Noma, E. 1987. Heuristic method for label placement in scatterpegshometrika52(3):463-468.

Papadimitriou, C. H. and K. Steiglitz. 1982ombinatorial Optimization: Algorithms and ComplexRyentice Hall, Engle-
wood Cliffs, New Jersey

Purdom, PW. 1983. Search rearrangement backtracking and polynomial averagattiifidal Intelligence 21(1,2):17-
133.

Sahni, S. 1974. Computationally related problegidM Journal of Computing:262-279.
United States Geological Suryayational Mapping Division. 1990. Geographic Names Information System, November

van Roessel, J. W989. An algorithm for locating candidate labeling boxes within a polygom American Cartographger
16(3):201-209.

Wu, C. V and B. PButtenfield. 1991. Reconsidering rules for point-feature name place@@tdgraphica 28(1):10-27,
Spring.

Yoeli, P 1972. The logic of automated map letterifige Cartographic JournaB(2):99-108, December
Zoraster S. 1986. Integer programming applied to the map label placement pr@aewgraphica 23(3):16-27.

ZorasterS. 1990. The solution of Ige 0-1 integer programming problems encountered in automated carto@pplhations
Researh, 38(5):752-759, Septemb&rctober

Zoraster S. 1991. Expert systems and the map label placement praéetagraphica 28(1):1-9, Spring.

25

FreuderE. C. 1982. A sticient condition for backtrack-free seardournal of the Association of Computing Machinery
29(1):24-32.

Garey M. R. and D. S. Johnson. 19T0omputers and Intractability: A Guide to the Theory of NP-Completewéds. Free-
man and CompanyNew York, New York.

Gaschnig, J. 197®erformance Measement and Analysis of Certain Searlgorithms Ph.D. thesis, Dept. of Computer
Science, Carnegie Mellon UniversiBittsbugh, Pennsylvania.

Haralick, R. M. and G. L. Elliot. 1980. Increasing tree searfiti&fcy for constraint satisfaction problemstificial Intelli-
gence 14:263-313.

Hirsch, S. A. 1982. An algorithm for automatic name placement around poinTHatAmerican Cartographg®(1):5-17.
Holland, J. H. 1975Adaptation in Natural and Artificial Systemgniversity of Michigan Press, Ann Arbor

Imhof, E. 1962. Die Anordnung der Namen in der Kdrternational ¥arbook of Cartography:93-129.

Imhof, E. 1975. Positioning names on mafise American Cartographg?(2):128-144.

Johnson, D. S. 1990. Local optimization and the traveling salesman problrocéedings of the 17th Collogium on Autom-
ata, Languages, and Bgramming pages 446-461.Spring¥erlag.

Johnson, D. S., C. R. Aragon, L. A. McGeoch, and C. Schevon. 1989. Optimization by simulated annealing: An experimental
evaluation; part |, graph partitionin@perations Reseah, 37(6):865-892.

Johnson, D. S., C. R. Aragon, L. A. McGeoch, and C. Schevon. 1991. Optimization by simulated annealing: An experimental
evaluation; part Il, graph coloring and number partitiongerations Reseah, 39(3):378-406.

Jones, C. 1989. Cartographic name placement with Pi&&§ Computer Graphics and Applicatior$g5):36-47, Septem-
ber

Karp, R. M. 1972. Reducibility among combinatorial proble@mmplexity of Computer Computatiofdenum Pres, New
York, pages 85-103.

Kato, T. and H. Imai. 1988. The NP-completeness of the character placement problem of 2 or 3 degrees oReeedarh.
Joint Confeence of Electrical and Eleanic Engineers in Kyushd138. In Japanese.

Kirkpatrick, S., C. D. Gelatt Jrand M. PVecchi. 1983. Optimization by simulated annealgence220:671-680.

Korf, R. E. 1988. Search: A survey of recent results. In H. E. Shrobe,, &ipdoring Artificial Intelligence: Surveyalks
from the National Confences on Atrtificial Intelligencéorgan Kaufmann, San Mateo, California, pages 197-237.

Langran, G. E. and. K. Poiker 1986. Integration of name selection and name placemdntoteedings of the Second Inter-
national Symposium on Spatial Data Handlipgges 50-64, Seattle @dhington, Julyinternational Geographical Union
and International Cartographic Association.

Marks, J. and S. Shiebd991. The computational complexity of cartographic label placemecttnical Report TR-05-91,
Harvard UniversityMarch.

Mower, J. E. 1986. Name placement of point features through constraint propagafaycdadings of the Second Interna-
tional Symposium on Spatial Data Handlipgages 65-73, Seattle ddhington, Julyinternational Geographical Union
and International Cartographic Association.

24

References

Ahn, J. and H. Freeman. 1984. A program for automatic name placéaetagraphica 21(2&3):101-109, Summer &
Autumn. Originally published iRroceedings of the Sixth International Symposium on Automated Cartography (Auto-
Carto Six) Ottawa/Hull, October 1983.

Carstensen, L. WW1987. A comparison of simple mathematical approaches to the placement of spot Sparbmisaph-
ica,24(3):46-63.

Cerny V. 1985. A thermodynamical approach to the travelling salesman problemficdan¢fsimulation algorithmJournal
of Optimization Theory and Applicatign#s:41-51.

Christensen, J., J. Marks, and S. Shieb@®2. Labeling Point Features on Maps and Diagrams. Center for Research in Com-
puting Technology Harvard UniversityTR-25-92, Dec.

Christensen, J., J. Marks, and S. Shieb@93. Algorithms for Cartographic Label Placem®@mnbceedings of the American
Congress on Surveying and Mapping ;%&b.

Christensen, J., J. Marks, and S. Shieb@94. Placing @xt Labels on Maps and Diagran@&aphics Gems I\NAcademic
Press, pages 497-504.

Cook, A. C. and C. B. Jones. 1990. A Prolog rule-based system for cartographic name pl&mmguter Graphics Forum
9:109-126.

Consorti, V, L.P. Cordella, and M. laccarino. 1993. Automatic lettering of cadastral rRegpseedings of the International
Confeence on Document Analysis and Recognjtpage 129-132,sLikuba Science Cityapan, October

Cromley R. G. 1986. A spatial allocation analysis of the point annotation problétrodeedings of the Second International
Symposium on Spatial Data Handljmzages 38-49, Seattle @dhington, Julyinternational Geographical Union and
International Cartographic Association.

Dechter R. and J. Pearl. 1985. Generalized best-first search strategies and the optimalitioaf#e. of the Association of
Computing Machinery32(3):505-536.

Doerschlerd. S. and H. Freeman. 1992. A rule-based system for dense-map name placemeninications of the Associa-
tion of Computing Machiney5(1):68-79, January

Ebinger L. R. and A. M. Goulette. 1990. Noninteractive automated names placement for the 1990 decenni@aogus.
raphy and Geographic Information Systerh§(1):69-78, January

Edmondson, S., J. Christensen, J. Marks, and S. Shi€l$et. A General Cartographic Labeling Algoritimpreparation

Fisher M. L. 1981. The Lagrangian relaxation method for solving integer programming proMamegement Scienc7:1-
18.

Formann, M. and.RVagner 1991. A packing problem with applications to lettering of mapBréiceedings of the Seventh
Annual Symposium on Computational Geomgtages 281-288, North Conwayew Hampshire, JUNACM.

Freeman, H. and J. Ahn. 1987. On the problem of placing names in a geographitenagtional Journal of Pattern Recog-
nition and Artificial Intelligence1(1):121-140.

Freeman, H. 1988. An Expert System for the Automatic Placement of Names on a GeographitdbNMagtion Sciences
45:367-378.

23

F——— O O — _.Fu_zufl_a.vg________ O T

L]
| eNewRU - Jsiobobri & *Maduhavotown o New Yoma |
N Trag @ Babrurotown o PO
| o Raville f me NaNGabonl.I
| < Dojovuho atll o Flamurikhutown New Scrikhi |
New Ruzogohei O Sseyiay O Devilleg
| Bajoditown g (] Retow o New Mo RLZZE o
© Khomido chynana, 'Scri
| . eMurha Zatro = o TUIO L4 |
I. Kty Smkhg:;v;" Sozashu o New Ba b Khago o Lukhi dutown
:.\mu Kipolatown g ¢ Pupo” g New Tri
Siju esula
L Flovoguland e Samau |
| o DO " BrapaCity o Qua/il(j:ilvol e - I
o Roil S o208 Chibruphuyu Flushd lc Bivofiki
| @ Spo) ® Cotneic Wofatovilleq @Khitho |
o NEW Mupadi Nodotown g o Bumathitown A Ziqua Hagg ® o Braflapha ity Yy, R o Thiflu I
Foro @ Thathotown syzukofoville @-9% Sty g Shazachutown - Voo oNews
| Toscra® &\ ¢ sarikticity ° Brashowo®/ Woduag ® Scrawi ew Nivubro s uyag l
Gaflutho Rasti o ?,G‘E’,f‘;fjhi P
i 1 isaCi Trovalak
! o> aville on \/sacity Buchustu oEEa |
| Flitown o Quibufoka__ ® 2PN Gapuni city,, o Zugoyabri New Waghostiba |
| New Tarulu g @Chotri ©71°Ce gWasta Dochasho ® Lastopa s . . l
| @ New Scrostomitri Thisuquotown ¢ {{\ o P ® Horuni City I
Doronitown @ Quotown Pahavoville®
| oHu ®Scri wobopa City 4, |
Khutriville . Lavojutown Saflobrajotows %,)
| . ® ufaCity . New Sorivuta % o Stishatho |
I @ Hodi City g Ra c) oG Shatrwville —— I
° Kapha?é o\Va OEER) O @ Bishoru .
I o7 riigog 2 e > o Wowus |
o Roshu o apol |lzcrwn
itr
I e ez Scrutu Road o °* ko S I
| Kiscraga ® @ Scrochiflokha “"'%e Scruyipotown L |
I i City o Brusuka @ Khakhitown I
i Brurudatown
I ® Chubabriville ° Gma"'ﬁﬁ"%ﬁqm @ Brur I
Khar: ° ot .
Nuchu Trwvileq Mibug @ Hew oo, Gupo City _e Quachozato City e New Huma ;
> 09 O . ibroti Li Scramo I
® Chuzuga Yosho New Zodobru Y Proti [] o=c
| @ Muijo City Takhudutown® ¢ Brikha @ Stazo o SclashaCityi |
I Kada o Wiyura ® | oflutown @ Stozimi I
O it oStu o Zadini g Trubrotu City Stiville #Ctitho
[o Faquakhutriville © Zupholi ® Scrushastatho o Scrojo l
I - @ Bruvo L -) Liciya |
@ New Thokoflati o oSy uhoshosti i City o
L @ Y okitritown o Soupofo

