Computation

Any computation from finite inputs to finite outputs can be thought of as a
circuit made up of interconnected gates connecting the inputs to the outputs.
(Presumably, one’s brain can be thought of in this way as well.) For instance,

N N phase 2
Y| M

y = y = phase 1
Y| A M A

X y X y

(@ (b)

Figure 1: A circuit for computing z = ¢y + (—y). (a) The circuit as a network
of gates. (b) The circuit divided into two phases of computation.

the computation from inputs z and y to output z defined by the equation
z = zy+ (—y) can be specified by the circuit of Figure 1(a).

There are at least two models of how such a circuit computes its output
from its inputs. In the first model, synchronous computation, each gate in the
circuit waits until all of its inputs are available before computing its output. In
the second model, asynchronous computation, each gate computes its output as
soon as it can, that is, as soon as its inputs are sufficiently specified to determine
its output.

In fact, the level at which synchronization occurs in a circuit is not, as we
have intimated, a binary choice. Above we described asynchronous computation,
and computation synchronized at the gate level, but synchronization could occur
at higher levels as well. Let us define certain groups of gates in the sample circuit
as performing subcomputation. We will define the multiplication and negation
gate as forming phase 1 of the computation and the addition as forming phase
2. Then we could have synchronization at the phase level of the circuit as
well, that is, the output to phase 1 would only be generated when all of the
inputs to phase 1 were available, and similarly for phase 2. (Since phase 2 has
only one gate, gate-level and phase-level synchronization are the same for this
phase.) Gate-level and phase-level synchronization are in general independent.
Although we have specified synchronous computation at the phase level, we may
still compute within each phase either synchronously or asynchronously at the
gate level. Higher levels of synchronization can be imagined as well.

The import of the synchronous/asynchronous distinction can be exemplified

with the sample circuit. Suppose we use the circuit synchronously at the phase
level to compute z where y is 3 and z is 4. We set the y input to 3 by placing a
3 on the y wire. Although the negation gate has all of its inputs now, its output
is not computed, since the outputs of the phase must wait synchronously on the
availability of all the inputs. When z is then set to 4, all inputs for the first
phase are available and the two outputs 12 and -3 can be generated. Finally, the
second phase has all of its inputs and can compute its output, 9. (See Figure 2.)

In an asynchronous computation, on the other hand, as soon as y is set to
3, the negation gate can compute its output -3. But at this point computation
must stop as no other gates have sufficient input. When z is set to 4, the
remaining computation can proceed. (See Figure 3.)

The advantages of asynchronous computation can be seen when we examine
the case where y is 0. The y wire is set to 0, allowing for the negation gate
to set its output (phase-level asynchronously) to 0 as well. The multiplication
gate, operating asynchronously at the gate level can set its output to 0, since
a zero term in a product yields a zero result. The two inputs to the plus gate
are thus set to 0, and the output can be computed as 0, even before the z gate
is set to its value 4. (See Figure 4.) The synchronous computation would, of
course, follow the same time-course behavior as in the case where y was 3.

Asynchronous circuits exhibit a kind of eager computation. In a sense, the
circuit specifies, at a competence level, the computation of a function in terms
of computational subconstituents. Yet the eagerness given by asynchronous
computation allows the circuit to be used to compute values on partial inputs
(for instance, where y alone is specified) with no change to the “competence”
circuit at all.

Now, let us review the structure of the human sentence processor under the
assumptions discussed in Section 2. The modularity assumption tells us that
there are two phases in the circuit, one for syntactic processing and one for se-
mantic interpretation. The inputs to the former is the sentence, and the strong
competence hypothesis says that the computation uses the competence gram-
mar directly, building as the output of the first phase complete grammatically-
sanctioned trees. These serve as the input to the second phase of semantic
processing. The output of this phase, because of semantic sensitivity and left-
to-right incremental interpretation, must be available before the end of the
sentence. In a tight interaction model, the output loops back to the first phase
forming a recurrent circuit; in a loose interaction model, the output signals the
second stage parser to take over the processing of the sentence from the “auto-
matic” parser, and may also signal the first phase to reset. In either case, the
circuit looks, schematically, as in Figure 5.

The strict competence assumption governing whether the semantic inter-
preter can use partial constituents developed by the syntactic processor, then,
boils down to this: Humans use the circuit of Figure 5 in a phase-level-synchronous
manner.

This way of viewing strict competence puts quite a different spin on judg-
ments of simplicity. Just as asynchronous computation leads to incremental

phase 2)

phase 1)

3 4 3
@ X X (b)
(© (d)
yA
1 k
" phase’z) . phase2)
12 L -3 12 T -3

phase 1)

x

X y y

Figure 2: Phase-level synchronous computation of the sample circuit. (a) The
y input is set to 3. Computation of the first phase must wait for the remaining
input to the phase. (b) The @ input is set to 4, allowing phase 1 computation
to proceed. (c¢) Phase 1 computes its outputs, 12 and -3. (d) When phase 1
has completed computation, all inputs are available to phase 2. It computes the
final output 9.

Z Z
I phase 2\ I phase 2\
¥ J ¥ J
-3 12 -3
. 1 phase 1) - L phase 1)
H—] / H— J
3 4 3
@ X y X y (b)
(©
Z

Figure 3: Asynchronous computation of the sample circuit. (a) The y input
is set to 3. Since the negation gate has sufficient information to compute its
output, its output is set to -3 immediately, but no further gates can operate.
(b) The z input is set to 4. The multiplication gate can now compute its output
12. (¢) The addition gate computes the final output 9.

I phasez) " phasez)
M - M -

N] phase 1) y " phase 1)
M A M
@ X

(©

<
x
<

(b)

X y

Figure 4: Asynchronous computation of the circuit showing eagerness of com-
putation. (a) The y input is set to 0. (b) Both the phase 1 gates have sufficient
information to compute their outputs, and asynchronously do so. (¢) The ad-
dition gate has both inputs, and computes the final sum. Note that the final
output 0 was computed even before the z input was provided.

10

interpretation

A=

semantic

phase

analysistree

syntactic
phase

string

Figure 5: The model of human sentence processing viewed as a circuit. The
input is a natural-language string. Two phases of computation are assumed
(based on modularity). The first, a syntactic phase, computes (by strong com-
petence) an analysis tree. The second, a semantic phase, interprets analysis
trees, computing interpretations. Some aspects of the interpretation may be
made available to the syntactic processor incrementally.

interpretation of partial results in the z = zy + (—y) circuit without any extra
work of explicitly specifying how to compute over partial structures, it can lead
to incremental interpretation of natural-language utterances without any ex-
tra work of explicitly specifying how to interpret partial constituents. It seems
then, that Steedman’s claim that processors obeying strict competence are sim-
pler is not necessarily true. In fact, as is familiar from circuit design, build-
ing a synchronous circuit is actually more complex than an asynchronous one.
Synchronous circuits in general require global clocking mechanisms to prevent
asynchronous computation from occurring. In a sense, asynchronous computa-
tion is a more primitive notion than synchronous computation. Thus, it might
be argued that maintaining strict competence requires the extra infrastructure
of synchronization, and is thus less simple rather than more.

Two issues remain open. First, we have argued that there is some reason to
believe that strict competence is actually a more complex rather than simpli-
fying assumption, but such an argument is not a proof. The human sentence
processing circuit, the brain, may indeed be synchronous. In that case, strict
competence may be a simplifying assumption after all. We know of no way
at the present to resolve this issue, so it must remain open. Second, we have
claimed that asynchronous computation can allow for incremental interpretation
without any extra work of specifying how to interpret partial constituents. This
claim has been argued for in detail by Stabler. We will review his construction
in the next section.

3.2 Asynchronous Computation and Connectionist Net-
works

We digress briefly to note that a circuit model such as we have outlined bears
an obvious resemblance to connectionist networks. The feedback in the circuit
makes recurrent connectionist networks (Elman, 1988) an obvious candidate for
subsymbolic implementation of the ideas presented in this paper.

Although Elman’s version of recurrent connectionist networks has assumed
synchronous updating of activation levels, many researchers have proposed asyn-
chronous updating as a preferable method for both technical and psychologi-
cal reasons. Hopfield networks (Hopfield, 1982) are an early example of the
asynchronous connectionist approach. More recently, Smolensky (1986) has
proposed an asynchronous model called harmonium and applied it to various
natural-language areas (Legendre, Miyata, and Smolensky, 1990). In fact, the
synchronous update method “is usually viewed as a discrete, difference approx-
imation to an underlying continuous, differential equation in which all units are
continuously [i.e., asynchronously] updated.” (Rumelhart, Hinton, and McClel-
land, 1986, page 61)

Asynchronous computation is thus a natural property of connectionist sys-
tems; insofar as connectionist models are plausible models of human mental
processes, then asynchronous computation would be an expected property of
human sentence processing.

12

4 Asynchronous Computation and Incremen-
tal Interpretation

Stabler makes the general point that syntax, semantics, and truth computation
can be interleaved in a general asynchronous deduction architecture. As an
example, he presents a parser that generates analysis trees in a top-down fashion
by recursive descent. The output of this parser serves immediately as input to
an interpretation mechanism, which, when operating asynchronously (as it does
in Stabler’s deduction architecture) gives rise to incremental interpretation.

4.1 Top-Down Incremental Interpretation

We will not repeat the programming details here, referring the reader instead to
Stabler’s original paper (1991). However, we will go through an informal deriva-
tion (shown in Figure 6) to give a flavor of the idea. Parsing proceeds top-down
from the start symbol of the grammar, S. This symbol is expanded according to
the grammar, as in Figure 6(a), to an NP followed by a VP. The corresponding
semantic operation, application of the VP meaning to the NP meaning, can be
asynchronously generated top-down as well. (We notate semantic interpreta-
tions not using a standard logical notation, e.g., sent’(x)(the'(flowers')) for
the sentence prefix the flowers sent, but rather as a tree structure in which
the applications of functors to their arguments are made explicit with the label
ap. This detail is further discussed in Section 4.2.) In step (b), the leftmost
unexpanded nonterminal (NP) is expanded, and the corresponding semantic
operation is asynchronously added to the semantic representation. Again, the
leftmost nonterminal is expanded, this time to a terminal the, and the semantic
contribution is incorporated into the semantic representation, as shown in (c).
Continuing in this way, the syntactic tree is traversed top-down, depth-first, and
left-to-right, while the semantic representation is built incrementally according
to a similar traversal. In the final step shown (f), the string the flowers sent has
been parsed. Already, the semantic representation records that the interpreta-
tion of the flowers serves as the second argument (the agent argument in the
curried representation) to the predicate sent’.