Figure 19: A map involving line, area, and point features labeled by the simulated annealing algorithm. The initial random labeling is shown
in (a). An intermediate configuration of the algorithm is shown in (b). The final labeling is shown in (c).

22

A%

T T L T T e T T T T Maduhavo _____h'a-___________'“’ﬂ_ e ———n

® oo G.) Maduhavo own Fuzufla. 'Quivokha
| oNewRu Dm”SC"aJ Lisho River ® New Yoma
I S Tra§ .rurotown
[] Bakl@"
| Raville New Ruzogohei e Dojovuhog o granl g"hgé S
| [Datown N °
jodi O) e o
. Bajoditown _ © Khomido Chuhanag i

| o 9 atro % o TUlO |

Sk New Bag < @ Khago

ghlgtoivy o
) I

.d'la'natu
GulRe® |
e w2 evegdiame |
0 ;
gBraﬂmhaciry @ Thiflu I

° Rothuni™. YOewt &I ver Muya
adifza huw‘.”" ayNivubro ® NaVafizdsirae © ry
.
Zugoyabri |

® L astopaiew wughgSiba®

o Soffa Horu i Ci

Lavojutown

() lL o Stishatho I
o 2, Pokhu o |
odi City $; ®Bishoru
| oFika K oW |
ivishor O Mapokhitown owust
| ®Roshu T'.V'Sh?(ixra > Scruyipot?ﬂ:/kn. K 1
I T .&rocﬁma i 1 Rqad 0'19 .Brhoﬂo
I City® < New Yayainy Gity B‘Uﬂb\'ﬂ(hltown. I
ivi = Gotabra €1
Chubd)rlvllle. é ty. I d @ Brurudatown
I ek Luroasy yogulan I
. \ar ascCl
|Nuchug Chuzuga 'TVWM%UWQ - Dr% oz @ New Zodobri® ibroq New Huma® Lig O |
@sto
| o Muio City & 'Immntlaﬂutmn ° Scrad].a@‘r’%n"o" |
| ura
| exan S ol poru City stiville |
] o /
1, I‘i“""”” Fequakhutriville r"zae;tdml o Scrushastatho ® oo, ® Chitho |
SCr0 o9 RUKhU Bruvo o
L] ® & .
o Shuwobu a ?uhoshosti Li City ° |
Ne\:/ Thokoflati _ @ Yokitritown a Soupofo |
@
[e e e e T e e e e e e e e e e S —
® Fotro ® - flava ‘Quuvokha 1
I o New Ru .Sobobri Y |
I Trag ° Phog New Yoma . I
) q Babruroto Bakifli New Gaboni g
| Raville - e Dojouios O R o |
I Baj oditow ® New Ruzogoheiamwn Scroyitt Prudibry @ New Serikhi |, Ie.‘l
@ . Kh d oCr|
Zatro New Mp @ Khomido o
| ® Mupha FIOVOQUIand (2 N— New Ba . Chuha l
o Kitru ukhetown bS Tuo o
Kipol Chofo g 1?, Khagh i & dutown I
I .\Jhu Flucho ¢ [polstonng g Pupo D . ’ New Tri
Siju e® Sua & dliville Siwﬂalu
| Fugetie' o Do lznu . JZoa Chibruphuyu o Quavi City
i BrapaCi) A
| Sipo g BrPacy qua © odasto ”Zawma B'I‘I’cﬁk':Khitho |
Nodotown @ . 5 . o Braflapha City oville ® Thiflu
ey Mupadi Bumuthitons o Hakisutu R, - New Niv ew Si |
| Toscra® ™ FI O suzukofoville o & achutown %%er Rwjizosra M Y20 |
3 Gaflutho, i Rasti 3
| @ Pakho awzlle s Puthi o & Buchustu Trovalaka |
| Flitown® otri EEl @i, New Whihostiba |
siyieka * ;
l New Tarulug oroWaSa g Zugova\l;{g@ R HAuhi Ci |
I .New Scrostomitri i Q Stotha I
u
. Quotowg® Pah ill S
| Doronitown e avoville |
| 1y GKhutriville |
JHodc o v Stishatho g "
I 0 /2 Joni City ® g oyrvitie® . o Pokhu |
Bishort
| ia® . : 1Shoru & wowusi |
|Rosnu’ Tivisho Jhawa® Zitro, I
® Thy a
| . Scrochiflokha o zitoysf Scrutu RO [%c'”y'p"“”””' Kho Broquiflog
Kiscraga 02 Chifo ® New Y _ . |
I 3 City < Flipu City Brusukag ° Khakhitown E I
I Chubebriville. §‘ Gu ty .Gotabracity o @ Brurudatown I
. 23 ° d=
I N.uchu Trwille vegho OKharasti@ Ndupo Ddobm. Jowafigeid ORI DERY i _CQ A |
L]
| ® Chuzuga Mi 4 osto g Yibrot Takhud g-. Sgamﬁcny I
by " L]
I ® Mujo City V\‘lyura ®Biikha @ utown 2 o Stozimi I
@ Kada Stu Trubrotu City
I Pquakhutriville o zaini ® stiville® e OS2 I
e@Quitown © ® Zupholi ® scrushastatho ©
| s Rukhu B 05numobu o scn pAlihoshosti LiCity |
° -
L Newmnoonan ______evourwr J _ _ _ __sowofoe |

(b)

Figure 19: A map involving line, area, and point features labeled by the simulated annealing algorithm. The initial random labeling is shown
in (2). An intermediate configuration of the algorithm is shown in (b). The final labeling is shown in (c).

21

labeled by the simulated annealing algorithm (Edmonds et al., 1994). Changing the objective function to allow for a priori
placement preferences, sophisticated point selection, and complex interactions between labels and map symbology is also pos-
sible.

6 Acknowledgments

The research reported in this paper was funded in part by a contract with U SWEST Advanced Technologies, by Presidential
Young Investigator Award IRI-9157996 from the National Science Foundation, and by a grant from Digital Equipment Corpo-
ration. Andy Breeding, an information analyst at Digital Equipment Corporation, assisted us in the compilation of the bibliog-
raphy. Thanks also to Tom Ngo and Shawn Edmondson for additional support.

20

750 Point Features 1500 Point Features

1 . . 1 . T
- Random ©
0.9 é ® 1 09 Greedy + 1
H Gradient Descent =
0.8 r ¥ 1 08 Hirsch x 1
07| g] Gradient Descent (2-opt) =
- 07 Simulated Anneding 1
06| "% | 06 L Gradient DescentZ ggg z - |
£ o5 g 8
5+ 1 05 2 1
A Random ° (?5
04 r Greedy + 1 04 b
Gradient Descent o é
03¢ Hirsch x 1 03 1
° Gradient Descent (2-opt) = ¥V
02 Simulated Annealing * | 02 “ ! 1
01 L Gradient Descent (3-opt) © |
: Zoraster 01| H 1
0 0 ,
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
CPU Seconds CPU Seconds

Figure 18: Running times for 10 féifent trials of 750 point features and 1500 point features (note the logarithmic scale of the x axis).

over the alternatives when overall solution quality is critical. For time-critical applications, the annealing schedule can often
be shortened or eliminated altogether while still providing reasonable solutions. This result stands in contrast to previous
empirical investigations of simulated annealing, which have shown that for a few NP-hard problems simulated annealing is
competitive with customized heuristic techniques, but typically only when allowed to run for very long periods of time
(Johnson et al., 1989; 1991). Simulated annealing has the additional advantage of being one of the easiest algorithms to imple-
ment. Bble 1 gives the number of lines of code for each of the algorithms under our implementation, as an admittedly rough
indication of implementation complexity

Algorithm Lines of C code
Random Placement 20
Greedy 79
Gradient Descent (1-opt) 210
Simulated Annealing 239
Zoraster 346
Hirsch 381
Gradient Descent (2-opt) 1807
Gradient Descent (3-opt) 2284

Table 1: Lines of source code for label placement algorithms

Unlike much of the previous work on label placement, the approach we have suggested cleanly separates the combinato-
rial-optimization aspect of the problem from the candidate-position modeling aspect. This way of stating the problem allows
for the search algorithms discussed here to be used with more advanced cartographic positioning models. Modifying the algo-
rithm to generate new sets of potential label positions, which is necessary to permit the labeling of line and area features, is
accomplished easilyprovided adequate models of line-feature (Ebinger and Goulette, 1990) and area-feature labeling
(Carstensen, 1987; van Roessel, 1989) are available. Figure 19 shows a sample map involving all three feature types, as

30ur implementation makes extensive use of function pointers to provide dynamic reconfiguration of the basic aspects of each algorithm. As a result,
however these numbers are undoubtedly higher than those which would occur in more straightforward implementations.

19

SA Schedule: No Selection, No Preferences

SA Schedule: Selection, No Preferences

1 — — 1 ———
09 0.9 | R
0.8 | 0.8 |
0.7 0.7 b
0.6 0.6 N
o g
g 05 1 05 b
& 8
04 r R 04 + 1
031 s (longer schedule) — i 031 SA (longer schedule) —— 1
0.2 | SA (standard schedule) ------- | 0.2 | SA (standard schedule) - |
SA (zero temperature) - - SA (zero temperature) - -
01t Gradient Descent 4 01t Gradient Descent i
Random Placement ---- Random Placement ----
0 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1
0 150 300 450 600 750 900 1050 1200 1350 1500 0 150 300 450 600 750 900 1050 1200 1350 1500
Number of Point Features Number of Point Features
Figure 16: Comparison of annealing schedules against a gradient-descent algorithm without cartographic preferences.
SA Schedule: No Selection, Preferences SA Schedule: Selection, Preferences
09 f 1 09 | 1
08 I 1 08 | 1
0.7 g 0.7 | g
06 B 06 f E
o o i
8 05 1 3 05 g
@ A
04 g 04 E
031 SA (longer schedule) ——] 03 r SA (longer schedule) —— T
0.2 | SA (standard schedulg) -] 0.2 | SA (standard schedulg) - 1
SA (zero temperature) - SA (zero temperature) - -
01 f Gradient Descent p 01t Gradient Descent i
Random Placment ---- Random Placement ----
1 1 1 1 1 1 1 1 1 O L L L L L L L L

0 150 300 450 600 750 900 1050 1200 1350 1500
Number of Point Features

0
0O 150 300 450 600 750 900 1050 1200 1350 1500
Number of Point Features

Figure 17: Comparison of annealing schedules against a gradient-descent algorithm with cartographic preferences. (Note that the lines
corresponding to zero-temperature annealing and gradient descent lie very close together).

ments of each algorithm, certain subsumption relationships can be derived. In Figure 18a, for examplés Atgasthm

lies to the lower right of the 3-opt discrete gradient-descent algorithm, indicating that it is both slower and exhibits inferior
solutions. The 3-opt algorithm, in turn, is dominated by the simulated annealing algorithm. Eliminating algorithms which are
subsumed by the two algorithms leaves a “staircase” of algorithms which, depending on time vs. solution quality require-
ments, would be preferred for a given task. At both densities shown, this staircase includes, in order of increased computation
time and solution quality: random placement, the greedy algorithm, the original gradient-descent algorithm, the 2-opt gradient-
descent algorithm, and the simulated annealing algorithm.

5 Conclusions

The point-feature-label placement problem is a graphics-design problem of practical importance andinoliyd Alifalysis

of the computational complexity of the problem bears out its inherdiduttif; the search for good heuristic solutions thus
becomes important. In this papeate have proposed two new algorithms for PFLP — variants of discrete gradient descent and
simulated annealing — for PFL&d compared them with previously proposed algorithms. This empirical testing, which con-
stitutes the first such comparative studsovides the basis for a graphic comparison of the time-quality tfadelatbel-
placement algorithms, demonstrating that certain algorithms — 3-opt gradient descent, &paamstetirscts algorithm, for
instance — are subsumed by others in both speed and guibktyxperiments alsogare for the use of simulated annealing

18

Score

Score

Score

Solution Variance: 750 Point Features

09 r

06 |
05 |
04 |

01 r

el
L

——t

——

bt

Anneal

Hirsch Zoraster Gradient Greedy Random

Score

Solution Variance: 1500 Point Features

0.9
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

L]
L .]
I
L T { N]
h
L R
Anneal Gradient Hirsch Greedy Zoraster Random

Figure 13: Range of results generated for 2fediht labeling problems involving 750 and 1500 point features. The worst case of
simulated annealing falls significantly above the best case of competing algorithms, even deresstdils.

08 f °

0.7 |
06 |
05
04
03 |
02
01}

Massachusetts Data without Selection

Simulated Annealing ——
Zoraster

Hirsch

Gradient Descent
Greedy ----

Random Placement ----

0
0

50 100 150 200 250 300 350 400 450 500
Number of Point Features

Score

0.9
0.8
0.7
0.6
05
0.4

03 |
02

0.1

0
0

Massachusetts Data with Selection

Simulated Annealing ——
Zoraster -
Hirsch
Gradient Descent
Greedy ---- |

Random Placement ----

50 100 150 200 250 300 350 400 450 500
Number of Point Features

Figure 14: Results of empirical testing of six PFLP algorithms on GNIS data for Massachusetts with point selection prohibited and

allowed.
Random Data without Selection

1 — T T T
09 |
0.8
0.7
0.6 |
05]
04 E
03 r Simulated Annealing — 1
0.2 | Gradient Descent (3-opt) |

Gradient Descent (2-opt) -~ - Tl
0.1 | Gradient Descent (1-opt) T
Random Placement ----
0 L L L L L L L L L
0O 150 300 450 600 750 900 1050 1200 1350 1500

Number of Point Features

Score

0.9
0.8
0.7
0.6
05
0.4

03
L Gradient Descent (3-opt) —— |

0.2

01

0
0

Random Data with Selection

Simulated Annealing ——

Gradient Descent (2-opt) .
Gradient Descent (1-opt) |
Random Placement ----

150 300 450 600 750 900 1050 1200 1350 1500
Number of Point Features

Figure 15: Results of empirical testing of discrete gradient-descent algorithms on randomly generated map data.

17

J;‘
i
H
Jﬁ?
f ;
JI‘,{II' |'
1
&R

'l
f
n",;,‘:
I, X
i

Iy
|
,‘l |
!
N

W

'.
h
“i
| :l!
y

Il

i '..M'I'
u‘
|
i
I
y!
”.',i'
| |

| 7

b
§ f.'t‘; }
i ’ﬁ ":T'
a4
il
-.=.~

ptl*.
il
A
%
:
b
I
!

)

|
i
'.
}
Iy

Th

e

i
1
Iy
|
|

{’.

1]

Random Placement (564) Greedy Depth-First Placement (341)

'_"".j

flh-'

by

L g e—— _—

by

J\.Iﬁ.

o

.Z'i:'i.“
HH |
{

III
A

¥

I

I
T i
Ill

Discrete Gradient Descent (222) Hirsch’s Algorithm (222)

i

Zorastets Algorithm (219) Simulated Annealing (75)

Figure 12: A sample map of 750 point features with labels placed by thefeneulifalgorithms. Labels printed in dark grey overplot other labels or
points. Labels printed in light gray are free of overplots. Numbers in parenthesis indicate the final value of the objective function computed as the
number of labels with overplots.

16

culated equal to the fraction of labels placed without overplots, and the results were averaged to give a composite result for the
algorithm at that problem size. These tests were then repeated with point selection allowed. For most of the algorithms
(greedy gradient descent, Zorastand simulated annealing) this was a natural extension. For the Hirsch algorithm, however
there was no straightforward method of allowing points to be deleted. In order to includesHitgohithm in the point-selec-

tion comparisons, we developed a post-pass deletion heuristic which seeks to clear the map of overplots with the fewest num-
ber of label deletions possible. This heuristic deletes the feature whose label has the greatest number of conflicts with other
(non-deleted) labels. This process is repeated until the map is free from overplots. Although this algorithm is clearly non-opti-
mal (it is straightforward to show that optimal PFLP is reducible to the problem of optimal label deletion and therefore NP-
hard), we found it to be an acceptable heuristic in practice. The score was again the fraction of labels placed without conflict.
Figure 1L shows the results of these experiments. As these graphs shmuated annealing performs significantly better

across the full range of problems considef@ther perspectives on these results are shown in Figures 12 and 13. Figure 12
shows a particular random map of 750 point features labeled by the six basic algorithms. Figure 13 illustrates the variance
across different problem instances for 25 different trials of 750 point features.

Next, cartographic data for Massachusetts were used to test the algorithms on naturally occurring point-feature distribu-
tions obtained from the GNIS state file for Massachusetts (United States Geological Survey 1990). The algorithms were again
scored based on the number of unconflicted labels, both with and without point selection. At each problem size, 25 layouts
were generated by choosing randomly from the data file. For example 350, each problem instance was generated by
choosing 350 point features randomly from the GNIS dastsTwere run fon = 50, 100, 150, ..., 500. Figure 14 shows the
results of these tests. Because the ratio of average label size to available map area is signifjeaftlyttee Massachusetts
examples, and due to clustering of the point features, the performance of the algorithms deteriorates faster in the graphs of Fig-
ure 14 relative to Figurell Nonetheless, the overall rankings were preserved.