Given that this derivation is pursued top-down, at the point at which the
flowers sent has been parsed, the interpreter has already constructed an inter-
pretation placing the flowers as the agent of the sending. Thus the implausibility
of this reading is available well before the end of the sentence, and indeed, at
the point where the disambiguation actually occurs.

Unfortunately, the top-down parser was confronted with this ambiguity much
earlier. The choice to expand the NP top-down as a Det followed by an N (as
opposed to, say, an NP followed by a reduced relative clause) essentially commits
the top-down parser to this reading, and that choice occurs at the beginning
of the constituent, i.e., the beginning of the sentence. In general, a top-down
parser makes such commitments too early.

Nonetheless, the example shows that asynchronous computation can directly

13

the'

NP VP NP VP NP VP
/\ /\
D N l|) N
(@ (b) @ M
(d) ap G ap ® ap
ap ap ap ap ap ap
/\ /N /\ /N /\
the' flowers' the' flowers' sent' the' flowers'
S S S
NP VP NP VP NP VP
/\ /N /\ /N /\
D N D N V NP D N \Y NP
the rov|vers the flov|vers tt|1e fI0v|vers se|nt

Figure 6: The first several steps of a top-down parse generating an analysis
tree in a top-down manner. At each step, the interpreter can asynchronously
compute a semantic representation top-down as well.

14

give incremental interpretation, as we were wont to show, even if it cannot artic-
ulate that incremental interpretation with a disambiguation component. To get
incremental interpretation to work with disambiguation requires postponement
of choice points; a bottom-up parser is a natural way to achieve this postpone-
ment.

4.2 Bottom-Up Incremental Interpretation

... LR parsers cannot model the incrementality of human parsing.
Namely, in right-branching structures, LR parsers build no
structure until all the input has been read. ...By contrast, people
clearly build structure before the end of the sentence and pass it
incrementally to the semantic processor.

(Abney, 1989, page 130)

In order to show that incremental interpretation can not only be done but
done in a useful manner, so that the interpretations are available where the
local choice points occur, we would like to apply the same kind of techniques
based on asynchronous computation to the building of a parser with later choice
points. In this section we consider a quite extreme case of postponing choice
points, bottom-up parsing. Bottom-up parsers do not commit to choices as to
the structure of a constituent until the point in the string that corresponds to
the end of the constituent. It should become obvious from the later discussion
that if an incremental interpretation mechanism can be constructed naturally
through asynchronous computation for this case, then one could be constructed
for parsers that commit earlier than a bottom-up parser (but still later than a
top-down one), such as left-corner parsers. It is for this reason that we choose
to work on the most difficult case.

Abney (1989) argues that although Stabler’s method, which we have char-
acterized as asynchronous computation, works for using top-down parsers for
incremental interpretation, it necessarily fails for bottom-up parsers. (He con-
siders the particular case of LR parsers.) By way of review, an LR parser is a
kind of automaton that has a current state (one of a finite set of states) and
a stack of constituents that have been parsed so far. Each step that the LR
automaton makes falls into one of four classes: The automaton may shift the
next word onto the top of the stack. The automaton may reduce the top sev-
eral constituents on the stack by replacing them with a single new constituent
that consists of a new node dominating the constituents that were previously
on top of the stack. The automaton may accept the string as being grammatical
and halt. The automaton may reject the string as being ungrammatical and
halt. We will be most concerned with the first two of these operations. As an
example, the LR parse of sentence (1) is given in Figure 7.

Abney points out that the stack of categories in an LR parser does not appear
to provide enough committed structure for incremental interpretation. In our

State Stack Input

0 the flowers sent ...
1 b flowers sent ...
|
the
2 b N sent
|
the | |flowers
3 NP sent ...
/\
D N
|
the flowers
4 NP v
/N
D N sent
|
the flowers

Figure 7: The first few steps of a shift-reduce parse of a string beginning “the
flowers sent...”.

16

ap ap fap fap
sent' the' flowers' the' flowers' sent'

@ (b)

Figure 8: Two depictions of a semantic representation. (a) Depiction of the log-
ical form sent’(x)(the'(flowers')) as an applicative structure, with applications
explicitly marked as ap. (b) A directed version with applications marked bap
for backward application and fap for forward application.

example, the relationship between the NP the flowers and the V sent is not
specified in the LR parser’s stack until at least the end of the VP dominating
sent has been reached. But this is the end of the sentence. Thus, we are
back to the old problem of having to wait until the end of the sentence to do
interpretation.