Though the simulated annealing algorithm easily dominated the competing algorithms, we noted that the discrete gradi-
ent-descent algorithm performed surprisingly well, especially at high densities, given its simaigityestigate the promise
of this approach in more detail, we implemented two related algorithms, “2-opt” and “3-opt” discrete gradient-descent algo-
rithms which consider the best sequence of two and three repositionings at each tefapoactical implementation of
these algorithms is moderately complicated and requires a careful strategy for selective rescoring of repositionings at each iter-
ation, supporting data structures fofi@ént search of a table of repositionings, and some clever record-keeping measures.
Figure 1L shows the results of these new variants compared with the original discrete gradient-descent algorithm, the simu-
lated annealing algorithm and the random placement algorithm. Although the “2-opt” and “3-opt” algorithms each improve on
the performance of their predecessbe degree of improvement grows less in each case, hinting towards an asymptote around
the performance of the simulated annealing algorithm. Furtiven with a very careful implementation, the computational
requirements of the 2-opt and 3-opt algorithms quickly become unreasonable as the number of candidate positions increases.

The next set of experiments investigated tlfiectf the annealing schedule on the performance of the simulated anneal-
ing algorithm. V& found that for very simple objective functions, e.g., the original 4-position model without placement prefer-
ences, most potential label repositionings have fectebn the value of the objective function. For such spaces, a simple
random descent (the equivalent of zero-temperature simulated annealing) performs nearly as well as simulated annealing at
medium and even long schedules. This is seen in Figure 14. As the terrain of the search space becomasdaugblees
a greater number of local minima, the utility of the annealing schedule is increased. Figure 14 shows that in experiments
involving a 4-position model with placement preferences, the performance of zero-temperature annealing drops roughly to that
of the discrete gradient-descent algorittfm.

Computational resources required for the various algorithms vary dramatiedllyot unexpectedlyAs a rough indica-
tion of algorithm performance, Figure 18 depicts a scatterplot of running times for each of the algorithms running on a DEC
3000/400 AXP workstation.dl'the extent that these running times are representative of the intrinsic computational require-

MWe use these terms because of the similarity of these methodktoghmethods proposed for the NP-complatavEling Salesman Problem (TSP).
Variants of this method comprise the current best methods for the TSP (Johnson, 1990).

2Note that the performance of the gradient-descent algorithm appears to have increased relative to the original experiments. Because the original objec-
tive function yields a search space with many flat plateaus, the algorithm is often unable to find the edge of a plateau and terminates; the modified objective
function yields virtually no plateaus and the algorithm is able to continue further before reaching a local minimum. A second reason for the improvement is
the inclusion of preferences in the score metric. Since the score considges dyaamic range, the scale of the graph along the y-axis is more compressed,
resulting in a closer grouping of the algorithms. (Notice the relatively higher performance of random placement as compared with the previous trials.)

15

employ a Metropolis-style algorithm, always accepting a suggested configuration change if it leads to a lower cost. If more
than 5n successful configuration changes are made at any temperature, the temperature is immediately decreased. This pro-
cess is repeated for at most 50 temperature stages. Hovi¢heralgorithm stay at a particular temperature for theZom

steps without accepting a single label repositioning, then it stops with the current labeling as the final s@dtand\the

particular choice of annealing schedule to have a relatively mifemt @ the performance of the algorithm as discussed in
Section 4. This particular schedule was chosen to provide a reasonable ftiaeigve€n dfciency and solution quality;

longer annealing schedules result in slightly improved solutions.

4 Comparison Experiments

In order to compare thefettiveness of this wide variety of algorithms for PR implemented six algorithms chosen from

the set of non-exhaustive methods for PRIQRIr experiments have shown that exhaustive methods are intractable for maps
with as few as 50 point features.) The algorithms evaluated included a straw-man random-placement algorithm, in which label
positions are assigned in a completely random fashion. This algorithm servesfastasm édwer bound on algorithm perfor-

mance. A greedy algorithm that serves as &ni@fit variant of the exhaustive methods described in Section 3.1 was also
tested. The discrete gradient-descent algorithm was implemented, in addition to the algorithms of Hirsch and-Zalaster

a stochastic algorithm utilizing simulated annealing was implemented. Each of the algorithms (except fcs) kivesch’
allowed four candidate placement positions for labels. All candidate positions were taken to be equally desirable, i.e., prefer-
ences among dirent potential label positions were not considered (except where otherwise'héted)nplete discussion

of the implementation details for all of the algorithms is provided elsewhere (Christensen, 1992).

Random Data without Selection Random Data with Selection

1 DN Ny
09" 09
0.8 | 0.8 |
0.7 | 0.7 |
06 | 06 | ‘
o o
‘% 05 ‘% 05 T
04 f 04 f 1
0.3 | Simulated Annealing —— 0.3 | Simulated Annesling —]
’ Zoraster - . ’ Zoraster -
02 | Hirsch - < 02 | Hirsch - |
’ Gradient Descent ' Gradient Descent
01t Greedy ---- 01t Greedy ---- 8
Random Placement ---- Random Placement ----
0 L L L L L L L L L 0 L L L L L L L L L
0 150 300 450 600 750 900 1050 1200 1350 1500 0 150 300 450 600 750 900 1050 1200 1350 1500
Number of Point Features Number of Point Features

Figure 1L: Results of empirical testing of six PFLP algorithms on randomly generated map data with point selection prohibited and
allowed.

We began our comparison by testing the performance of each of the algorithms on randomly generated data, with and
without point selection, to establish an overall rankirggd&termine whether the relative performance of the algorithms was
affected by the particular distribution, we then conducted similar tests on naturally occurring point-feature data. Next we ran a
series of experiments on two gradient-descent variants in an attempt to improve on the best seen solutions. Finally we investi-
gated the décts of varying the annealing schedule, and noted that the presence of cartographic preferences for candidate posi-
tions plays an important role in the usefulness of varying the annealing schedule. For this we conducted four additional trials,
comparing the performance of threefeliént annealing schedules while varying the use of point selection as well as the inclu-
sion of cartographic preferences.

In the first group of tests, point features with fixed-size labels (30 x 7 units) were randomly placed on a grid of size 792
by 612. (These dimensions were selected subjectively infan &f identify a typical map scale for ad by 8.5 inch page
size.) Bsts were run fon = 50, 100, 150, ..., 1500. For each problem size tested, 25 layouts were generated, a score was cal-

% many types of production-quality maps, overplots are often preferred to feature deletion (Ebinger and Goulette, 1990).

14

The problems with the local search methods fall into two classes. First, there are systematic patterns on which the various
algorithms get into trouble by getting trapped in local minima. As the number and density of points increases, the odds of see-
ing these patterns increase correspondjrayiygl performance may degrade. Second, the particular operations that the algo-
rithms incorporate do not allow for jumping out of a local minimum once one is found. These two behasyisiesnaficity
andmonatonicity are symptomatic of problems for which stochastic methods tend to work well. Stochastic methods, such as
simulated annealing (Kirkpatrick, Gelatt,Jand \écchi, 1983; Cernyl985) and genetic algorithms (Holland, 1975), attempt
to resolve the problems of systematicity and monotonicity by incorporating a probabilistic or stochastic element into the
search. Since the stochastic course of behavior is unpredictable, systematic artifacts of the algorithm can be eliminated, and
allowance can be made for a suitably limited, nonmonotonic ability to jump out of local minima. It seems natural then to apply
a stochastic method to the PFLP problem.

Simulated annealing for PFLP

Simulated annealing (Kirkpatrick, Gelatt,Jand \écchi, 1983; Cernyl1985) is essentially a stochastic gradient descent
method that allows movement in directions other than that of the gradient. In fact, the solution is sometimes allowed to get
worse rather than bettgdf course, such anarchic behavior is not tolerated unifolRaiher the ability of the algorithm to
degrade the solution is controlled by a paramEtealled the temperature, that decreases over time according to an annealing
schedule. At zero temperature, such negative steps are disallowed comptethigt the algorithm reduces to a descent
method (though not necessarily along the gradient). At higher temperatures, havesiger range of the space can be
explored, so that regions surrounding better local minima (and perhaps even the global minimum) may be visited. The follow-
ing outline describes the essential characteristics of a simulated annealing algorithm for PFLP:

1.For each point feature, place its label randomly in any of the available potential positions.
2.Repeat until the rate of improvement falls below a given threshold:

(a) Decrease the temperatufie, according to the annealing schedule.
(b) Pick a label and move it to a new position.

(c) ComputeAE, the change in the objective function caused by repositioning the label.

(d) If the new labeling is worse, undo the label repositioning with probalBility 1.0 —e2%/'T,

The implementation of a standard simulated annealing algorithm involves four components: choice of an initial configura-
tion, an appropriate objective function, a method for generating configuration changes, and an annealing schedule.

Initial configuration. As an alternative to starting with randomly placed labels, one could consider a “piggyback”
method where simulated annealing is applied as a post-process to the results of another algorithm. In our experiments, how-
ever this did not lead to either a significantly better solution or faster cgpenee.

Objective function. The choice of objective functionfatts the aesthetics of the layout, the quality of the solution, and
efficiency of the search. Because simulated annealing is a statistical method which relieg@nuantder of evaluations for
its success, the best objective functions are those for witticltan be computed easilyhe objective functions we chose
counted the number of obstructed labels (if point selection was disallowed) or the number of deleted labels plus the number of
obstructed labels. If point selection is allowed, we also considered an objective function which counts the number of pairwise
overplots plus the number of deleted labels. This change in objective functiont dmteably change the performance of
the annealing algorithm, but has the advantage of being significantly faster to compute.

Configuration changesWe have experimented with two strategies for choosing which label to reposition: the label can
be chosen randomly from the set of all labels, or it can be chosen randomly from the set of labels that are currently experienc-
ing a conflict. The second method isolates changes to those parts of the map that have conflicts, causing the algorithm to con-
verge fasterWhen cartographic preferences that distinguish label positions are included in the problem, this simplification is
no longer acceptable because the movement of unconflicted labelsfetaytef current value of the objective function. In
our experiments the more time-consuming method of choosing from all available features was used.

Annealing scheduleThe initial value oflT was selected so th&t = g whenAE = 1. At each temperature a maximum
of 20n labels are repositioned, whameis the number of point features. The temperature is then decreased by 10 peecent. W

13

fied after 400 iterations of the Lagrangian heuristic, variables that are subject to more than three overplot constraints are
pinned to zero. If after 600 iterations a feasible solution has still not been identified, the current (infeasible) solution is returned
to the top level of the algorithm. This is equivalent to arbitrarily eliminating label positions in crowded areas of the map.

Figure 10: An unstable configuration for Zoragtexigorithm.

Another attempt to control the algorithsrsusceptibility to this weakness is the choice of multiplier increments. Zoraster
recommends an initial overconstrained stepsiz% aind an underconstrained stepsizeigf The relative magnitudes of the
stepsizes loosely represent the ability of a violated constraint to discourage subsequent reoccupation of a conflicted label posi-
tion. Although Zoraster &drs these values as empirical constants based on his experiments with a variétyeoit aifaps,
optimal values are probably dependent on the density of the particular labeling problem. Indeed, we obtained better perfor-
mance by using modified parameter values, as discussed below

3.7 Implementation of Zoraster's algorithm
Tuning

Our experience with Zorasteralgorithm indicates that some amount of patience is required in determining parameters to
achieve optimal performance. Cycling phenomena can be reduced with a few straightforward modifications. In the implemen-
tation of the overconstrained heuristic described previpnslyceably better results were achieved by choosing between the
objective-function coditients randomly instead of alternating based on the iteration count. In trials which did not consider
cartographic preferences, initial preference weightings were selected randomly as this gave better results than setting them
uniformly to zero. These results supported our observation that in general the PFLP algorithms were able to benefit from a
reduction of systematicity through an appropriate introduction of randomness.

We also experimented with various values of the multiplier increments and resize factors. Surpnisimgitained the
best results by setting the underconstrained multiplier decrement to 0, i.e., multiplier values were never decreased. This
insured that unobstructed label positions would be favored over time, while competing label positions would still be disfa-
vored in relation to the frequency with which they were overconstrained. Additicthadiyalleviated many of the crowding
artifacts by focusing the optimization on simply clearing violated constraints. The initial value of the overconstrained multi-
plier increment was set é’as suggested by Zorastéfe achieved slightly improved results using a multiplier resize factor of
Zinstead of} .
Variable pinning

With respect to variable pinning, Zoraster is quite vague, stating only that a small fraction of variables involved in more
than three overplot constraints are arbitrarily fixed to zeme¥perimented with values of 3, 5, and 10 per cent. When possi-
ble, the variables were chosen fronfaliént point features in order to avoid deleting features prematttehertheless, we
found the use of variable pinning degraded the quality of labelings tremenddinsky the Lagrangian heuristic is invoked
many times over the course of the algorithm, returning an infeasible solution at a particular stage does not necessarily prevent
the later identification of feasible solutions. For the point-selection experiments, if the final labeling returned was infeasible,
we ran a post-deletion heuristic (described in Section 4) to produce a solution free of overplots. This proved to be far superior
to relying on variable pinning to resolve overplots.

3.8 Stochastic seah

As we have seen, each of the local search methods can be trapped in local minima of the search space; the inherent intractabi
ity of the problem makes this inevitable for any practical algorithm. Nonetheless, we may still hope to improve upon the level
of performance exhibited by these algorithms by examining more carefully the frailties that they exhibit.

12

ii. Copy CL'to CL ifitis better

iii. If a constraint in ACS is overconstrained (i.e., both conflicting label positions are occupied), the corre-
sponding Lagrangian multiplier is increased, thus increasing the objective-functiboieoksffor the two
label positions involved.

iv. If a constraint in ACS is underconstrained (i.e., both conflicting label positions are not occupied), the corre-
sponding Lagrangian multiplier is decreased, thus decreasing the objective-functicieat&for the two
label positions involved.

5. Return CL.

Local minima

If the algorithm were implemented exactly as described above, it would perform quite pberlslgorithm exhibits two
weaknesses: a pronounced sensitivity to local minima, and a tendency to fall into useless cyclic behavior

To address the worst of these deficiencies, Zoraster recommends a series of modifications to the basic algorithm. The first
heuristic he suggests is rescaling the size of the multiplier increments used in 4(c)iii andf & specified number of itera-
tions have passed without improving the best solution seen, the algorithm is assumed to be in a region surrounding a local min-
imum of the objective function. By reducing the multiplier increments periodjdakyalgorithm is often able to identify
improved minima.

In spite of the modifications mentioned above, the algorithm tends to cycle about local minima, constantly re-evaluating a
particular sequence of labelings. If two features have overlapping label positions, for example, and both are currently occu-
pied, then the associated objective-function fidehts of both positions will be increased. This will make them less attractive
over time and it is likely that both labels will be simultaneously moved to alternate positions. On subsequent iterations, both
positions will still overlap but are now unoccupied so their associatefilciert will decrease. This will make both positions
relatively more attractive to their respective features and it often occurs that they will be simultaneously reoccupied. This situ-
ation is illustrated in Figure 9. In order to avoid this particular type of cyclic beh&@dmster discriminates in the overcon-
strained case, applying the multiplier to only one of the objective-functiofiicteefs; the choice between cheknts is
made by examining whether the algorithm is currently in an odd- or even-numbered iteration. This heuristic proves to be cru-
cial to the success of the algorithm but is somewhat disappointing as it has no motivation or analogue in the mathematical for-
mulation.

(@) (b) ©

Figure 9: Stable and unstable configurations for Zorassgproach. The conflict in configuration (a) causes the filled regions of the upper

and left points to be disfavored, and the slack in the potential conflict between the lower and left points causes the unfilled regions for those
two points to be favored. This leads eventually to modifying the configuration as in (b). This configuration, sawdatially leads back to

the configuration in (a). The stable configuration (c) is never found.

A more insidious form of cycling can be caused by the intersection of more than two potential label positions. Overplots
will gradually be discouraged, yet resolved overplots will result in underconstrained pairwise constraints, which in turn
encourage surrounding labels to repopulate the contentious region. This situation is illustrated in Figure 10. Since the center
candidate position overplot represents an underconstrained constraint, the left and right labels will be encouraged to move into
the conflicted area, despite the fact that this will always introduce a conflict with the top label. As the number of label positions
that overlap increases beyond three, the problem is exacerbated since label positionings are encouraged in regions which ar
often already dense with overplots. Zoraster attempts to address this deficiency by arbitrarily pinning variables (i.e., fixing
their values permanently) that are subject to four or more pairwise overplot constraints. If no feasible solution has been identi-

11

» GivenK labels and\, possible positions for each label, each potential label position is represented by a variable

X, 1<i< N, and0< k< K. (Point selection is achieved by specifying a special label “position” that indicates a
deselected point.)

» EachX , has value 0 or 1, indicating the absence or presence, respedivgelgbel in that position.

Nk
« One set of constraints expresses the requirement that each point be labeled exac§yXnce: 1 for 1<k<K.
i=1
» Given Q pairwise overlaps between possible label positions, a second set of constraints expresses the requirement
that no two labels overlagX; s + X s <1 for each potential overlag,<q<Q.

K N
* The objective functionisy 5 W, , x X ,, whereW, , is a weighting that represents placement preferences.
k=1 i=1
Because ZOLP is itself NP-hard (Karp, 1972; Sahni, 1974), a compfatiesrefalgorithm for the PFLP problem recast in

this way is still not possible, but heuristic techniques for ZOLP can now be applied to the PFLP problem. Zoraster combines
Lagrangian relaxation, subgradient optimization, and several problem-specific heuristics in his solution. The primary insight
of Zorastets algorithm is to relax the overplot constraints and include them as additional penalty terms in the objective func-
tion. This gives:

K N, Q
* Minimize 'y 5 W, x X + 5 (X5, + Xr,s,— 1) d,

k=1i=1 q=1

N,
« Still subjecttoy X = 1 for 1<k<K
i=1
In this modified objective function, thet > 0 are Lagrangian multipliers, one for each pairwise overplot constraint. Note that
for a given set of Lagrangian multipliers, the minimum value of the objective function is easily identified by choosing the
label-position variable with the smallest objective-function faceft for each point feature. Although Lagrangian methods
for ZOLP can be arbitrarily sophisticated, Zorastdrasic algorithm is a straightforward implementation of standard tech-
niques (Fisherl981):
1.Compute and store the objective-function &ioeft for each potential label position.

2.Generate a current labeling (CL) by picking the label position with the lowest objective-functificieatefior
each point feature.

3.Initialize the active constraint set (ACS) to the empty set.
4.Repeat for 40 iterations or until a solution with no label conflicts is found:

(a) Identify all pairwise constraints that CL violates and add any new ones to ACS. (The Lagrangian multiplier of
each newly introduced constraint is zero initiadlg adding a new constraint to ACS does rfecathe objec-
tive-function codficients.)