...1t is easy to see that this problem is similarly an artifact of
inessential formal details.... Given the new [bottom-up] notation for
our syntactic structures, it is natural to use a bottom-up notation
for our LF representations as well. Instead of using the form

sat(joke(0), funny)
let’s use

[joke, 0, INP/ICP, funny, sat(IN P, IV P)]

(Stabler, 1991, page 218-219)

Stabler responded that LR parsers can produce what we will call postfiz
applicative structure. These structures are a postfix variant of the applicative
semantic structures that we have been using. We have been notating semantic
interpretations using a standard logical notation, e.g., sent’(z)(the’(flowers'))
for the sentence prefix the flowers sent. Such a notation can be presented more
explicitly as a tree structure, as in Figure 8(a), in which the applications of
functors to their arguments is made explicit with the label ap. We will call

17

such logical notations applicative semantic structures. A variant of applicative
semantic structures, in which we distinguish a forward from a backward variant
of application (fap and bap, respectively), can also be developed, at the expense
of allowing some redundancy in notation. A directed applicative semantic struc-
ture is given in Figure 8(b). Just as a prefix traversal of the applicative semantic
structure yields the equivalent logical notation (i.e., sent’(z)(the’(flowers'))),
a postfix traversal of the directed applicative structure yields another notation
for the interpretation

[the', flowers', fap, sent’, ... bap]

that is, in some sense, equivalent to the other notations. We will call this postfiz
applicative structure. Stabler’s point is, essentially, that the postfix applicative
structure for a sentence carries just the same information as the prefix version,
but is generable incrementally by an LR parser. In fact, Stabler presents a
second parser/interpreter, again an instance of an asynchronous interleaving of
two standard phases, which performs just this incremental generation of postfix
applicative structure. This would seem to answer Abney’s qualms.

Unfortunately, we do not believe that it does. The problem is a bit deeper
than being “an artifact of inessential details” as to whether a prefix or postfix
notation is used for representing semantics. Postfix applicative structures are
essentially lists of logical elements. The subcomponents of such a list, as evi-
denced by the way in which Stabler’s system builds them up incrementally are
the prefixes of the list. Thus, the postfix applicative structure for sentence (1)
would be built up incrementally as

[the']

[the', flowers']

[the', flowers', fap)

[the', flowers', fap, sent’]

But these subcomponents are not compositionally interpretable in a way
sufficient for disambiguation. For example, after the prefix the flowers sent, in
Stabler’s system the incremental semantics consists of the postfix applicative
structure [the’, flowers’, fap, sent’], which is not compositionally interpretable
in such a way that it manifests the relation between the flowers and the send-
ing. The implementation of an incremental interpretation system that Stabler
provides is a top-down one that not only incrementally develops semantic repre-
sentations but also evalautes them to determine their truth relative to a model.
The ability to use the semantic representations as an appropriate input to an
evaluator is central. Significantly, Stabler provides no method for using postfix
applicative structures as input to an incremental evaluator. This is a symptom
of the underlying problem with bottom-up incremental interpretation.

Stabler’s method therefore does not solve the problem of incremental inter-
pretation with LR parsers; it postpones the problem. This is not surprising,

18

as it is actually the case that the stack does not have sufficient information to
make the connection between the flowers and the sending at that point in the
sentence. Any method, like Stabler’s, that essentially builds a semantic repre-
sentation based solely on the contents of the stack will fall foul of the ability to
do disambiguation on the basis of that semantic representation.

Nonetheless, we argue that Abney’s claim is wrong, though not for the rea-
son that Stabler gives. Rather, what Abney has ignored is the fact that the
configuration of an LR parser consists of more than just its stack contents.
There is also a finite amount of state information. As it turns out, the state of
an LR parser finitely encodes a set of possible left contexts for the stack items.
This set of contexts has a regular structure, and corresponding to that regu-
lar structure of syntactic left contexts, there is a regular structure of functors
over the completed constituent meanings (from the stack). Since these func-
tors are incrementally computable from the LR state, they are accessible by the
interpreter, hence available for incremental interpretation.

Again, we will present informally an LR derivation along with an asyn-
chronous computation of the semantics. (See Figure 9.) After the first parsing
step, the shifting of the word the entering state 1 (recalling Figure 7), the stack
contains information about the single constituent, the determiner the. State 1
encodes an equivalence class of left contexts, representable graphically by the
unboxed syntactic tree structure in Figure 9(a). The subtree notated with dot-
ted lines is intended to indicate zero or more repetitions of the substructure.
(The notation serves as a kind of Kleene star for tree structures.) Thus, the left
contexts represented include all those with S dominating NP and VP, the NP
perhaps dominating more NPs along the left branch, with the lowest NP domi-
nating the determiner on the stack and an N. It is important to note that the
parser does not build one or more of such contexts, or a tree-like representation
of all of them (as drawn in the figure). The parser merely keeps a single token
representing the state, 1, that can be extrinsically interpreted (by us or by the
interpreter) as standing for these left contexts. Thus, the graphical depictions in
the figure are mnemonic only, to make it easier to understand what information
is available for processing, but not how it is represented.