(b) Make a local copyCL', of CL.

(c) Repeat foi iterations, where is the lower of 400 or the number of iterations required to find a feasible solu-
tion with respect to the current ACS, plus an additional 100 iterations if a feasible solution is found in the first
400 iterations

i. Update CL' by picking the label position with the lowest objective-functiorficmeift for each point fea-
ture.

®This inner loop constitutes the Lagrangian heuristic, with steps (iii) and (iv) constituting the subgradient optimization. Note that the Lagrangian heuris-
tic will be solving relatively simplified versions of the full problem initiathgcause very few constraints will be included in ACS at first.

10

(@) (b)

Figure 7: Computation of overlap vectors in Hirschlgorithm. The configurations in (a) and (b) have identical overlap regions, but the
overlap vectors must be calculated to cause movemenfénedif directions due to the relative placement of the overlap and the points.

Compensating for the placement model

In order to compare the performance of Hirsaorithm against other PFLP algorithms, several issues relating to the place-
ment model need to be addressed. The presence of a circdiéardufounding each point feature handicaps the algorithm,
disallowing free space that other algorithms are able to exploit and forcing labels outward, increasirfgcdtied @ifmen-

sions. V¢ considered two methods to compensate for this. First, we experimented with adjusting the label sizes for Hirsch’
algorithm. W& decreased the dimensions of each label such that the combined area of the placement circle and reduced labe
was equivalent to the area of the unmaodified label. Second, we simply set the radius of the placement circlectéozem. W

the latter method to perform slightly better on average, and included this variant of the algorithm in our conipinisons.

had the additional advantage of reducing angular computations and improving the run-time performance of the algorithm.

Figure 8: Unambiguous label regions for a point. By expanding the region reserved for a label to include regions of the plane beyond those
covered by the label itself, labels will be unambiguously associated with a point feature at the expense of tebiyleedeisity and
therefore a more ditult labeling problem

The presence of the placement circle should not be completely discounted, hawevprimary reason for its inclusion
is to provide unambiguous label-point association. If overplots between a placement circle and other labels are eliminated,
then the designated feature label, which lies on the circle, will be the closest label to its feature. Figure 8 shows one way in
which this efect can be approximated using a discrete placement model by expanding the region reserved for a label.
A related issue involves the continuous nature of the placement model. Since this alloges andrtherefore less-con-
strained search space, this probably gives Hissalgjorithm an advantage. Although this discrepancy is harder to resolve, a
fairer comparison could be obtained by running the discrete algorithms with a 16 or 20-position placement model, as opposed
to the fourposition model used in the experiments. Howgther results described in Section 4 render this point irrelevant.

3.6 Mathematical programming for PFLP

Next, we turn to an algorithm introduced by Zoraster (1986; 1990) that addresses the optimization nature of PFLP directly by
applying mathematical programming techniques to its soldt@uraster begins by formulating PFLP as a 0-1 integer pro-
gramming (ZOLP) problerf:

5This is perhaps not surprising given the algorithpredilection for label placements within special zones. Gradual-style movements tend to relocate
labels into special zones, whereas only application of the abrupt movement style is able to move a label out of a special zone. Since the algorithm finishes with
a series of 15 gradual-style movements, in practice nearly all labels finish in special zones.

"This algorithm is in commercial use in the oil industry to label drilling maps (ZoraS@o).

8Cromley (1986) has experimented independently with a slighfigreift ZOLP formulation of the label-placement problem.

There are two sources of problems for Hirsadgorithm. First, since the overlap vectors provide only an approximation
of the gradient, they are subject to er@econd, like the discrete gradient-descent algorithm, Hirsddorithm is susceptible
to getting stuck in local minima.

Gradient approximation errors

A typical dilemma is due to the summation of overlap vectors. When multiple labels overplot a single label, the magnitude of
the calculated aggregate vector will often be unnecessanjy, ldgading to problems of overshooting during gradual-style
movements.

Note also that Hirsch’overlap vectors each exhibit two degrees of freedom, whereas the labels are constrained to lie tan-
gent to their associated circles. The result is that even in those cases where the accumulated overlap vector represents a favo
able direction of movement, the particular manner in which a label is repositioned is often quite fragilgelcartgronent
of the overlap vector points radially outward, for example, the location of the repositioned label is somewhat arbitrary

Local minima

Hirsch’s algorithm, like the discrete gradient-descent algorithm, can also get stuck in local minima. The nature of these min-
ima is closely related to the specific heuristics the algorithm employs in response to various overlap situations. Figure 6 shows
a problematic configuration. During applications of gradual-style movement, the label is adjusted slightly up and down until it
is centered between, but still conflicting with, the two labels above and.d@lmimg applications of the abrupt-style move-

ment, the horizontal component of the overlap vector dominates, and the label cycles between the left and right placements,
missing the acceptable positions above and below the feature.

®

() (b)

® ©®
(©)

Figure 6: A local minimum of Hirsch’algorithm. The algorithm oscillates between configurations (a) and (b), unable to discover the
preferred configuration (c).

3.5 Implementation details for Hirsch’s algorithm
Calculation of overlap vectors

In the implementation of Hirsch'algorithm, we noted a subtle point in the vector computation not described in hisTpaper

overlap vectors must be calculated with reference to both the relative positions of the features and the conflicting label posi-
tions; in many situations where features are closely placed, an overlap calculation based solely on the overlap geometry results
in overlap vectors which push the labels in unattainable directions. Figure 7 shows an example of this: both conflicts exhibit
identical overlaps, yet because of the relative positions of the features, distinct overlap vectors are required. Similar situations
arise in the calculation of overlap vectors between labels and the placement circles of point fedhmeistiig addition to

the overlap-vector calculation, labels are often trapped by neighboring points; once this occurs the overlap vector and label
position are in the same quadrant and, given Hisdoguristics, the conflict will remain for the duration of the algorithm.

@

(b)

Figure 4: Another local minimum of the discrete gradient-descent algorithm (a) and an optimal configuration (b). The candidate label
positions are marked with boxes, and selected label positions are shaded. Obstructed label positions are shaded dark.

. ®
N @

(@ O)
il @ L —

@) (b) (c)

Figure 5: Some example potential label positions for Hissalgorithm (a), along with the special zones (b), and an example of overlap
vectors (c)

Initially each label is placed in the special zone to the right of its point. Each label is then tested for overlaps with other
labels and intersections with the circular boundaries of other points. For each conflict an overlap vector is computed based on
thex andy extents of the overlap or intersected area. Each overlap vector is split between the two conflicting features and rep-
resents the movement required to eliminate a particular conflict. The sum of overlap vectors associated with each label is then
calculated to give an aggregate vector that represents (in an intuitive sense) a good direction in which to move the label so as
to eliminate the overlaps and intersections. In Figure 5c¢ the overlap vectors are drawn in ljgrtdytg aggregate vectors
in black. (For labels involved in only one conflict the single overlap vector and the aggregate vector are the same.)

Once an aggregate overlap vector has been calculated for each label, the algorithm seeks to move each label in the gener:
direction of this vector in an feirt to generate a labeling with fewer overlaps. The heuristic technique employed involves two
styles of movement, a gradual movement around the circle and a more abrupt movement which shifts the label directly to the
point on the circle indicated by the overlap vectds there are only two operations available for altering a labeling, but each
operation is applied to all point features on a given round of application so that many labels may change positions simulta-
neously The gradual-style movement involves a series of heuristic rules that specify whether the label should be repositioned
exactly as the aggregate vector indicates, whether only one component of the aggregate vector should be used to reposition th
label (e.g., if it is in a special zone), or whether the label should simply be moved to the nearest special zone in the direction of
the aggregate vector (e.g., if the vector indicates the label should be positioned outside of the current quadrant). Hirsch sug-
gests alternating between the two movement styles, with more frequent application of the gradual-style movement.

The intuition behind the algorithm is best explained by an analogy with a physical system. The individual overlap vectors
represent a “force” of repulsion between overlapping objects, the sum an aggregate force. Thus, through gradual movements,
the system settles into a local minimum of the “gpéof the system. The overlap vectors approximate the gradient in the
enegy space. @ allow some ability to exit from local minima, the abrupt movements are designed to allow a jump from one
enepy state to anothghopefully lower one.

3.3 Discrete gradient descent

The quality of labelings produced by a greedy algorithm can be improved dramatically if the labelings are repaired subse-
guently by local alteration. This is the motivation for the gradient-descent algorithms presentedAbgtadient-descent

method is defined relative to a set of operations that determine how an existing labeling can be altered by specifying ways in
which one or more labels can be repositioned simultanedstybasic idea of gradient descent is to choose from among the

set of available operations the one that yields the most immediate improvement. By repeatedly applying the operation that
most improves the labeling (cequivalently the operation that causes the most movement in the direction of the objective-
function gradient), a new labeling can be computed that is significantly superior to the original. Again we present a straw man
to exemplify the idea. Let the set of operations comprise those that move a single label arbitrarily from one potential position
to anotherAn outline of the resulting algorithm, which we adilicrete gradient descent is given below:

1.For each feature, place its label randomly in any of the available candidate positions.
2. Repeat until no further improvement is possible:
(a) For each feature, consider moving the label to each of the alternative positions.

(b) For each such repositioning, calculate the change in the objective function which would result if the label were
moved.

(c) Implement the single label repositioning that results in the most improvemiesta(€ resolved randornily

In practice the algorithm precomputes a table of costs associated with each possible repositioning. After each label posi-
tioning, only elements of the table that touch the old or new label positions are recomputed.

Local minima

Clearly, the major weakness of the discrete gradient-descent algorithm is its inability to escape from local minima of the objec-
tive function. Figure 3 shows a typical example of a local minimum. In this case, the conflict can be resolved by moving the
lower features label to its bottom-left position and the upper feasuabel to its upperight position. Unfortunatelymaking

any single move has nofe€t on the value of the objective function, and, because the algorithm only accepts changes which
show an immediate improvement, the algorithm is unaware of the possibility of accepting a neutral move in order to make an
improvement. Adjusting the algorithm to allow it to make moves that do femt die objective function might remedy this
particular example, but is not $igfent in general. In the example of Figure 4, the current value of the objective function could

be improved from 4 (Figure 4a) to 3 (Figure 4b) by moving the four middle labels to their left-most positions. However any
one of these moves will initially result in an uphill step and an intermediate score @fiBitlthe incidence of such local
minima, more sophisticated gradient descent heuristics have been devised. Nevertheless, as we will see, the discrete-gradier
descent method performs surprisingly well given its naivete.

Figure 3: A local minimum of the discrete gradient-descent algorithm. The candidate label positions are marked with boxes, and the selected
label positions are shaded.

3.4 Approximating the gradient with overlap vectors

Hirsch (1982) presents a more sophisticated gradient descent method foHREtl¥s algorithm uses a continuous place-

ment model in which each point feature has an infinite set of potential label positions. The potential positions for a point touch,
but do not intersect, a circle centered about the point; labels are allowed to slide continuously around a circle (see Figure 5a).
When the label touches at the highest, lowest, left-most, or right-most points of the circle, it is considered to be in a special
zone and is allowed to slide back and forth along the point of tangency (see Figure 5b).

labelings that are most likely to succeed first, in &orietfo find a solution earlier in the search process. One common method
is to choose between potential label positions on the basis of which position has the fewest number of potential conflicts with
other features and labels.

Source of failure

In brute-force backtracking, when an impasse is reached the algorithm backtracks to the most recently placed label and
chooses the next available position. This label often has little to do with the inability to label the current point,. however
Instead, backtracking may be directed to one of the features conflicting with the current feature. If point selection is allowed, a
similar insight applies: When backtracking has exhausted the search space, instead of deleting the last successfully labelec
node, an dbrt is made to identify the most troublesome feature causing conflict with the unlabelable point. Although reported
exhaustive-search algorithms for PFLP do not incorporate source-of-failure techniques for backtracking, we mention the tech-
nigue for completeness.

Pruning heuristics

Pruning heuristics do notfatt the exponential nature of the search space, but seek to make it as tractable as possible by elim-
inating areas of the search space from consideration. A common example of this is the elimination of label positions which
exceed a predefined density threshold. If choosing a particular label position would eliminate more than a fixed number of sur-
rounding label positions, then theariding position is eliminated from consideration. If all potential label positions of a fea-
ture are eliminated in this wathe feature is deleted. In case an acceptable labeling is not identified under this pruning regime,
the process can be repeated with a lower threshold until a solution can be found. A situation for which this pruning heuristic is
well suited is when a single particularlyferisive label position conflicts with a ¢ggr number of surrounding positions that are
otherwise mutually disjoint.

Summary

Guided depth-first search with backtracking — the general paradigm just described — has formed the basis for numerous
reported algorithms for label placement (Ahn and Freeman, 1984; Mb9&8; Freeman and Ahn, 1987; Noma, 1987; Free-

man, 1988; Jones, 1989; Cook and Jones, 1990; Ebinger and Goulette, 1990; Doerschler and Freeman, 1992; Consorti et. al
1993). While these algorithms perform acceptably for relatively small problems, in practice the exponential nature of the
search space quickly overcomes the heuristics for even moderately sized problems, making the approach of exhaustive searcl
impractical as a general solution to the PFLP problem. Although the complexity results demonstrate that any exhaustive
method is inevitably intractable, we include these algorithms in the summary because tractable, nonexhaustive variants can be
constructed from them. (See Section 3.2.) The widespread use of exhaustive search techniques for the combinatorial aspects ¢
the label-placement problem is indeed something of a mysiemn the availability of much better algorithms. Zoraster

(1991) notes that part of the problem might be the inappropriate use of expert-system technology: whereas a rule-based
approach is useful in general label placement for computing potential label positions and for evaluating candidate labelings, it
suggests, misleadinglthat rule-based techniques — exhaustive search is easy to implement in a rule-based system — are use-
ful for all aspects of label placement.

3.2 Greedy algorithms

A more practical approach to search results from avoiding the unbounded backtracking strategy of the exhaustive methods
altogetherBy limiting the scope of the search, morécé#nt algorithms can be devised. Of course, these algorithms may not
find optimal solutions, but the hope is that a suitable trafdeetfveen labeling quality and computational cost can be found.
Instead of undoing previously computed label placements, as in guided depth-first search with backtracking, any point
whose label cannot be placed can be treated summarily: the point can be left out if point selection is allowed (Langran and
Poiker 1986), or it can be labeled even though a label overlap or feature obscuration results. (A third option, that of appealing
to a human oracle for assistance, is noted dgli1972) as a practical alternative.) Such a “greedy algorithm” for PFLP
yields behavior that is tractable for a much more realistic space of problems, although the lack of backtracking certainly
impairs the quality of the solutions that are found. For a greedy algorithm to be fdcivefin identifying reasonable label-
ings, it is essential that heuristics for guiding the search, such as those described in Section 3.1, be used. Even then, there i
typically much improvement that can be made to the resulting labelings, as will be shown subsequently

An algorithm for the PFLP optimization problem could always be used to solve the admissible-labeling problem: find an
optimal labeling and check to see whether the cost is 0. Thus the PFLP optimization problem is at |damsitazsdifie
admissible-labeling problem; in other words, the admissible-labeling result implies that optimal PFLP is NP-hard.

If label sizes are held steadycreasing the scale of a map makes more room for labels. This observation leads to the fol-
lowing question: How much must the scale be increased to permit an admissible labeling for a given PFLP problem instance?
Formann and \Agner have developed arig@ént algorithm for this problem that is guaranteed to find an admissible labeling
with a map scale no more than twice optimal (Formann amgh@f 1991). In spite of the apparent intractability of the basic
problem, some simple restrictions can reduce the complexity dramatiadlgxample, a placement model that allows only
two potential positions for each label results in a problem that is solved easily in polynomial time (Formaragaed W
1991). Similarly the restricted set of problem instances in which no potential label position overlaps more than one other
potential label position can also be solveficimntly.* Unfortunately these polynomially solvable subcases are too simple to
be of much practical interest.

The recent complexity results make it clear that PFLP is almost certainly intractable. Thus the failure of previous
researchers to find an exact, tractable algorithm for PFLP is not surprising — it is extremely unlikely that anyone will ever dis-
cover such an algorithm. Instead, researdbrtsf should be directed towards powerful heuristic methods that do not have
guaranteed performance bounds, but that may work acceptably in practice. Several such algorithms are described and com:
pared in the next section.

3 Algorithmsfor PFLP

Previously proposed PFLP algorithms fall into two main classes: those that perform a potentially exhaustive global search for
an acceptable or optimal labeling, and those that perform search on a local basis only

3.1 Exhaustive search versuslocal search

Exhaustive search algorithms for constraint satisfaction are often categorized as either brute-force or heuristic, depending on
the manner in which backtracking is performed (Korf, 1988). As an example of brute-force backtracking, consider an algo-
rithm that enumerates points in a prescribed order and places each label in a position which is currently unobstructed. If, as the
algorithm proceeds, a point cannot be labeled (either because there are no positions without conflict, or because all available
positions have been tried), the algorithm returns to the most recently labeled point and considers the next available position.
The algorithm continues in this way until an acceptable labeling is identified or until the entire search space has been
exhausted. A variety of modifications can be made to this algorithm in the hope of improving its performance. Standard tech-
nigues for reducing backtracking include variable ordering (Fre@882; Purdom, 1983), value ordering (Dechter and Pearl,

1985; Haralick and Elliot, 1980), and returning to the source of failure (Gaschnig,*1®7¥&her category of heuristics that

may be considered for exhaustive search algorithms are those that attempt to prune the search tree in order to manage the cor
plexity. These techniques, as they apply to label placement, are described below

Variable ordering

One general method of minimizing backtracking is to make more constrained choices first; this is achieved by earlier instanti-
ation of the more tightly constrained variables in the search problem. The application of this idea in the label-placement
domain is straightforward: instead of considering features in an arbitrary arsi@nsequent point might be chosen based on

the number of labeling options available for it, or on the number of labeling options for other features that its label could elim-
inate. By labeling the most fiifult features first, laye portions of the search space may be ruled out before many choices have
been made, thus reducing backtracking.

Value ordering

A second method of intelligent backtrackindeafs the order in which values are chosen for variables in the search problem.
The application of this idea to label placement suggests a prioritization of potential label positions for a given feature in an
attempt to identify innocuous label placements and avoid later conflicts. This method minimizes backtracking by attempting

“Developing an dicient algorithm for this artificial problem is left as an exercise for the interested.reader
SKorf gives a more comprehensive survey of general techniques (Korf, 1988).