The parser makes available to the interpreter the information written below
the arrow in Figure 7(a). (Again, we emphasize that it need not be and is not
made available in this form.) On the basis of this information, the interpreter
can conclude that the semantic structure of the sentence is as represented in
the tree structure above the arrow. Of course, as before, the interpreter need
not manifest this information in this form. The figure merely shows what in-
formation is available. As the parsing steps proceed, more information is added
to the parser output through the stack contents (always boxed in the figures)
and finite state (unboxed). After the second shift, the situation is as depicted
in Figure 9(b). The subsequent reduction step, shown in 9(c), does not change
the information content, but reapportions it between the stack and state. The
next shift (9(d)) adds further information both syntactically and semantically.
The semantic information available to the interpreter at this point includes the

19

NP VP
/\
NP
/\
N
ap
ap

p
/\
the' flowers'
S

/NP\ VP

NP
D N
|
the flowers sent

Figure 9: The first several steps of a bottom-up shift-reduce parse generating
an analysis tree in a bottom-up manner. At each step, the interpreter can asyn-
chronously compute a semantic representation bottom-up as well. The boxed
material is the stack elements in the parser and the interpretations of the stack
elements in the interpreter. The unboxed material represents the equivalence
classes of left contexts that the LR state encodes and the interpretation of the
state.

20

AN
/\

P

S NP
VP VP
/\ 7 /\
VP VP

/\ /\

D NP D NP
a)

(
() NP
/\
D N
|
the flowerg V

sent

Figure 10: Syntactic information represented by the state (unboxed) and stack
(boxed) of an LR parser after parsing of “the flowers sent”. Note the disjunctive
left-context information.

fact that the'(flowers') is the agent of sent’; thus, the interpreter has sufficient
information to perform disambiguation or to signal a reset at this point.
Actually, the derivation given in Figure 9 has been simplified. The left-
context information represented by the states is more complex than that repre-
sented graphically in the figure. In particular, the left context information rep-
resented by state 4, the state after the shifting of the word sent, is not as shown
in Figure 9(d), but rather as shown in Figure 10(a). It is, in fact, the disjunction
of two sets of left contexts, each representable by a tree with Kleene-starred sub-
trees. (Recall that regular sets allow both Kleene star and disjunction. Thus,
the left-context set is still regular.) As before, the syntactic information is as
represented in Figure 10(b). Corresponding to this enlarged syntactic context
that the state 3 represents, there is an enlarged semantic context as well that is
available to the interpreter. This is shown in Figure 11(a). Essentially, the left

21

N

ap

/\

ap
ap ap

ap or ap

/N /\

ap ap

/\ /\
(] (]

@
(b) -
the' flowers'

sent'

Figure 11: Semantic information represented by the state (unboxed) and stack
(boxed) of an LR parser after parsing of “the flowers sent”. Note the disjunctive
left-context information.

22

disjunct corresponds to the interpretation of the sentence under which the flow-
ers are the agent of the sending, the right disjunct to the interpretation where
the flowers are the patient. This full presentation of the semantic information
after the word sent shows that like the top-down case, sufficient information is
available for disambiguation or anomaly detection, but furthermore, and unlike
the top-down case, the disambiguation can be performed at this point. The
choice has been postponed sufficiently long. Thus, this model allows both for
incremental interpretation and appropriate articulation of the incremental in-
terpretation with disambiguation.

5 Representation of Grammatical Constructs
for Asynchronous Processing

Previous sections of this paper argue that all other things being equal, the null
hypothesis concerning syntactic and semantic processing is that they should
proceed asynchronously. Furthermore, we have shown that asynchronous pro-
cessing can in theory allow for incremental interpretation regardless of whether
language processing proceeds top-down, bottom-up or some combination of the
two. The argument with respect to bottom-up processing was an in principle
one; the information necessary for incremental interpretation is available, hidden
in the stack and state, but no particulars were presented as to how the process-
ing might go in a particular implementation. In this section, we discuss one way
(presumably many others exist) that the ideas presented in the previous section
can be fleshed out. In particular, we address the issue of “regular contexts”,
contexts that are partially indeterminate as to structure, which must be at least
implicitly manifested. We show how the idea can be implemented using a recent
tool from the computational linguistics literature, Synchronous Tree-Adjoining
Grammars. We present a simple example involving VP adjunction — recall that
this leads to a Kleene-star type of context — in which asynchronous processing
has a certain intuitive appeal, and sketch a system in which semantic processing
can in fact proceed beyond syntactic processing. Along the way certain issues
of modularity in processing are raised and discussed.

If we consider syntactic processing as a process incrementally instantiating
a parse tree for the portion of the utterance, then at the point in the parse
marked by ¢ in sentence (2) below, there is not sufficient information available
to determine the number of VP nodes that will appear in the syntactic parse
tree, because the number of post-verbal adjuncts cannot be determined from
the portion of the utterance seen by the processor.

(2) George hates o broccoli violently.

At this stage, the precise tree-structural relationship— in particular, the number
of intervening VP nodes—between the subject NP George and the verb hates
cannot be determined, even though the subject-verb relationship between these
elements can be.

23

S
”’,,,/”\\\\\\\\\ ///////Sé\\\\\\\

NP VP AP S
George vP AP violently’ NP VP
PN | | PaS
\|/ N‘P violently George' V NP
hatesbroccoli |

hate’ broccoli’

Figure 12: Adjunction to VP at s-structure and corresponding adjunction to S
at LF

S s
,/’///\\\\\\ RN
NP VP Y S
‘ Pt PN
George VP Y NP VP
AN | AN
Y X George’ \|/ X
hates hate’

Figure 13: “Partial trees” constructed at the word hates

Suppose we adopt an LF-style of semantic representation (May, 1985) in
which VP adjuncts are raised and adjoined to S (their “scope positions”) at
LF. Then the uncertainty as to the number of adjunctions to VP in the syntax
corresponds to an uncertainty in the number of adjunctions to S (rather than
VP) at LF, as sketched in Figure 12. At LF the grammatical relationship
between George and hates can be read off of a single contiguous partial tree. In
principle, then, an asynchronous semantic processor working at the level of LF
could detect this grammatical relationship, check it for semantic and pragmatic
plausibility, and issue instructions to the syntactic processor if needed.