H Cambridge
.Hyda,i”% oHiul! gCambridge oHydevjle Hullg e
@ Horence J
Cheapside i Florence ° Chealgide ch
Fitchb Hortonville® o P ofawich Hortonville ® °
itchburg Avon
A e
d Svon Griswoldville Fitchburg @ Griswoldville
JACon @ . iston e °
JHayward o Gates Gibbs enea Gibbs
Billeica ¢ @ Hayward® o o 2Cates
d Holbrook Furnace Holyoke Holbrook umagggjyoke
Holden o Curzon i ° Brier
® . b e eHolden o Curzor® °
Hudsong “cochituate ~ ®Cuttyhunk JHvannis Hudsone ®Cochituate @ Hyannis
[] []
gConcord ok Grafton e Concord Graftor®
emlocks
o _Haifax ©® o VoHaifax @
Ayer @ S1ancock Gochen ° emiocks shen
d ®Hancock @

G (b)
Figure 2: Good (a) and bad (b) labelings of the same map.

summarize some previous results that show that the problem and many of its interesting variants are NP-hard. Thus, any com-
plete search algorithm will be intractable, any tractable algorithm inconiplete.

This characterization is borne out by previously published algorithms, which fall into two classes: exhaustive search algo-
rithms and local search algorithmse\Wéview these algorithms in Section 3. As expected, the exhaustive algorithms are com-
putationally profligate, and the local search algorithms are incomplete, in that they tend to find local, rather than global
minima.

We also present two new algorithms for the PFLP problem in Section 3. The first is a local search technique based on a
discrete form of gradient descent. Although it is also incomplete, its performance on problems with high label density and its
efficiency make it attractive under certain circumstances. The second technique is a stochastic algorithm based on simulated
annealing. An extensive empirical comparison of all the algorithms, the first comparative study of label-placement heuristics,
is presented in Section®4t illustrates the advantages of the new methods and provides recommendations for selecting a label-
ing algorithm.

2 The Computational Complexity of PFLP

In this section, we review some recent results on the inherent complexity of PFLP that have implications for algorithm design.
To demonstrate the inherent complexity of the problem (and, subsequerttynpare various algorithms for the task), we

must decide upon a particular instance of search space and objective funetlmegiwith a relatively simple version of the
problem. Once this simplified problem is shown to be NP-hard, it is straightforward to demonstrate that more complicated
variants of the problem are also NP-hard. Our initial statement of the PFLP problem relies on the following simplifying
assumptions:

Search space: discrete placement model comprising four equally favored candidate positions — those numbered 1
through 4 in Figure 1 — is used.

Objectivefunction: The objective function to be minimized is the number of point features labeled with one or more
overplots. Point selection is not allowed.

This simplified PFLP problem is an optimization problem. In order to apply the theory of NP-completeness to PFLP
(Garey and Johnson, 1979), we formulate a corresponding decision problem. For any given PFLP problem instance, we can
ask the question: Is there an admissible labeling, a labeling with a score of zero, in which no labels overlap and no point fea-
tures are obscured? The NP-completeness of this admissible-labeling problem has been established independently by at leas
three diferent teams of researchers (Kato and Imai, 1988; Marks and SHigéb&r Formann and &gner 1991).

2This holds, of course, only if NP, as is commonly believed.
®Brief summaries of this work have appeared elsewhere (Christensen 1993; 1994).

concentrate on point-feature label placement (PFLP) without loss of generality; in Section 5 of the paper we describe how our
results generalize to labeling tasks involving line and area features.

The PFLP problem can be thought of as a combinatorial optimization problem. Like all such problems, two aspects must
be defined: aearch space and arobjective function.

Sear ch space. An element of the search space can be thought of as a function from point features to label positions, which
we will call alabeling. The set of potential label positions for each point feature therefore characterizes the PFLP search space.
For most of the published algorithms, the possible label positions are taken, following cartographic standards, to be a finite set,
which is enumerated explicitlfFigure 1 shows a typical set of eight possible label positions for a point feature. Each box cor-
responds to a region in which the label may be placed. Alternatavebntinuous placement model may be used, for example
by specifying a circle around the point feature that the label must touch without intersecting.

In certain variants of the PFLP problem, we allow a labeling not to include labels for certain points (presumably those that
are most problematic to label, or least significant to the labeling application). When this option is included, the PFLP problem
is said to includgoint selection.

Figure 1: A set of potential label positions and their relative desiratibtyer values indicate more desirable positions.

Objective function. The function to be optimized, the objective function, should assign to each element of the search
space (a potential labeling of the points) a value that corresponds to the relative quality of that labeling. The notion of labeling
quality has been studied by cartographers, most notably by Imhof (1962; 1975). Hdméwofs analysis is descriptive, not
prescriptive; coming up with an appropriate definition of the objective function for a general label-placement problem (that is,
one that includes point, line, and area features) isfiaudiftask. Labeling quality can depend on many factors, including
detailed “world knowledge” and characteristics of human visual perception. Many of the label-placement algorithms reported
in the literature therefore incorporate sophisticated objective functions. A popular approach has been to use a rule-based para-
digm to encode the knowledge needed for the objective function (Ahn and Freeman, 1984; Freeman and Ahn, 1987; Jones,
1989; Cook and Jones, 1990; Doerschler and Freeman, 1992). For the PFLP problem, hawhkatawrely simple objective
function sufices. Our formulation of the objective function is due 6&lv(1972¥. In Yoeli’'s scheme, the quality of a labeling
depends on the following factors:

» The amount of overlap between text labels and graphical features (including other text labels);
« A priori preferences among a canonical set of potential label positions (a standard ranking is shown in Figure 1); and

« The number of point features left unlabeled. (This criterion is pertinent only when point selection is incorporated into
the PFLP problem.)

Figure 2 provides an illustration of these factors. By specifying how to compute a numerical score for each of the criteria
above, an objective function can be defined. Such a function assigns to each labeling a number that indicates its relative qual-
ity. We will assume that low scores correspond to better labelings, so that the goal of the search is to minimize the objective
function.

The PFLP problem is a combinatorial optimization problem defined by its search space and objective function; a solution
to the problem is comprised of a search algorithm that attempts to find a relatively good element of the search space. A natural
issue to raise, before exploring possible search algorithms, is the intrinsic complexity of this search problem. In Section 2 we

1A recent study conducted byw¥nd Buttenfield (1991) addresses the issue of placement preference for point-feature labels in more detail.

Labeling Point Features on Maps and Diagrams

Jon Christensen Joe Marks
Harvard University Mitsubishi Electric Research Laboratories
Cambridge, Massachusetts Cambridge, Massachusetts
Stuart Shieber

Harvard University
Cambridge, Massachusetts

Abstract

A major factor aecting the clarity of graphical displays that include text labels is the degree to which labels obscure display
features (including other labels) as a result of spatial overlap. Point-feature label placement (PFLP) is the problem of placing
text labels adjacent to point features on a map or diagram so as to maximize legtsgigyroblem occurs frequently in the
production of many types of informational graphics, though it arises most often in automated cartdgrénidypaper we

present a comprehensive treatment of the PFLP problem, viewed as a type of combinatorial optimization problem. Complexity
analysis reveals that the basic PFLP problem and most interesting variants of it are NP-hard. These negative results help
inform a survey of previously reported algorithms for PFLP; not surprisialjlgsuch algorithms either have exponential time
complexity or are incompleteoTsolve the PFLP problem in practice, then, we must rely on good heuristic metteopi-W

pose two new methods, one based on a discrete form of gradient descent, the other on simulated annealing, and report on .
series of empirical tests comparing these and the other known algorithms for the problem. Based on, tthis fitatlio be
conducted, we identify the best approaches as a function of available computation time.

CR Categories:.E.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problemsee-
metric problems and computations, routing and layout. H.5.2 [nformation Interfaces and Presentatior]: User Interfaces—
screen design. 2.1 [Artificial Intelligence]: Applications and Expert Systemsartography. 1.3.5 [Computer Graphics]:
Computational Geometry and Object Modelingesmetric algorithms, languages, and systems.

General €rms: algorithms, experimentation.

Additional Key Words and Phrases: label placement, automated cartogsaptiyastic methods, simulated annealing.

1 Introduction

Tagging graphical objects with text labels is a fundamental task in the design of many types of informational graphics. This
problem is seen in its most essential form in the field of cartograyigye text labels must be placed on maps while avoiding
overlaps with cartographic symbols and other labels, though it also arises frequently in the production of other graphics (e.g.,
scatterplots). Although several techniques have been reported for automating various label-placement tasks, the positioning of
labels is still performed manually in many applications, even though it can be very tedious. (Cook and Jones (1990) report that
cartographers typically place labels at the rate of only 20 to 30 labels pewhbumap lettering contributing up to half of the

time required for producing high-quality maps.) Determining an optimal positioning of the labels is, conseajuémibor-

tant problem.

In cartographythree diferent label-placement tasks are usually identified: labeling of area features (such as oceans or
countries), line features (such as rivers or roads), and point features (such as cities or mountain peaks) (Imhof, 1962; 1975).
While it is true that determining the optimal placement of a label for an isolated point feature is afgsgtddisk from
determining the optimal placement of a label for an isolated line or area feature, the three placement tasks share a common
combinatorial aspect when multiple features are present. The complexity arises because the placement of a label can have glo
bal consequences due to label-label overlaps. This combinatorial aspect of the label-placement task is independent of the
nature of the features being labeled, and is the fundamental sourcicaftgiin automating label placement.evtherefore