Immediately after the verb hates the parser’s information state about the
syntactic and semantic parse trees might be informally characterized by the two
trees sketched in Figure 13. In this diagram, the variable Y should be inter-
preted as a kind of “sequence variable”, ranging over zero or more adjunctions,
representing the fact that the number of adjunctions is undetermined.

Of course, these crude sketches do not demonstrate that there is in fact a
systematic way to asynchronously construct syntactic and semantic representa-
tions. The remainder of this section demonstrates that there is at least one way
to do this that has the property that semantic interpretation can proceed before
the syntactic structure has been completely identified.

24

NP NP S S
a< | | > PN
George, George,) NP” V NP VP
B N PN

\\/ Nﬁ\)‘// NP

hates , hate’
NP NP VP——S
v | 5 | N AN
l|\| I|\I VP, A|P A|P S,
broccoli, broccoli’ violently , violently’

Figure 14: Paired syntactic-semantic trees used in the example

In the framework of Synchronous Tree-Adjoining Grammars® (STAG) as de-
scribed by Shieber and Schabes (1990; 1991), the relationship between syntactic
and semantic representations is expressed by means of linked pairs of elementary
syntactic and semantic trees. Elementary trees come in two kinds: initial and
auxiliary trees. Figure 14 depicts the paired elementary syntactic and semantic
trees used in this example. The links between these pairs of trees synchronize
the substitution and adjunction operations on the paired syntactic and semantic
parse trees. In that figure, each pair is labeled with a greek letter, which will be
used to refer to the pair in the text. The trees labeled «, § and 7 are initial tree
pairs. These trees can begin a derivation or be substituted for leaf nonterminals
of other trees. The 6 labels an auziliary tree pair, one that can be adjoined into
other trees.

A derivation begins by selecting an initial tree pair with a syntactic tree
whose root is labeled S. In this example, the only such tree pair is 3. The
derivation proceeds by selecting one of the links and an initial or auxiliary tree
pair and simultaneously substituting or adjoining (depending on whether the
trees are initial or auxiliary) the trees at the two ends of the link, and deleting
the link. (For the full technical details, see the papers by Shieber and Schabes
cited above.)

For example, substituting « into the linked subject NPs of # and then sub-
stituting v into the linked object NPs yields the pair of trees shown in Figure 15.

The LF raising of adjuncts is captured by the auxiliary tree pair 6. Because
the VP node in the syntactic tree is linked with the S node in the semantic
tree, a VP adjunction operation on the syntactic tree can only occur when a

1The term synchronous in the name of the formalism refers to the synchronization of
syntactic and semantic specifications, not to synchronous processing. Indeed, it is the syn-
chronization of the specification that allows asynchronous processing to be a viable processing
strategy for STAGs.

S S
/\ /\
NP VP NP VP
| N | PN
George \|/ N|P George’ \|/ N‘P

hatesbroccoli, hate’ broccoli’

Figure 15: The result of substituting o and v into 3

S S
/\ /\
NP VP AP S
George VP AP violently’ NP VP
PN | | N
\|/ N|P violently George’ Y N|P
hatesbroccoli , hate’ broccoli’

Figure 16: The result of adjoining ¢ into the tree pair depicted in Figure 15

corresponding S adjunction occurs in the semantic tree. The result of adjoining
6’s syntactic tree at VP and 6’s semantic tree at S is depicted in Figure 16.

Note that the link between the matrix VP and S nodes in § also appears in
the derived tree pair depicted in Figure 16, so an unbounded number of VP—S
adjunctions is possible.

This concludes the brief description of synchronous tree-adjoining grammars.
We, now turn to an abstract model of incremental interpretation based on the
method proposed by Lang (1991) in the analysis of general parsing algorithms.
Again, our treatment is informal; the reader should turn to the original paper
for the details of the procedure.

The basic idea is very simple. Given a grammar GG and a string of words w,
consider the set S of all the trees (or, in the case of STAGs, tree pairs) generated
by G whose yield begins with w. S is the set of all grammatical trees consistent
with the input seen so far. In general S will be an infinite set, so S cannot be
finitely characterized by simply enumerating its members.

But as Lang (1991) realized, in many cases S can be finitely characterized
by a grammar G’ that strongly generates a set of trees structurally isomorphic
to S. Specifically, if G is a member of a class of grammars that is closed
under intersection with finite-state languages (these include CFGs, TAGs, and
STAGs), it must be the case that there is a grammar G’ such that G’ generates
isomorphic versions of the trees in S. This G’ is a finite description of the set

26

b

Figure 17: A finite-state machine M that accepts all strings with the prefix
George hates

) NPo-1 NP .,/ NPs-$ NP
a | | a | \
George, George) George, George)

Figure 18: Specialized versions of the tree pair a from Figure 14

of all trees compatible with both the grammar and the input seen so far. In
the case of STAGs, G’ is a transduction between syntactic and semantic trees
that are compatible with the input seen so far. We now sketch how G’ can
be calculated, and show how given the partial input George hates ... the NP
George can be unambiguously identified as the subject of the verb hates at LF.

First, we construct a finite state machine M which accepts George hates X%,
i.e., all strings that begin with George hates. Such a machine is depicted in
Figure 17. In this machine the state labeled 0 is the start state, and the state
labeled $ is a final, accepting state.

Next, the tree pairs in the original grammar depicted in Figure 14 are spe-
cialized. In the specialized grammar each nonterminal in a syntactic tree is
annotated with a tuple of states from the finite state machine M that indicate
which substrings of the language of M that it may dominate. Nonterminals that
are not potential adjunction sites are annotated with a pair of states, correspond-
ing to the left and right string positions of the substring they dominate, while
nonterminals that are potential adjunction sites are annotated with a quadruple
of states, corresponding to the upper and lower pairs of string positions of the
node after a potential adjunction.

For example, the syntactic tree in the pair a of Figure 14 can span strings
of the state pairs 0 — 1 and $ — $, so that tree is specialized into the two trees
o’ and o' shown in Figure 18.

On the other hand, the string broccoli can only possibly occur in the -
loop part of M, so the tree pair ¥ has only the single specialization depicted in
Figure 19.

Now consider initial tree 8. Its root node (the S node) must span the entire
string, so its specialization must be annotated 0 — $, i.e., the initial and final
states. Since the S node’s left-most child (the subject NP node) must have the
same left string position as the S node, the first component of its annotation

27

NP$-$ NP
| \
y' N $-$ I‘\l
|
broccoli, broccoli’

Figure 19: The specialized version of the tree pair 7y from Figure 14

S0-$ S
M\
' NP o- VPI_ NP VP
B ! $ AN

Vi-$ NPs$-$ V , NP
‘ ! \/‘\/ l

hates , hate’

Figure 20: The specialized version of the tree pair § from Figure 14

must be 0. But there is only one syntactic tree with a root NP node at left
string position 0, namely the tree in the pair o’. Since a'’s right string position
is 1, the right string position of the subject NP node in any specialization of g
must be 1 also.

By similar reasoning we can determine the left string positions of the VP
and V nodes in any specialization of £, and from that we can fix their right
string positions as well. Thus the specialization of § is completely determined;
it is given in Figure 20.

Finally, consider the specialization of the auxiliary tree 6. Clearly, only those
specializations labeled VP%:: are potentially useful in the specialized grammar
(', since specializations with other labels will not be able to adjoin to the tree
pair 3. There is only one such specialization, which is given in Figure 21.

The specialized grammar G’ thus consists of the tree pairs o/, o, 3, v and
8'. It defines the syntactic-semantic transduction restricted to syntactic trees
whose yields have the prefix George hates. There are an infinite number of tree
pairs in this transduction, since the tree pair ¢’ can be recursively adjoined.

Now consider the semantic trees that can appear as the output of the trans-
duction defined by G’. Since «’ is the only tree pair that can substitute into
the subject NP in @, the NP George must appear in this position. Further,
even though the tree pair §' can be recursively adjoined, at the semantic level
this adjunction is an adjunction to S, not to VP. Thus all of the semantic trees
defined by G’ are of the general form sketched in Figure 22.

Thus, even though the exact sequence of nodes intervening between the
subject NP and the verb in the syntactic tree cannot be determined with only

28

wit s
~ /\

VP1-$ AP$-$ AP S,
* | |

violently , violently’

Figure 21: The specialized version of the tree pair § from Figure 14

S
s
/\
NP VP

George’ V. NP
|

hate’

Figure 22: The general form of the semantic trees generated by the specialized
grammar

the first two words of the input, at the semantic level this sequence of intervening
nodes is fully determinate, and so the grammatical relationship at LF between
the verb and the subject NP can be unambiguously identified.

In essence, synchronous tree-adjoining grammars provide a framework in
which regular contexts of the variety needed for bottom-up incremental inter-
pretation can be naturally found. The ability to perform adjunctions in the
middle of derived trees allows for a single tree to stand proxy for an entire set of
contexts, and the synchronization with a semantic representation allows for the
asynchronous development of the semantic relationships simultaneously with
the syntactic ones.

6 Conclusion

We have argued that the strict competence hypothesis proposed by Steedman
may not, as was previously proposed, constitute a simplifying assumption for
models of natural-language interpretation. The naturalness of asynchronous
computation, and its ability to manifest incremental interpretation without any
additional machinery beyond that required for a nonincremental interpretation
process, argues for relaxing the strict competence assumption. Indeed, once
the strict competence assumption is seen as a requirement of synchronous pro-
cessing, it is apparent that the assumption complicates language interpretation

29

models by requiring a clocking or synchronization mechanism that is otherwise
unnecessary.

With the strict competence assumption relaxed, we have argued (with Sta-
bler) that incremental interpretation can naturally take place by asynchronous
computation of semantic representations; this follows independently of whether
processing occurs top-down or (contra Abney) bottom-up. A concrete version
of the bottom-up proposal might use synchronous tree-adjoining grammars to
handle the representation both of grammar and of incremental results. Along
these lines, the use of tree-adjoining grammars as an appropriate formalism for
stating the observations of modern linguistic theory (Kroch and Joshi, 1985;
Kroch, 1989; Frank, 1992) are pertinent.

Although the proposals we outline in this paper are programmatic, the gen-
eral conclusion is, we believe, reasonable: Incremental interpretation follows
from asynchronous processing directly, without the necessity to hypothesize ad-
ditional assumptions.

Acknowledgments

The research in this paper was supported in part by grant IRI-9157996 from the
National Science Foundation to the first author.

The authors would like to thank Fernando Pereira, Edward Stabler, and
Mark Steedman for discussions on the topic of this paper and for their comments
on previous drafts.

References

Abney, Steven P. 1989. A computational model of human parsing. Journal of
Psycholinguistic Research, 18(1):129-144.

Altmann, Gerry and Mark Steedman. 1988. Interaction with the context in
human syntactic processing. Cognition, 30:191-238.

Crain, Stephen and Mark Steedman. 1985. On not being led up the garden
path: The use of context by the psychological parser. In David Dowty, Lauri
Karttunen, and Arnold Zwicky, editors, Natural Language Parsing: Psycho-
logical, Computational, and Theoretical Perspectives. Cambridge University
Pres, Cambridge, England.

Elman, Jeffrey L. 1988. Finding structure in time. Technical Report 8801,
Center for Research in Language, University of California, San Diego, La

Jolla, California, April.

Frank, Robert. 1992. Syntactic Locality and Tree Adjoining Grammar: Gram-
matical, Acquisition and Processing Perspectives. Ph.D. thesis, University
of Pennsylvania.

30

Frazier, Lyn. 1987. Theories of sentence processing. In Jay L. Garfield, editor,
Modularity in Knowledge Representation and Natural-Language Understand-
ing. MIT Press, Cambridge, Massachusetts, pages 291-307.

Hopfield, J. J. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of

Sciences, 79:2554-2558.

Kroch, Anthony. 1989. Asymmetries in long distance extraction in a tag gram-
mar. In M. Baltin and A. Kroch, editors, Alternative Conceptions of Phrase
Structure. University of Chicago Press, pages 66-98.

Kroch, Anthony and Aravind K. Joshi. 1985. Linguistic relevance of tree adjoin-
ing grammars. Technical Report MS-CIS-85-18, Department of Computer
and Information Science, University of Pennsylvania, April.

Lang, Bernard. 1991. Towards a uniform formal framework for parsing. In
Masaru Tomita, editor, Current Issues in Parsing Technology. Kluwer Aca-
demic Publishers, Dordrecht, Holland, pages 153-171.

Legendre, Géraldine, Yoshiro Miyata, and Paul Smolensky. 1990. Harmonic
grammar — a formal multi-level connectionist theory of linguistic well-
formedness: Theoretical foundations. In Proceedings of the Twelfth Annual
Meeting of the Cognitive Science Society, pages 388-395.

May, Robert. 1985. Logical Form: Its Structure and Derivation, volume 12 of
Linguistic Inquiry Monograph. MIT Press, Cambridge, Massachusetts.

Rumelhart, D. E.; G. E. Hinton, and J. L. McClelland. 1986. A general frame-
work for parallel distributed processing. In David E. Rumelhart, James L.
McClelland, and the PDP Research Group, editors, Parallel Distributed Pro-
cessing. MIT Press, Cambridge, Massachusetts, chapter 2, pages 45-76.

Shieber, Stuart and Yves Schabes. 1990. Synchronous tree adjoining grammars.
In Proceedings of the 13th International Conference on Computational Lin-
guistics, Helsinki, August.

Shieber, Stuart and Yves Schabes. 1991. Generation and synchronous tree
adjoining grammars. Computational Intelligence, 4(7):220-228.

Smolensky, P. 1986. Information processing in dynamical systems: Foundations
of harmony theory. In David E. Rumelhart, James L. McClelland, and the
PDP Research Group, editors, Parallel Distributed Processing. MIT Press,
Cambridge, Massachusetts, chapter 6, pages 194-281.

Stabler, Jr., Edward P. 1991. Avoid the pedestrian’s paradox. In Robert C.
Berwick, Steven P. Abney, and Carol Tenny, editors, Principle-Based Pars-
wng: Computation and Psycholinguistics. Kluwer Academic Publishers, Dor-

drecht, Holland, pages 199-237.

31

Steedman, Mark. 1989. Grammar, interpretation, and processing from the lexi-
con. In William Marslen-Wilson, editor, Lezical Representation and Process.
MIT Press, Cambridge, Massachusetts, chapter 16, pages 463-504.

Steedman, Mark. 1992. Grammars and processors. Technical Report MS-
CIS-92-52, Department of Computer and Information Science, University of
Pennsylvania. To appear in H. Kamp and C. Rohrer, eds., Current Theories
in Natural Language Understanding, Reidel, Dordrecht, Holland.

Tyler, Lorraine K. and William D. Marslen-Wilson. 1977. The on-line effects
of semantic context on syntactic processing. Journal of Verbal Learning and

Behavior, 16(6):683-692.

32

